
Hybrid Evolutionary Algorithms on Minimum Vertex Cover
for Random Graphs

Martin Pelikan
Missouri Estimation of
Distribution Algorithms
Laboratory (MEDAL)

Dept. of Mathematics and
Computer Science, 320 CCB

University of Missouri–St.
Louis

One University Blvd., St. Louis
MO 63121

pelikan@cs.umsl.edu

Rajiv Kalapala
Missouri Estimation of
Distribution Algorithms
Laboratory (MEDAL)

Dept. of Mathematics and
Computer Science, 320 CCB

University of Missouri–St.
Louis

One University Blvd., St. Louis
MO 63121

rkdnc@umsl.edu

Alexander K. Hartmann
Institut für Theoretische Physik

Universität Göttingen
Friedrich-Hund-Platz 1, 37077

Göttingen, Germany

hartmann@physik.uni-
goettingen.de

ABSTRACT
This paper analyzes the hierarchical Bayesian optimization
algorithm (hBOA) on minimum vertex cover for standard
classes of random graphs and transformed SAT instances.
The performance of hBOA is compared with that of the
branch-and-bound problem solver (BB), the simple genetic
algorithm (GA) and the parallel simulated annealing (PSA).
The results indicate that BB is significantly outperformed
by all the other tested methods, which is expected as BB is a
complete search algorithm and minimum vertex cover is an
NP-complete problem. The best performance is achieved
with hBOA; nonetheless, the performance differences be-
tween hBOA and other evolutionary algorithms are rel-
atively small, indicating that mutation-based search and
recombination-based search lead to similar performance on
the tested problem instances.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.2.8 [Artificial
Intelligence]: Problem Solving, Control Methods, and
Search; G.1.6 [Numerical Analysis]: Optimization

General Terms
Algorithms

Keywords
Minimum vertex cover, hierarchical BOA, genetic algorithm,
simulated annealing, branch and bound.

1. INTRODUCTION
The classical minimum vertex-cover problem involves

graph theory and finite combinatorics and is categorized

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

under the class of NP-complete problems in terms of its
computational complexity [10]. Minimum vertex cover has
attracted researchers and practitioners because of the NP-
completeness and because many difficult real-world prob-
lems can be formulated as instances of the minimum vertex
cover. Examples of the areas where the minimum vertex-
cover problem occurs in real world applications are bioinfor-
matics [1, 12, 18] and communications [37]. However, only
few studies exist that analyze the performance of evolution-
ary algorithms on this important class of problems [20, 17,
22].

The purpose of this paper is to compare several simple
and advanced evolutionary algorithms on an extensive set of
minimum vertex cover problem instances. Specifically, we
consider the hierarchical Bayesian optimization algorithm
(hBOA) [31, 30], the simple genetic algorithm (GA) [16,
11], the parallel simulated annealing (PSA) [21, 7], and the
complete branch-and-bound solver (BB) [24, 25, 38]. As
problem instances, we use standard random graph models
[8] and transformed SAT graphs [41]. Each algorithm has
been tested on more than 180,000 different graphs.

The paper is organized as follows. Section 2 briefly de-
scribes the minimum vertex cover problem and its theoreti-
cal background. Section 3 outlines the hierarchical Bayesian
optimization algorithm, the simple genetic algorithm, the
parallel simulated annealing and the complete branch-and-
bound solver. Section 4 discusses the graph models used in
the experiments. Section 5 provides the experiments done
and their results. Section 6 gives a glimpse of future work
ideas. Section 7 summarizes and concludes the paper.

2. MINIMUM VERTEX COVER
A vertex cover of an undirected graph G = (V, E), is a

subset S ⊆ V such that if (u, v) ∈ E then either u ∈ S or
v ∈ S or both. In other words, a vertex cover is a subset of
vertices that contains at least one node of each edge. The
size of the vertex cover is the number of vertices in it.

There are two versions of the minimum vertex cover prob-
lem: the decision version and the optimization one. In
the decision version, the task is to verify for a given graph
whether there exists a vertex cover of a specified size. On
the other hand, in the optimization version of this problem,

547

the task is to find a vertex cover of minimum size. To il-
lustrate the minimum vertex cover, consider the problem
of placing guards [39] in a museum where corridors in the
museum correspond to edges and the task is to place a min-
imum number of guards so that there is at least one guard
at the end of each corridor.

Minimum vertex cover is NP-complete [19]. It is also a
special case of the set cover problem [6] which takes as
input an arbitrary collection of subsets S = (S1, S2, .., Sn)
of the universal set V , and the task is to find a smallest
subset of subsets from S that cover V .

The minimum vertex cover problem is also closely related
to many other hard graph problems and so it interests the
researchers in the design of optimization and approximation
algorithms. For instance, the independent set problem [19,
10] is similar to the minimum vertex cover problem because
a minimum vertex cover defines a maximum independent set
and vice versa. Another interesting problem that is closely
related to the minimum vertex cover is the edge cover which
seeks the smallest set of edges such that each vertex is in-
cluded in one of the edges.

Recently, the attention of physicists was drawn to the
study of NP-complete problems like vertex cover and sat-
isfiability. The reason is that, when studied on suitable ran-
dom ensembles, these problems exhibit phase transitions in
the solvability [28, 39, 14], which often coincide with peaks
in the typical computational complexity or changes of the
typical complexity from exponential to polynomial or vice
versa. Concepts and methods from statistical physics have
helped to understand these models better [15], calculate typ-
ical complexities of algorithms analytically [27, 40] and have
even lead to the design of more efficient probabilistic algo-
rithms [26, 15].

In this paper we consider the optimization version of min-
imum vertex cover with the goal of analyzing performance
of various evolutionary algorithms and the complete branch-
and-bound algorithm on this class of problems.

3. COMPARED ALGORITHMS
This section outlines the algorithms compared in this pa-

per: (1) the branch-and-bound algorithm (BB), (2) the hi-
erarchical Bayesian optimization algorithm (hBOA), (3) the
genetic algorithm (GA), and (4) the parallel simulated an-
nealing (PSA).

3.1 Branch-and-bound algorithm
The branch-and-bound (BB) algorithm [24, 25] is a com-

plete algorithm, meaning that it guarantees the exact solu-
tion even though the time complexity may increase expo-
nentially with the graph size. As is also supported by the
results presented in this paper, the algorithm is often out-
performed by stochastic methods, which can often reliably
locate the optimum after evaluating only a small portion of
the search space.

The branch-and-bound algorithm recursively explores the
full configuration space by deciding about the presence or
absence of one node in the cover in each step of the recur-
sion and recursively solving the problem for the remaining
nodes. The full configuration space can be seen as a tree
where each level decides about the presence or absence of
one node and for each node there are two possible branches
to follow; one corresponds to selecting the node for the cover
whereas the other corresponds to ignoring the node. Tech-

nically, a covered node and all adjacent edges are removed,
while an ignored node remains, but may not be selected in
deeper levels of the recursion. The recursion explores the
tree and backtracks when there are no more edges to cover
or when the bounding condition is met, as described shortly.
When backtracking, covered nodes are reinserted into the
graph. Subsets of nodes that provide valid vertex covers are
identified and the smallest of them is the minimum vertex
cover. It is easy to see that in the worst case, the complexity
of BB is upper-bounded by the total number of nodes in the
recursion tree, which is proportional to 2n.

Bounding enables the algorithm to eliminate branches
that provably do not lead to better than best-so-far cov-
ers, improving efficiency. The bounding condition is based
on the degree d(i) of the current vertex i, which represents
the number of neighbors of node i. If uncov is the number
of edges yet to be covered and we have still k nodes to cover
(without obtaining a worse solution than the one found ear-
lier), the lower bound for the minimum number of uncovered
edges is given by

max

»
0, uncov − max

j1,j2,..,jk

d(j1) + d(j2) + .. + d(jk)

–

Any branch that violates the above condition can be cut
(avoided). Our BB implementation is based on [38].

3.2 Hierarchical BOA (hBOA)
The hierarchical Bayesian optimization algorithm

(hBOA) [31, 30] is an estimation of distribution algo-
rithm [23, 2, 29, 32, 34], where standard recombination and
mutation operators are replaced by building and sampling
probabilistic models. hBOA represents candidate solutions
by n-bit binary strings, where n is the number of vertices
in the graph; 1 represents the presence of a particular node
in the minimum vertex cover while 0 represents its absence.

hBOA starts by generating a population of candidate so-
lutions at random with uniform distribution over all possible
n-bit binary strings. At each iteration a set of promising so-
lution is selected using any common selection method such
as tournament and truncation selection. Here we use binary
tournament selection without replacement. The selected so-
lutions are used in building a Bayesian network with decision
trees [5, 9]. New solutions are generated by sampling the
built Bayesian network. The new solutions are then incor-
porated into the original population using restricted tourna-
ment replacement (RTR) [13]. The run is terminated when
the termination criteria are met.

There is a local search heuristic overlaid on top of hBOA,
which updates every solution in the population to ensure
that it represents a valid vertex cover. The update is done by
adding nodes of uncovered edges to the current cover in ran-
dom ordering until a valid cover is obtained. After adding
new nodes to the cover, some of the selected nodes may be
redundant; the redundant nodes are removed by parsing the
nodes and deleting those that are unnecessary. Since every
candidate solution represents a valid cover, in the selection
process of better candidate solutions, the number of nodes
selected for the cover in a solution directly corresponds to so-
lution quality; the fewer nodes, the better the solution. We
tried other heuristics to repair invalid solutions, but their
effects on performance were insignificant.

548

3.3 Genetic algorithm
In the genetic algorithm (GA) [16, 11], we use the same

representation of candidate solutions and the same repair
operator (local heuristic) like in hBOA.

GA starts by generating a random population of candidate
solutions. At each iteration a population of promising solu-
tions is first selected. Variation operators are then applied
to this selected population to produce new candidate solu-
tions. Specifically, crossover is applied to exchange partial
solutions between pairs of solutions and mutation is used
to perturb the resulting solutions. Here we use uniform
crossover and bit-flip mutation to produce new solutions.
The new solutions are substituted into the original popula-
tion using restricted tournament replacement (RTR). The
run is terminated when the termination criteria are met.

GA and hBOA differ only in the way they process the
selected solutions. GA applies variation operators inspired
by natural evolution and genetics, whereas hBOA learns and
samples a Bayesian network with local structures.

3.4 Parallel simulated annealing
Simulated annealing [21, 7] is a fairly robust stochastic

optimization algorithm based on local search. Simulated an-
nealing derives inspiration from the physical process of an-
nealing in metallurgy. Essentially annealing is a process in
which equilibrium conditions in metals are attained by heat-
ing up and then cooling down the material in a controlled
fashion. If the cooling is slow enough and reaches very low
temperatures, the material will be with high probability in
a ground state, i.e. a configuration with the lowest energy.
Simulated annealing follows a similar analogy to solve opti-
mization problems, by identifying the negative of the quality
of the solutions (here the size of the vertex cover) with the
energy.

In detail, simulated annealing starts initially with an ar-
bitrary solution and then repeatedly tries to make improve-
ments to it locally. A new solution is accepted with a prob-
ability that is based on the difference Qold − Qnew between
the quality of the old and new solutions and on an (artificial)
temperature T , which is gradually decreasing throughout the
process. The algorithm always accepts better solutions but
the probability of accepting a worse solution from the lo-
cal step decreases exponentially fast with the ratio of the
decrease in solution quality and the temperature T :

paccept = min{1, exp ((Qold − Qnew)/T)} (1)

Initially, T is relatively large and thus SA accepts nearly all
new solutions regardless of their quality. As T decreases, the
probability of accepting worse solutions decreases as well.
This means, when cooling slowly enough, the system will
end up with high probability in a solution of best quality,
i.e. in this case with a vertex cover of minimum size.

Parallel simulated annealing (PSA) simulates multiple
runs of simulated annealing in parallel and thus becomes
more robust as the probability of reaching the global opti-
mum increases.

In this paper, we use a PSA that represents candidate so-
lutions by n-bit binary strings and it initializes all solutions
to represent a full cover (all nodes are selected) as suggested
in [15]. Quality of a solution is determined by the number
of nodes it uses in the cover; the fewer the nodes, the better
the solution. Only local steps that lead to valid covers are
accepted, so there is no need for a repair operator.

In each step of each SA run of PSA, we first decide
whether to add or remove a node from the current cover
(with equal probability). If a node is to be removed, we ran-
domly choose one of the nodes that can be removed without
affecting validity of the cover and remove the node; if no
node can be removed, the cover remains unchanged. If a
node is to be added into the cover, we randomly choose a
node to add and add the node with probability exp(−μ).
The parameter μ is initially equal to 0 and in each step, μ
is increased by a constant δμ > 0.

4. GRAPH MODELS
This section outlines the graph models used in comparing

the performance and scalability of the optimization algo-
rithms introduced in the previous section. The graph mod-
els used are

(1) G(n, m) graphs [4, 38],

(2) G(n, p) graphs [4], and

(3) transformed SAT graphs [41].

The first two models are standard random graph models
from the graph theory, while the third model is created by
transforming hard instances of SAT problem into minimum
vertex cover. All graphs used in this work are undirected.

4.1 G(n,m) Model
The G(n, m) model consists of all graphs with n vertices

and m edges. The number of vertices, n and the number of
edges, m are related by m = nc, where c > 0 is a constant.

To generate a random G(n, m) graph, we start with a
graph with no edges. Then, cn edges are generated ran-
domly using a uniform distribution over all possible graphs
with cn edges. Each node is thus expected to connect to 2c
other nodes on average.

4.2 G(n,p) Model
The G(n, p) model, also called binomial Erdős Rényi ran-

dom graph model [4], consists of graphs of n vertices for
which the probability of an edge between any pair of nodes
is given by a constant p > 0. To ensure that graphs are
almost always connected, p is chosen so that p � log(n)/n.

To generate a G(n, p) graph we start with an empty graph.
Then, we iterate through all pairs of nodes and connect each
of these pairs with probability p.

The expected number of edges of a G(n, p) graph is
`

n
2

´
p.

For given constants p and c, the number of edges for G(n, p)
graphs grows faster than the number of edges for G(n, m)
graphs; while for G(n, m) the number of edges is bounded by
Θ(n), for G(n, p) the expected number of edges is bounded
by Θ(n2).

The classical G(n, m) and G(n, p) models are homoge-
neous in the sense that the node degrees tend to be con-
centrated around their expected value. For G(n, p) the ex-
pected degree is np whereas for G(n, m) it is 2c. The prop-
erties of G(n, m) model are similar to those of G(n, p) with
2m/n2 = p.

4.3 Transformed SAT graphs (TSAT)
The satisfiability (SAT) problem consists of deciding

whether a given Boolean formula in conjunctive normal form
is satisfiable, that is, whether there exists an assignment of

549

1. Generate n disjoint cliques of size nα.

2. Randomly select two different cliques and then gen-
erate without repetitions pn2α random edges between
these two cliques.

3. Run Step 2 (with repetitions) for another rnlnn − 1
times.

Figure 1: Generating transformed SAT (TSAT)
graphs.

the variables that satisfies the formula [10]. The transformed
SAT graphs used in this paper are generated by transform-
ing forced satisfiable SAT benchmarks of model RB [42, 43],
where vertices correspond to variables and edges correspond
to clauses in SAT instances.

Model RB is the revised model B, which is one of the
standard models for generating random binary constraint
satisfaction problems (CSPs) [36]. By varying control pa-
rameters of the model, we can ensure that the generated
instances are from the phase transition region where the
probability of any instance being satisfiable is about 50%;
instances from the phase transition region are known to be
the most difficult ones for most algorithms. The control pa-
rameters for model RB are n, which denotes the number of
variables; α > 0, which determines the domain size d = nα;
r > 0 which determines the number m = rn ln n of con-
straints; and 1 < p < 0, which denotes the tightness of the
constraints.

The model RB used here is of interest because random
instances of any arity can be generated and the phase tran-
sition is guaranteed with a limited restriction on domain
size and constraint tightness. The critical probability pcr

where the transition occurs is given by pcr = 1−e−α/r. The
graphs can be generated directly without the actual trans-
formation from SAT [42, 43]. The algorithm for generating
the transformed SAT graphs is shown in Figure 1. The size
of the minimum vertex cover of TSAT graphs is approxi-
mately equal to n(nα − 1).

5. EXPERIMENTS
This section presents and discusses the experimental re-

sults. The section starts by describing the test instances and
the experiments done. Finally, the results are presented.

5.1 Tested graph instances
The test graph instances have been generated using the

three graph models described in the previous section. We
have generated and tested more than 180,000 different
graphs.

For the G(n, m) model, based on the relation m = cn, c
is varied from 0.5 to 4 in steps of 0.25 and for each value
of c, n is varied from 50 to 300 in steps of 50. For each
combination of n and c, 1000 random graphs are generated
and tested.

For the G(n, p) model, graphs are generated for p = 0.25
and p = 0.5. For each value of p, n is varied from 50 to 200
in steps of 50. For each combination of values of n and p,
1000 random instances are generated and tested.

For the TSAT model, the number cliques in the generated

graphs is varied from 5 to 20. The number of nodes is then
determined by the number of cliques and other parameters.
The remaining parameters are set as in [41]: α = 0.8, r =
2.7808, and p = 0.25. Here p is the critical value where
the hardest instances occur. For each problem size, 1000
random instances are generated and tested.

5.2 Description
All generated graphs have been first solved using BB be-

cause BB is a complete algorithm that is ensured to find the
minimum vertex cover. All graphs have then been solved
using the remaining algorithms included in the comparison,
that is, hBOA, GA, and PSA. Time complexity of BB and
PSA is measured by the number of steps until the optimal
cover is found; for hBOA and GA, time complexity is mea-
sured by the overall number of candidate solutions examined
until the optimum is found.

For hBOA and GA, the bisection method [35] is used to
determine the minimum population size required to find the
global optimum in 10 out of 10 independent runs (the pop-
ulation size is determined independently for each graph in-
stance). The number of evaluations is then averaged over
the 10 independent runs with the minimum population size
obtained by bisection. Both hBOA and GA use binary tour-
nament selection and new solutions are incorporated into the
original population using restricted tournament replacement
with window size w = min{n, N/20} where n is the number
of nodes in the input graph and N is population size.

For PSA, 10 independent runs have been performed for
each graph and the results have been averaged over the 10
runs. Parameters of PSA have been set according to initial
experiments to ensure reliable convergence to the optimum
vertex cover in a wide range of problem instances. Specif-
ically, the number of parallel SA runs is set to the overall
number of nodes in the graph, n. The probability of accept-
ing an addition of a node into the cover is equal to exp(−μ)
where initially μ = 0 and in each iteration, μ is increased
by δμ = 0.05. We tried a number of alternative strategies
for modifying the acceptance probability for steps that de-
crease solution quality, but no approach lead to significantly
different results than the strategy described above.

5.3 Results
Figure 2 presents the results of BB on random G(n, m)

graphs, where the ratio of the number of edges and the num-
ber of nodes is fixed to a constant c. These results indicate
that the time complexity of BB grows exponentially fast
with problem size for all values of c and that it increases
with c. As problem size increases, BB is outperformed by
all other compared algorithms in terms of both the num-
ber of evaluated candidate solutions as well as the overall
CPU time per instance. This result is not surprising since
BB is the only complete algorithm used in the comparison.
Note that an extension of BB, the leaf-removal algorithm
[3], is still a complete algorithm but it achieves a typically
polynomially growing running time for the average number
of edges per node of at most e ≈ 2.7183 (corresponding to
c ≈ 1.3591), while it still behaves exponentially for larger
values of c.

Figure 3 presents the performance of hBOA on G(n, m)
test instances. Similarly as in the case of BB, the time
complexity of hBOA increases with both c and n. However,
for smaller values of c, the number of evaluated solutions

550

50 100 150 200 250
10

1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

Number of nodes

N
um

be
r

of
 b

ra
nc

hi
ng

s

BB, c=4.000
BB, c=3.500
BB, c=3.000
BB, c=2.500
BB, c=2.000
BB, c=1.500

Figure 2: BB on G(n, m)

50 100 150 200 250

10
2

10
3

10
4

10
5

Number of nodes

N
um

be
r

of
 e

va
lu

at
io

ns

hBOA, c=4.000
hBOA, c=3.500
hBOA, c=3.000
hBOA, c=2.500
hBOA, c=2.000
hBOA, c=1.500

Figure 3: hBOA on G(n, m)

50 100 150 200 250

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

Number of nodes

N
um

be
r

of
 e

va
lu

at
io

ns
/s

te
ps

BB, c=2
PSA, c=2
GA, c=2
hBOA, c=2

(a) c = 2

50 100 150 200 250
10

2

10
3

10
4

10
5

10
6

10
7

10
8

Number of nodes

N
um

be
r

of
 e

va
lu

at
io

ns
/s

te
ps

BB, c=4
PSA, c=4
GA, c=4
hBOA, c=4

(b) c = 4

Figure 4: hBOA, BB, GA, PSA on G(n, m).

appears to grow only polynomially fast with problem size
as opposed to the exponential growth with BB. Note that
hBOA is required to converge in all runs, 10 independent
runs per problem instance; each point in the graph thus
corresponds to 10,000 successful runs.

Figures 4 compares the performance of all tested algo-
rithms on G(n, m) for c = 2 and c = 4. GA and hBOA
perform nearly the same for small values of n. However, for
large problems, the growth of the number of evaluations re-
quired by GA becomes faster than that required by hBOA.
Although the number of steps required by PSA is signif-
icantly greater than the number of evaluations for hBOA
and GA, it is important to note that a single evaluation in
hBOA and GA requires at least n steps, while in PSA the
number of computational steps in each iteration of the al-
gorithm on G(n, m) is upper bounded by a constant. After
incorporating this factor into the analysis, we can conclude
that for all values of c, hBOA, GA and PSA perform well and
they significantly outperform BB. This indicates that perfor-
mance of stochastic optimization techniques on G(n, m) is
relatively efficient regardless of whether the search is based
primarily on recombination or mutation.

Figure 5 analyzes the effects of c on performance of hBOA
on G(n, m). The results indicate that as the problem size

increases, the influence of c on increasing time complexity
of hBOA grows.

The observations from the test results for G(n, m) model
test instances can be summarized as follows:

• As c increases the time complexity of all the algorithms
increases.

• hBOA, GA and PSA outperform BB in all the cases.

• BB exhibits exponential complexity in all the cases as
expected.

• hBOA, GA and PSA perform all relatively well, some-
times with polynomial complexity.

• Operators based on recombination and local search
lead to similar performance.

Figure 6 shows the results of the experiments done for
the G(n, p) model with increasing p. The results indicate
that hBOA and GA perform nearly equally well in all cases
and since evaluating one solution in hBOA or GA is slower
than one local step of BB or PSA, we can conclude that all
algorithms perform well. A comparison of the results for
G(n, m) and G(n, p) indicates that G(n, p) graphs are easier

551

50 100 150 200 250
10

1

10
2

10
3

10
4

10
5

10
6

10
7

Number of nodes

N
um

be
r

of
 e

va
lu

at
io

ns
/s

te
ps

BB
PSA
GA
hBOA

(a) p = 0.25

50 100 150 200 250
10

1

10
2

10
3

10
4

10
5

10
6

10
7

Number of nodes

N
um

be
r

of
 e

va
lu

at
io

ns
/s

te
ps

BB
PSA
GA
hBOA

(b) p = 0.50

Figure 6: hBOA, BB, GA, PSA on G(n, p). Note that the performance of hBOA and GA is nearly identical.

0.5 1 2 4
10

1

10
2

10
3

10
4

10
5

c = number of edges / number of nodes

N
um

be
r

of
 e

va
lu

at
io

ns

hBOA, n=250
hBOA, n=200
hBOA, n=150
hBOA, n=100
hBOA, n=50

Figure 5: Effects of c on hBOA performance on
G(n, m)

to solve for all methods, assuming that c and p are fixed to
a constant.

Performance of hBOA and GA appears to follow a sim-
ilar pattern on G(n, p) for all values of p. That indicates
that the fluctuations in time complexity as the problem size
grows (see Figure 6a-b) are due to the distribution of prob-
lem instances, which appear to vary in difficulty more than
in the case of G(n, m). Due to the variation in problem com-
plexity, a higher number of problem instances should lead
to more stable predictions of time complexity.

The observations from the test results for G(n, p) model
test instances can be summarized as follows:

• As p increases the time complexity of all the algorithms
decreases.

• All algorithms perform relatively well in all cases.

• BB overtakes PSA more quickly (for smaller instances)
when p is small, and the growth of BB time complexity
slows down with growing p.

In general we see that graphs with few edges as well as

25 50 100 200
10

1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Number of nodes

N
um

be
r

of
 e

va
lu

at
io

ns
/s

te
ps

BB
PSA
GA
hBOA

Figure 7: Comparison of hBOA, BB, GA and PSA
on TSAT instances. Note that the performance of
hBOA and GA is nearly identical.

graphs similar to a clique are relatively easy to solve even
with complete algorithms like BB. Graphs with covers that
are neither small nor large are expected to be much more
difficult.

Figure 7 compares the performance of hBOA, BB, GA,
and PSA for the transformed SAT graphs. On TSAT, BB
is outperformed by other methods but hBOA, GA and PSA
perform well.

6. FUTURE WORK
Methodology presented in this paper can be extended

to other generalized NP-complete problems, such as the
set cover problem, independent set problem, number-
partitioning problem or the satisfiability problem. The other
direction to extend the current work would be to study per-
formance of evolutionary algorithms for minimum vertex
cover of various other classes of graphs. One of the most
important challenges is to find features that make various
instances of minimum vertex cover and other similar prob-
lems difficult and study the effectiveness of various stochas-

552

tic optimizers in dealing with these features. The results
presented in this paper indicate that graph connectivity is
one of these factors, but they also show that for many stan-
dard classes of graphs, most operators appear to perform
relatively well. Understanding the main sources of prob-
lem difficulty would facilitate the design of better optimizers
for minimum vertex cover and similar problems. Finally, in
both hBOA and GA, we used a simple, local repair operator,
but it is straightforward to incorporate more advanced local
searchers to further improve performance of GA and hBOA
as was the case with other difficult classes of NP-complete
problems, such as spin glasses [33].

7. SUMMARY AND CONCLUSIONS
This paper analyzed performance of the branch-and-

bound (BB) algorithm and several evolutionary algorithms
on minimum vertex cover for three classes of graphs. In
addition to BB, we considered the hierarchical Bayesian op-
timization algorithm (hBOA), the simple genetic algorithm
(GA), and the parallel simulated annealing (PSA).

In most cases, hBOA, GA and PSA outperformed BB,
which is not a surprising result because BB is a complete
method that guarantees that the global optimum is found.
Nonetheless, the results indicated that in most cases, hBOA,
GA and PSA performed comparably well, indicating that
mutation-based search and recombination-based search per-
form similarly on the studied classes of graph instances.

Acknowledgments
This work was supported by the National Science Founda-
tion under CAREER grant ECS-0547013, by the Air Force
Office of Scientific Research, the Air Force Materiel Com-
mand, USAF, under grant FA9550-06-1-0096, and by the
University of Missouri in St. Louis through the High Per-
formance Computing Collaboratory sponsored by Informa-
tion Technology Services, and the Research Award and Re-
search Board programs. The experiments were done us-
ing the hBOA software developed by Martin Pelikan and
David E. Goldberg at the University of Illinois at Urbana-
Champaign.

The U.S. Government is authorized to reproduce and dis-
tribute reprints for government purposes notwithstanding
any copyright notation thereon. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of the National Science Foundation, the Air Force Of-
fice of Scientific Research, or the U.S. Government.

8. REFERENCES

[1] F. N. Abu-Khzam, R. L. Collins, M. R. Fellows, M. A.
Langston, W. H. Suters, and C. T. Symons.
Kernelization algorithms for the vertex cover problem:
Theory and experiments. In Proceedings ACM-SIAM
Workshop on Algorithm Engineering and Experiments
(ALENEX ’04), New Orleans, LA, 2004.

[2] S. Baluja. Population-based incremental learning: A
method for integrating genetic search based function
optimization and competitive learning. Tech. Rep. No.
CMU-CS-94-163, Carnegie Mellon University,
Pittsburgh, PA, 1994.

[3] M. Bauer and O. Golinelli. Core percolation in
random graphs: a critical phenomena analysis. Eur.
Phys. J. B, 24:339, 2001.

[4] B. Bollobás. Random Graphs. Cambridge University
Press, Cambridge, UK, 2nd edition, 2001.

[5] D. M. Chickering, D. Heckerman, and C. Meek. A
Bayesian approach to learning Bayesian networks with
local structure. Technical Report MSR-TR-97-07,
Microsoft Research, Redmond, WA, 1997.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. McGraw-Hill,
New York, 2nd edition, 2001.

[7] A. Das and B. K. Chakrabarti, editors. Quantum
Annealing and Related Optimization Methods, volume
679. Springer, New York, 2005.

[8] P. Erdös and A. Rényi. On the evolution of random
graphs. Publ. Math. Inst. Hung. Acad. Sci., 5:17, 1960.

[9] N. Friedman and M. Goldszmidt. Learning Bayesian
networks with local structure. In M. I. Jordan, editor,
Graphical models, pages 421–459. MIT Press,
Cambridge, MA, 1999.

[10] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. Freeman, New York, 1979.

[11] D. E. Goldberg. Genetic algorithms in search,
optimization, and machine learning. Addison-Wesley,
Reading, MA, 1989.

[12] D. Gusfield, S. Eddhu, and C. Langley. Efficient
reconstruction of phylogenetic networks with
constrained recombination. In Proceedings of the
Computational Systems Bioinformatics (CSAB 2006),
2006.

[13] G. R. Harik. Finding multimodal solutions using
restricted tournament selection. Proceedings of the
International Conference on Genetic Algorithms
(ICGA-95), pages 24–31, 1995.

[14] A. K. Hartmann and H. Rieger, editors. New
Optimization Algorithms in Physics, Weinheim, 2004.
Wiley-VCH.

[15] A. K. Hartmann and M. Weigt. Phase Transitions in
Combinatorial Optimization Problems. Wiley-VCH,
Weinheim, 2005.

[16] J. H. Holland. Adaptation in natural and artificial
systems. University of Michigan Press, Ann Arbor,
MI, 1975.

[17] H. Hongwei, X. Xuezhou, X. Jin, and B. Zheng.
Solving vertex covering problems using hybrid genetic
algorithms. In Proceedings of the 5th International
Conference on Signal Processing, pages 1663–1666,
2000.

[18] X. Huang, J. Lai, and S. F. Jennings. Maximum
common subgraph: Some upper bound and lower
bound results. BMC Bioinformatics, 7(Suppl 4):S6,
2006.

[19] R. M. Karp. Reducibility among combinatorial
problems. In Symposium on the Complexity of
Computer Computations, pages 85–103, Yorktown
Heights, NY, 1972. Plenum, NY.

[20] S. Khuri and T. Bäck. An evolutionary heuristic for
the minimum vertex cover problem. Genetic
Algorithms within the Framework of Evolutionary

553

Computation: Proceedings of the KI-94 Workshop,
pages 86–90, 1994.

[21] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi.
Optimization by simulated annealing. Science,
220:671–680, 1983.

[22] K. Kotecha and N. Gambhava. A hybrid genetic
algorithm for minimum vertex cover problem. In
B. Prasad, editor, The First Indian International
Conference on Artificial Intelligence, pages 904–913,
Hyderabad, 2003. IICAI.

[23] P. Larrañaga and J. A. Lozano, editors. Estimation of
Distribution Algorithms: A New Tool for Evolutionary
Computation. Kluwer, Boston, MA, 2002.

[24] E. L. Lawler and D. E. Wood. Branch-and-bound
methods: a survey. Operational Research 14:699,
University of Michigan, Ann Arbor, Ann Arbor, MI,
1966.

[25] R. Luling and B. Monien. Load balancing for
distributed branch and bound algorithms. In The 6th
International Parallel Processing Symposium, pages
543–549, Los Alamitos, USA, 1992. IEEE Computer
Society Press.

[26] M. Mézard, G. Parisi, and R. Zecchina. Analytic and
algorithmic solution of random satisfiability problems.
Science, 297:812, 2002.

[27] R. Monasson and S. Cocco. rajectories in phase
diagrams, growth processes, and computational
complexity: How search algorithms solve the
3-satisfiability problem. Phys. Rev. Lett., 86:1654,
2001.

[28] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman,
and L. Troyansky. Determining computational
complexity from characteristic phase transitions.
Nature, 400:133, 1999.

[29] H. Mühlenbein and G. Paaß. From recombination of
genes to the estimation of distributions I. Binary
parameters. In A. Eiben, T. Bäck, M. Shoenauer, and
H. Schwefel, editors, Parallel Problem Solving from
Nature, pages 178–187, Berlin, 1996. Springer Verlag.

[30] M. Pelikan. Hierarchical Bayesian optimization
algorithm: Toward a new generation of evolutionary
algorithms. Springer-Verlag, 2005.

[31] M. Pelikan and D. E. Goldberg. Escaping hierarchical
traps with competent genetic algorithms. Proceedings
of the Genetic and Evolutionary Computation
Conference (GECCO-2001), pages 511–518, 2001.
Also IlliGAL Report No. 2000020.

[32] M. Pelikan, D. E. Goldberg, and F. Lobo. A survey of
optimization by building and using probabilistic
models. Computational Optimization and Applications,
21(1):5–20, 2002. Also IlliGAL Report No. 99018.

[33] M. Pelikan and A. Hartmann. Searching for ground
states of Ising spin glasses with hierarchical BOA and
cluster exact approximation. In E. Cantú-Paz,
M. Pelikan, and K. Sastry, editors, Scalable
optimization via probabilistic modeling: From
algorithms to applications. Springer, 2006.

[34] M. Pelikan, K. Sastry, and E. Cantú-Paz, editors.
Scalable Optimization via Probabilistic Modeling:
From Algorithms to Applications. Springer, 2006.

[35] K. Sastry. Evaluation-relaxation schemes for genetic
and evolutionary algorithms. Master’s thesis,
University of Illinois at Urbana-Champaign,
Department of General Engineering, Urbana, IL, 2001.
Also IlliGAL Report No. 2002004.

[36] E. Tsang. Foundations of Constraint Satisfaction.
Academic Press, London, 1993.

[37] P.-J. Wan, L. Liu, and O. Frieder. Optimal placement
of wavelength converters in trees and trees of rings. In
Proceedings. Eight International Conference on
Computer Communications and Networks, pages
392–397, 1999.

[38] M. Weigt and A. K. Hartmann. Minimal vertex covers
on finite-connectivity random graphs — A hard-sphere
lattice-gas picture. Phys. Rev. E, 63:056127, 2000.

[39] M. Weigt and A. K. Hartmann. The number guards
needed by a museum – a phase transition in vertex
covering of random graphs. Phys. Rev. Lett., 84:6118,
2000.

[40] M. Weigt and A. K. Hartmann. The typical-case
complexity of a vertex-covering algorithm on
finite-connectivity random graphs. Phys. Rev. Lett.,
86:1658, 2001.

[41] K. Xu, F. Boussemart, F. Hemery, and C. Lecoutre. A
simple model to generate hard satisfiable instances. In
Proceedings of the 19th International Joint Conference
on Artificial Intelligence (IJCAI), pages 337–342,
Edinburgh, Scotland, 2005.

[42] K. Xu and W. Li. Exact phase transitions in random
constraint satisfaction problems. Artificial Intelligence
Research, 12:93103, 2000.

[43] K. Xu and W. Li. Many hard examples in exact phase
transitions with application to generating hard
satisfiable instances. Technical Report cs.CC/0302001,
2003.

554

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

