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ABSTRACT
I present a new estimation-of-distribution approach to pro-
gram evolution where distributions are not estimated over
the entire space of programs. Rather, a novel representation-
building procedure that exploits domain knowledge is used
to dynamically select program subspaces for estimation over.
This leads to a system of demes consisting of alternative rep-
resentations (i.e. program subspaces) that are maintained
simultaneously and managed by the overall system. Meta-
optimizing semantic evolutionary search (MOSES), a pro-
gram evolution system based on this approach, is described,
and its representation-building subcomponent is analyzed in
depth. Experimental results are also provided for the overall
MOSES procedure that demonstrate good scalability.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming –
Program synthesis

General Terms
Algorithms, Design, Experimentation

Keywords
Empirical Study, Heuristics, Optimization, Representations

1. REPRESENTATIONS AND MODELS
Current approaches to program evolution based on the

estimation of distributions may be divided into three cate-
gories: probabilistic models based on prototype trees with
variables corresponding to program symbols, models based
on grammar induction, and models with linear encodings
that are mapped to programs.

The archetypal prototype tree approach to program
evolution is probabilistic incremental program evolution
(PIPE) [18]. PIPE is based on a rooted schema model of
programs trees. All trees in the population are aligned with
a probabilistic model with a fixed topology (the prototype
tree). All subtrees are similarly aligned according to their
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absolute position in the tree (e.g., “third argument of sec-
ond argument of the root node”). To generate new solu-
tions, PIPE independently samples from the distribution of
functions and terminals at each node in the prototype tree.
If 30% of the programs in the population have root nodes
consisting of the function +, and 70% have the function ∗,
then trees rooted in + will be created with probability 0.3
and ∗ with probability 0.7, independent of the remainder of
their contents. The probabilistic model is thus univariate
(no interactions between variables).

There are two basic questions that a probabilistic model-
ing approach to program evolution must answer: (1) “How
are programs represented and program subcomponents de-
fined?”; and (2) “What kinds of interactions are possible be-
tween subcomponents?”. The former determines how pro-
grams are represented, and the latter what sort of proba-
bilistic model is constructed on top of this representation.

Based on this outlook, two primary limitations of the
PIPE paradigm are the absolute position addressing system
based on rooted-tree schemata (inadequate representation)
and assumption of independence between nodes (inadequate
modeling). Both of these are manifest to varying degrees
in most program learning problems. Regarding the former,
consider that f(x) and 0.99 · f(x), while nearly identical
behaviorally, may share no rooted-tree schemata at all. Re-
garding the latter, many program evolution problems have
been demonstrated empirically to contain significant across-
node dependencies, for example in [8, 20]. Note however
that these two limitations are linked; an inadequate repre-
sentation make it difficult to correctly model the structure
of program spaces (a point we shall return to later).

Several extensions of PIPE have been developed. Hier-
archical PIPE (hPIPE) [19] adds hierarchical instructions,
which can bias sampling towards programs with a particular
overall organization (e.g., a linear combination of nonlinear
elements), and skip nodes, which allow nodes to contain
instructions for expressing only one of their child subpro-
grams, ignoring the others. Estimation-of-distribution pro-
gramming (EDP) [24] uses a Bayesian network to represent
dependency relationships between nodes, with a fixed topol-
ogy; nodes are dependent on their parent and left sibling.
In [25], EDP is hybridized with genetic programming (GP).
Extended compact GP (ECGP) [20] similarly extends PIPE
to a non-univariate model, in this case a marginal product
model that is relearned after each generation.

These extensions all address one or both of the problem-
atic assumptions of rooted-tree schema and independence
mentioned above. The hPIPE does not strictly adhere
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to a rooted-tree schema model, because skip nodes allow
schemata to manifest themselves in multiple program posi-
tions. Through different mechanisms, EDP and hPIPE’s hi-
erarchical instructions both relax the univariate assumption
of PIPE via prior knowledge. Hybridizing GP with EDP
(i.e., generating some new program via subtree crossover)
allows rooted-tree schemata to “migrate” to other positions.
The ECGP’s probabilistic modeling eliminates the assump-
tion of independence (or fixed dependencies) between nodes.

A number of EDAs for program evolution have been de-
veloped based on grammar models. Program evolution with
explicit learning (PEEL) [21] models programs distributions
with a stochastic context-free grammar (SCFG) extended
to allow rules to be tagged with depth and location restric-
tions. Models are learned by incrementally splitting existing
rules into sub-rules. Grammar model-based program evolu-
tion [22] and grammar-transformation-based EDA for GP [1]
also learn SCFG models. Grammar induction methods may
generically be said to represent program subcomponents lo-
cally (i.e., in terms of subtrees which may appear anywhere
in a program), although refinements such as depth and lo-
cation restrictions added to PEEL allow absolute-position
constraints to be expressed. In order to model non-local
interactions (e.g., between the content in distant program
positions) context-dependent features must be introduced.

Two program evolution systems have been developed
based on linear encodings that are mapped to pro-
grams, both based on the Bayesian optimization algo-
rithm (BOA) [14]. BOA programming [10] is based on
a probabilistic model (dynamically learned Bayesian net-
works with local structure [13]) with two sets of vari-
ables: one models the symbol content of programs (as
in PIPE), and the other models program structure (tree
shape). Schemata are not rooted in absolute positions,
but neither are they completely relative, as the structure-
description language is constrained. Bayesian automatic
programming (BAP) [17] evolves fixed-length integer vec-
tors which are optimized by the BOA (dynamically learned
Bayesian network model [14]). The vectors are mapped to
programs for evaluation, as in grammatical evolution [11];
integers are treated as indexing the rules in a context-free
grammar defining the programming language.

1.1 A New Approach
There are clearly program learning problems that can

benefit from non-univariate modeling procedures, because
program spaces almost always exhibit strong dependencies
across variables. Beyond this, how expressive models should
to be for program-learning tasks of interest is an open ques-
tion. For example, the ECGP models non-overlapping build-
ing blocks, while the BAP models overlapping but non-
hierarchical building blocks, and BOA programming models
overlapping hierarchical building blocks.

A more fundamental question, which I believe should be
answered first, is how programs and program subcompo-
nents are best represented for probabilistic modeling over.
It may be that one of the representational approaches de-
scribed above will emerge as facilitating greater “evolvabil-
ity” than the others, leading to better performance on test
problems. However, I claim that on a fundamental level, all
programmatic representations are “the same” in the sense
of having similar scaling behavior as problems become more
difficult and languages become more expressive. Formal-

izations of this claim can be proven from a standpoint of
computational complexity, learning theory, and algorithmic
information theory (e.g., see Langdon and Poli’s work on
limiting distributions in program spaces [8]).

I would go further however and argue that in all but the
simplest languages, the improvement to be had by leveraging
domain knowledge and dynamically adjusting the represen-
tation within a program space (the approach herein) will
be dramatically greater than the improvement from shifting
across spaces (e.g., encoding programs in lists vs. trees, or
learning absolute position vs. relative position dependen-
cies). This is because, in contrast to general optimization,
the semantics of program evaluation provide valuable prior
knowledge applicable across broad ranges of problems.

2. MOSES
Meta-optimizing semantic evolutionary search (MOSES)

is an estimation-of-distribution program evolution system
based on this new approach, and distinguished by two key
mechanisms: (1) exploiting semantics (what programs actu-
ally mean) to restrict and direct search; and (2) limiting the
recombination of programs to occur within bounded sub-
spaces (constructed on the basis of program semantics). As
we shall see, this leads to superior performance and scala-
bility in comparison to current purely syntactic techniques
(local search, genetic programming, etc.). Furthermore, the
evolved programs do not suffer from any kind of “bloating”.

Recombination in MOSES occurs within parameterized
program subspaces called representations. A specialized
representation-building process is used which heuristically
exploits semantics (e.g., ∀x, x + 0 → x) to create mean-
ingful parameters to vary, based on some exemplar program.
This parameter variation is directed by the hierarchical BOA
(hBOA) [13], an advanced estimation-of-distribution algo-
rithm that dynamically learns problem decompositions en-
coded as Bayesian networks with local structure.

A population of programs associated with a common rep-
resentation is a deme, and a set of demes (together spanning
an arbitrary region of program space in a patchwork fashion)
is a metapopulation. MOSES operates on a metapopulation,
adaptively creating, removing, and allocating optimization
effort to demes. Deme management is the second fundamen-
tal meta aspect of MOSES, after representation-building; it
essentially corresponds to the problem of allocating com-
putational resources among competing representations (i.e.,
programmatic organizational schemes).

A basic sketch of MOSES is as follows:

1. Construct an initial representation of very small programs
(i.e., with the empty program as the exemplar) and use it
to generate an initial random sampling. Add this deme to
the metapopulation.

2. Select a deme from the metapopulation and iteratively
update its sample, as follows:

(a) Select some promising programs from the deme’s exist-
ing sample to use for modeling, according to the scoring
function. Ties in the scoring function are broken by pre-
ferring smaller programs.

(b) Considering the promising programs as collections of pa-
rameter settings, generate new collections of parameter
settings by applying hBOA optimization.
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(c) Convert the new collections of parameter settings into
their corresponding programs, evaluate their scores, and
integrate them into the deme’s sample, replacing less
promising programs.

3. For each of the new programs that meet the criteria for
creating a new deme, if any:

(a) Construct a new representation centered around the pro-
gram (the deme’s exemplar), and use it to generate a new
random sampling of programs, producing a new deme.

(b) Integrate the new deme into the metapopulation, possi-
bly displacing less promising demes.

4. Repeat from step 2.

Representation-building MOSES consists of three basic
steps: reduction to normal form, neighborhood enumera-
tion, and neighborhood reduction. In reduction to normal
form, programs are heuristically simplified to eliminate re-
dundancy. Neighborhood enumeration attempts to find pos-
sible transformations that correspond to behaviorally nearby
variations on the source program. In neighborhood reduc-
tion, redundant transformations are heuristically culled to
reach a more independent set. These will now be described
in depth (for Boolean formulae); other details of MOSES
(e.g., the deme creation criterion) are omitted for brevity,
and may be found in [9]. Note that MOSES does not exam-
ine programs in the “neighborhood” one-by-one as in local
search, but searches the space of combinations of neighbor-
hood transformations (exponentially larger).

2.1 Reduction to Normal Form
In the domain of Boolean formulae, Holman has devel-

oped an “elegant normal form” (ENF) [4] for simplification
that is both efficient to derive and heuristically effective.
He reports for instance on experiments involving randomly
generated Boolean formulae with hundreds of literals, where
99% of the formulae required fewer than 10,000 atomic op-
erations to reduce to ENF, and retained fewer than 2% of
their original literals. Formulae in ENF use the basis {AND,
OR, NOT}. In contrast to conjunctive normal form, ENF
preserves formulae’s hierarchical structure. To define ENF,
let’s introduce some terminology:1

• The guard set of an internal node is all of its children that
are literals, and the guard set of a literal is itself.

• A branch set is the union of all of the guard sets of con-
junctions and literals on the shortest path between some
leaf and the root.

• The dominant set of a node is the union of all of the guard
sets of nodes on the shortest path between the node and
the root, excluding the node itself.

Consider the formula on the left in Figure 1. The AND
node in the lower right’s guard set is {x3, x6}, and its domi-
nant set is {x1, x2, x3, x7}. The branch set for the literal x5

(in the center) is {x1, x2, x5}. A formula is in ENF if:

1. Negation appears only in literals.

2. Levels of conjunction and disjunction alternate.

1For clarity, the definitions are slightly different than in [4].

3. No conjunction or disjunction has both a literal and its
negation, or multiple copies of the same literal, as children.

4. No branch set contains a literal and its negation.

5. The intersection of all of the children of any disjunction’s
guard sets is empty.

6. The intersection of any conjunction’s guard set and dom-
inant set is empty.

Thus, the formula on the left in Figure 1 is not in ENF,
because the intersection of the OR node in the lower right’s
children’s guard sets is non-empty – it contains x3 (condition
5). An efficient procedure for reducing any formula to ENF
consisting of a set of eight reduction rules that are executed
iteratively over the entire formula until no further reductions
are possible appears in [4]. I have extended the definition
ENF and the corresponding reduction procedure to obey the
following additional constraints:

7. The intersection of the guard sets of the children of a
conjunction is empty – this corresponds to item 5 above,
for a conjunction-of-disjunctions rather than a disjunction-
of-conjunctions.

8. No node’s guard set is a subset of any of its siblings’ guard
sets.

9. For any pair of siblings’ guard sets having the form {x}∪
S1 and {NOT (x)}∪S2, where S1 and S2 are sets of literals,
no third sibling’s guard set is a subset of S1 ∪ S2.

What is to be gained by reducing programs to a hierarchi-
cal normal form? Consider the relationship between syntac-
tic distance (tree-edit distance in the case of programs) and
semantic distance (distance in behavior, what programs ac-
tually do when evaluated): this may be quantified in terms
of fitness-distance correlation measures. These can be effec-
tive predictors of algorithm performance [23], although they
are not the whole story (cf. [5]). This can be easily studied
in the domain of Boolean formulae, where the semantic dis-
tance between two formulae is simply the Hamming distance
between their corresponding truth-tables. A neighborhood
structure for defining syntactic distance may be derived from
the following edit operations on formulae: (1) replacement
of one literal with another; (2) removal of an operator and
all but one of its children, which replaces it; and (3) the in-
sertion of an operator above an existing subformula, along
with a second argument consisting of a new literal.

The edit distance between two formulae may now be de-
fined in terms of these operations by the minimal number of
nodes that must be modified, removed, or inserted to obtain
one formula from the other. We can define the syntactic
neighborhood of a formula by considering all replacement
operations (a distance of one), and all removals and inser-
tions with a distance of two (i.e., only involving the removal
or insertion of a single operator and a single literal).

Five thousand syntactically and semantically unique for-
mulae were generated each for arities five and ten, and all
pairwise distances computed. The resultant distributions
are shown for arity five in Figure 2 on the left (results for
arity ten are qualitatively similar). Syntactic distance is
normalized to fall in [0, 1]. Density is normalized based on
semantic distance (i.e., the density of every vertical slice
sums to one). Data are binned into a 20 × 20 mesh, and
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OR

AND x7

x1 x2 OR OR

NOT(x3) NOT(x4) x5 x3 AND

x3 x6

−→

OR

AND x7

x1 x2 x3 OR

NOT(x4) x5

Figure 1: A redundant Boolean formula (left) and its equivalent in hierarchical normal form (right).
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Figure 2: Pairwise distribution of program edit distance (syntactic) vs. truth-table Hamming distance
(semantic) for random formulae with arity five, before (left) and after (right) reduction to ENF.
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Figure 3: Distribution of behaviors and unique behaviors as a proportion of total neighborhood size for
random formulae with arity five, before (left) and after (right) reduction to ENF.
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interpolation is used to generate smooth figures. Identi-
cal computations were performed after reduction to ENF
(Figure 2, right); the pairwise semantic distances will thus
be identical, whereas the edit distances may change signifi-
cantly. Edit distance is normalized based on division by the
sum of the two formulae’s sizes (this is to make comparisons
of distances between formulae of different sizes meaningful).

For the original formulae, there is little variation in the
distribution based on semantic distance; the syntactic space
of large programs is globally nearly uniform with respect
to semantic distance. Consequently, semantically similar
programs are not, in a statistical sense, grouped any closer
together than those of average similarity. After normaliza-
tion, the results for both arities show a marked correlation
between semantic and syntactic distance for small distances
(signified by the diagonal sloping of the distribution towards
the origin). Syntactic distances are now being computed
based on symbols that actually shape the formula’s behav-
ior, and meaningless structural distinctions such AND(x,
AND(y, z)) vs. AND(AND(x, y), z) have been discarded.

2.2 Neighborhood Enumeration & Reduction
Given some neighborhood structure (e.g., all programs

within some edit distance of the source), a straightforward
way to do neighborhood reduction is to exploit the reduction
to normal form outlined above; the number of symbols in the
normal form of a program can be used as a heuristic approx-
imation for its minimal length. If the reduction to normal
form of the program resulting from some variation signifi-
cantly decreases its size, it can be assumed to be a source of
redundancy, and hence eliminated from consideration. The
transformation to a slightly smaller program is typically a
meaningful change to make, but a large reduction in com-
plexity will rarely be useful (and if so, can be accomplished
through a combination of smaller changes). At the end of
this process, we will be left with a neighborhood defining a
subspace of programs centered around a particular point in
program space and heuristically centered around the corre-
sponding point in behavior space as well.

Assume that this representation-building process creates
effective neighborhoods based on a set of transformations
within a constant distance from the exemplar program.
There is still no guarantee that difficult problems will be
solvable by recombining these small steps. Ideally, the step
size should be adaptive, and increase as search progresses,
when it becomes more difficult to find nearby improvements.
Unfortunately, this methodology will lead to a combinatorial
explosion without sophisticated safeguards.

The simplest remedy, taken in the current MOSES imple-
mentation, is to resort to subsampling. For the transforma-
tions described above involving the set of n literals, an addi-
tional O(n) transformations will be considered involving the
insertion of subformulae rather than single nodes. These will
be based on �√n� randomly generated formulae in ENF con-
taining two literals, �√n� with three literals, ..., and �√n�
with �√n� literals, for a total of (�√n�)2 ≤ n + 2

√
n addi-

tional transformations.
These random formulae are generated independently for

each possible insertion. The asymptotic complexity of the
sampling procedure is not affected. The motivation behind
sampling from this distribution is to avoid overlap with
existing transformations, and bias search towards uniform
sampling by distance as the distance from the exemplar pro-

gram increases (while the number of programs at a given
distance grow exponentially).

Further background knowledge of Boolean formulae is ex-
ploited by controlling how the neighborhood space is pa-
rameterized. Having a subformula and its negation (e.g.,
x and not(x)) as children of the same AND or OR node
will always lead to a contradiction or a tautology. Thus,
instead of creating two separate binary parameters for the
insertion/removal of a subformula and its negation, a single
ternary parameter (present / absent / negated) is created.

Figure 3 left shows the distribution of behaviors and
unique behaviors among the syntactic neighbors of random
formulae,2 as a proportion of the total neighborhood size.
Only neighbors which are behaviorally different from the
source formula are shown. The data are based on one thou-
sand random formulae with one hundred literals. Most lo-
cal perturbations of large random formulae have no effect –
96% of them for arity five, and 91% for arity ten (the drop
is a corollary of the increase in the percentage of unique
behaviors in a sample as the arity increases). This is a con-
sequence of such formulae typically being highly redundant
– e.g., a large formula that computes a tautology will likely
remain a tautology when randomly perturbed (similarly a
large subformula which computes a tautology, etc.).

Considering the distribution of the remaining 4% of neigh-
bors, note that the density of neighboring formulae with a
behavioral distance of one or two is an order of magnitude
greater than the density of unique behaviors. Not only is
relatively little of the syntactic variation aligned with the
semantic dimensions we would like to explore, but this lit-
tle bit exhibits massive redundancy! This is yet another
consequence of the skewed distributions present in program
spaces (cf. [8]). The drop in density after the halfway point
of semantic distance is due to symmetries in the space.

Figure 3 right shows the same computations, using the
representation-building process described above to define
the neighborhood. In contrast to the results for syntac-
tic neighborhood structures, only 10% of the perturbations
in representation-building neighborhoods have no effect (for
both arities five and ten). There is also a significantly
greater proportion of close neighbors – around an order
of magnitude’s difference. Furthermore, when the greater
proportion of behaviorally unique neighbors attained via
representation-building is taken into account, this rises to
around two orders of magnitude.

3. EXPERIMENTAL RESULTS
Results are now presented for Boolean formula learning

problems (even-parity and multiplexer), and JOIN expres-
sion mechanism problems (ORDER and TRAP). All of these
problems are tuneably difficult based on adjusting their ar-
ities. Parameters for MOSES and their settings may be
found in Table 1; none were varied across any of the prob-
lems studied herein. The extensive theory and practice of
“competent optimization” [3, 12] allow reasonable settings
to be straightforwardly extrapolated to MOSES.

3.1 Parity and Multiplexer
Parity formulae with the basis {AND, OR, NOT} are dif-

ficult for evolutionary systems to learn, due to two main
factors. Firstly, even-parity formulae are extremely rare in

2With arity 5; results for arity 10 are qualitatively similar.
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Table 1: Parameters settings for MOSES.
Description Value

population size (N) is c·n1.05 (derived
in [12]), where n is the size of the rep-
resentation in bits

c = 5

window size (w) for restricted tour-
nament replacement in the hBOA,
which implements niching

w =
min(0.05N, n),
based on [12]

tournament size (selection pressure)
used for model-building in the hBOA

2,
based on [12]

complexity penalty for hBOA model-
building (to avoid overfitting)

log2(N),
derived in [12]

a deme is terminated after t1 genera-
tions of hBOA, or t2 generations with
no improvement in the best score

t1 = n,
t2 = �p

N/w�,
based on [15]

formula-space (their minimal formula size grows quadrati-
cally with the arity). Secondly, parity has a uniform struc-
ture (all variables are symmetrical), such that most formulae
(in fact, any formula that does not contain all of the vari-
ables) will compute functions that are correct for exactly
half of the cases; there is thus no gradient information to be
obtained from these formulae. They are well-studied both
theoretically and experimentally (cf. [8, 6]).

The easiest way to improve the performance of evolution-
ary learning for parity problems is to introduce some mech-
anism allowing the basis to be transformed (such as auto-
matically defined functions [7]), or simply using a different
basis (e.g., containing the equality or exclusive-or function);
this eliminates the first source of difficulty. A method intro-
duced by Poli and Page, sub-machine code GP with smooth
uniform crossover [16], uses a representation which allows
Boolean formulae to be varied in very small steps (by mak-
ing changes to a single output of a binary function). This
method eliminates the first source of difficulty, while ad-
ditionally providing increased gradient information. These
modifications, unsurprisingly, can indeed accelerate parity
learning. However, part of what is of interest in the original
problem formulation is no longer being studied, namely the
question of how to evolve large programs with limited gra-
dient information. Comparative results are thus only pre-
sented herein for the original formulation ([16] summarizes
the results for transformed problem variants as well).

Multiplexer functions are defined to have arity k + 2k,
where k is a positive number. The first k arguments are ad-
dress bits, and the remaining 2k define an addressing space.
With the ternary Boolean if function in the basis, multiplex-
ers may be computed quite compactly, and learned fairly
easily by evolutionary systems (c.f. [6]). Restricting the ba-
sis to {AND, OR, NOT} makes them more difficult. To
obtain comparative results for multiplexers, GP was run for
51 generations with a population of 4,000, size-7 tournament
selection, 90% crossover, and 10% elitism.3 Results for par-
ity are taken from the literature (see [2, 6] for settings).

To study the effects of probabilistic model-building on
the performance of MOSES (as opposed to representation-
building and deme management), experiments were also car-
ried out assuming no interactions between variables. This
configuration will henceforth be referred to as “univariate

3Results for GP on multiplexers with various parameter set-
tings are available in the literature (cf. [6, 7]) and are qual-
itatively similar to those here.

Table 2: Computational effort for p = .99.
Method Computational Effort (in thousands)

3-parity 4-parity 5-parity 6-parity
uMOSES 6 73 2,403 342,280
EP [2] 29 182 2,100 no solutions
GP [7] 96 384 6,528 no solutions
MOSES 5 72 1,581 100,490

Method Computational Effort
6-multiplexer 11-multiplexer

uMOSES (without if ) 20,768 377,305
GP (with if ) 43,600 794,000

GP (without if ) 65,200 3,128,000
MOSES (without if ) 14,065 350,276

MOSES” (uMOSES). Fifty independent runs of MOSES and
uMOSES were executed for parity problems with arities 3,
4, and 5, and multiplexer problems with arities 6 and 11.
Ten independent runs were executed for 6-parity (due to
the high computational cost). For 3-parity, 4-parity, and
the multiplexer problems, an optimal solution was found in
all runs. For 5-parity, runs were terminated after one million
fitness evaluations (96% success rate for MOSES, 86% for
uMOSES) and for 6-parity after eight million fitness evalu-
ations (30% success rate for MOSES, 10% for uMOSES).

Comparative computational effort is shown in Tables 2.4

MOSES achieves the best performance of all techniques
listed. Furthermore, MOSES does not “bloat” solutions
on this or any other problems studied; the average size of
best result for GP on the 11-multiplexer, for example, was
6.7 larger than for MOSES. Even after reduction to ENF,
these solutions were still on average 2.8 times larger. Scal-
ing still appears exponential for parity, which is expected
to be unavoidable for this problem formulation, on theoret-
ical grounds (cf. [8]). The effort figures for 6-parity should
be considered rough approximations; additional runs would
need to be carried out to obtain more accurate figures. The
relative costs of modeling vs. fitness evaluation vary; for
5-parity for example (with 25 test cases), they are approxi-
mately equal, while for the 11-multiplexer (with 211), fitness
evaluation strongly dominates.

3.2 ORDER and TRAP
The program space for the JOIN expression mechanism

consists of a single binary function, JOIN, and set of termi-
nals, {X1, X̄1, X2, X̄2, ..., Xn, X̄n}. As with Boolean formu-
lae, the behavioral (output) space is fixed-length and binary;
for JOIN however it grows linearly with the number of termi-
nals rather than exponentially. To evaluate, program trees
are parsed from left to right without regard for hierarchical
structure. If a terminal Xi appears before its complement
X̄i in the parse, the ith bit of the output is 1, otherwise 0.
For example, the n = 4 JOIN program

JOIN(JOIN(X̄4, X2), JOIN(JOIN(X3 , X3), X4)

expresses X2 and X3, producing the output 0110.
How should problems in the JOIN domain be represented

by MOSES? In principle, the entire expression mechanism
could be dispensed with, and programs transformed into a

4A non-zero success rate for 6-parity might be achieved for
EP or GP with larger populations and longer runs (EP used
a population of 500 and 250 generations [2], while GP used
a population of 16,000 and 51 generations [7]).
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Figure 4: A JOIN exemplar program (left) and cor-
responding representation built by MOSES (right).

representation isomorphic to their outputs. This would not
lead to very interesting results, however – MOSES would
essentially reduce to the hBOA, which is already known to
solve the bit-string equivalents of ORDER and TRAP. In-
stead we will “play along”, and not exploit our knowledge;
no reduction rules will be used.

Unlike junctors in the Boolean formula domain, the out-
put of the JOIN function depends on the order of its argu-
ments. Thus, there must be program transformations that
consider inserting new nodes both to the left and to the right
of existing nodes. As with formulae, a random sampling
procedure is used to construct neighborhoods. Given that
the behavioral space for JOIN is exponentially smaller, the
number of insertions considered is scaled accordingly (i.e.,
logarithmic in the arity of the space rather than linear).

To create k neighborhood parameters corresponding to in-
sertions at a particular program location, a random JOIN
tree with k+1 leaves is generated. One of these leaves is ran-
domly chosen and replaced with a copy of the existing sub-
tree at the target location, which is subsequently replaced
with the new tree. In other words, every possible subtree
is spliced out of the tree and replaced with a new subtree
containing it and k new leaves; k = [log2(n)] − 1 is used
herein. Each of the new leaves will be a binary parameter
in the representation. For a tree with l leaves, this will lead
to 2k(l−1) parameters, since trees are binary. Additionally,
removal of existing leaves may be considered (l more param-
eters). A possible representation for an n = 4 program is
shown in Figure 4; nodes containing parameters have their
values in the exemplar listed first, followed the other possible
value, ’#’ means no node, and ’ !’ means complement.

ORDER is the simplest scoring function for the JOIN do-
main; it sums the number of 1s in the output, and thus has
no interactions between variables. TRAP computes a bit-
string concatenated deceptive traps function on the output
bits (each trap is of order k, and designed to lead greedy
local search away from the global optimum). Here traps of
order three and signal difference of 0.25 are used, as in [20]
(see this reference for a detailed definition and description).
MOSES and uMOSES were both executed on ORDER and
TRAP for 50 independent runs with varying ns (follow-
ing [20]), with 100% success rates. The average number
of evaluations required to find an optimal solution is shown
in Figure 3.2. On ORDER, a univariate model gives better
performance as n grows. This effect is statistically signifi-
cant for n = 40; the average number of evaluations with 95%
confidence is 24, 201±1153 for uMOSES, and 27, 551±2010

for MOSES. For TRAP, however, a univariate model per-
forms worse as n grows. This effect is also significant for
n = 36 (288, 653 ± 22, 314 vs. 247, 497 ± 17, 439) and for
n = 42 (471, 155 ± 37, 237 vs. 399, 335 ± 31, 963).

Based on theory this is not surprising; simpler mod-
els achieve better performance when complex ones are not
needed to correctly decompose the problem, and worse when
they are. The results for MOSES and uMOSES on ORDER
are comparable to those presented in [20] for GP and ECGP,
which both appear to scale polynomially with n; for n = 40
the average number of evaluations required for both GP and
ECGP is between 20,000 and 30,000. On TRAP, the per-
formance of MOSES appears to be roughly comparable to
and perhaps slightly better than that of the ECGP [20],
where the average number of evaluations is 300,000-400,000
for n = 36, and 400,000-500,000 for n = 42.5

While not as strong as MOSES, uMOSES performs much
better on TRAP than other methods without dependency
learning (e.g., GP was not found to solve TRAP with
n > 24). This is presumably because iterative resampling
centered around existing good solutions when new demes are
created allowed uMOSES to act as a stochastic hillclimber
(which can solve the analogous bit-string TRAP problems
better than a GA or a univariate model, but not as well as a
dependency-learning approach). This should be testable by
running a stochastic hillclimber on TRAP and seeing if it
also outperforms GP. Also, MOSES and uMOSES may be
applied to larger problems with an increased trap size and
decreased signal difference, which is expected to increase the
performance gap between MOSES and uMOSES.

4. CONCLUSIONS
I have shown how two key mechanisms enhance the scala-

bility of program evolution: (1) exploiting semantics (what
programs actually mean) to restrict and direct search; and
(2) limiting the recombination of programs to occur within
bounded subspaces (constructed on the basis of program se-
mantics). These mechanism are novel, and go well beyond
previous GP work (e.g., on island models and incorporating
expression simplification into evolution).

Existing models of problem difficulty for program evo-
lution are typically based on generalizations of bit-string
schema theory, where schema correspond to various syntac-
tically defined fragments of program trees, quantified over
the entire program space (see Poli and Langdon [8] for a
review of these efforts). There are at present no refinements
allowing one to specify, for instance, that AND(AND(x, y),
z) and AND(y, AND(x,z)) are in a sense “the same” schema.
They are thus expected to give overly pessimistic estimates
of problem difficulty in many cases, by not taking program
semantics into account (assuming one has an evolutionary
algorithm than can exploit semantics).

In order to take semantics and possible local fitness-
distance correlation into account, I propose the development
of a bipartite model of problem difficulty. Local problem dif-
ficulty can be quantified over bounded program subspaces,
using methods developed for optimization over fixed-length
strings [3]. The theory of global problem difficulty will quan-
tify difficulty in learning across bounded program subspaces;

5The figures for GP and ECGP are for the number of evalu-
ations required to converge to a score no more than one less
than the optimum. Hence, actual comparative performance
for MOSES is better than indicated.
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Figure 5: Scalability of MOSES and univariate MOSES or ORDER (left) and TRAP (right).

assuming one has an optimizer that can reliably discover
optima in subspaces with a given structure, when and how
can one discover optima over the entire program space? The
answer will be based on quantifying global program space
properties: neutrality, multimodality, etc.
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