
An Estimation of Distribution Algorithm with Guided
Mutation for a Complex Flow Shop Scheduling Problem

Abdellah Salhi
Department of Mathematical

Sciences
University of Essex

Colchester, U.K.
as@essex.ac.uk

J. A. V. Rodriguez
ASAP group, School of

Computer Science and IT
University of Nottingham

Nottingham, U.K.
jav@cs.nott.ac.uk

Qingfu Zhang
Department of Computer

Science
University of Essex

Colchester, U.K.
qzhang@essex.ac.uk

ABSTRACT
An Estimation of Distribution Algorithm (EDA) is proposed
to approach the Hybrid Flow Shop with Sequence Depen-
dent Setup Times and Uniform Machines in parallel (HFS-
SDST-UM) problem. The latter motivated by the needs of a
real world company. The proposed EDA implements a fairly
new mechanism to improve the search of more traditional
EDAs. This is the Guided Mutation (GM). EDA-GM gen-
erates new solutions by using the information from a proba-
bility model, as all EDAs, and the local information from a
good known solution. The approach is tested on several in-
stances of HFS-SDST-UM and compared with adaptations
of meta-heuristics designed for very similar problems. En-
couraging results are reported.

Categories and Subject Descriptors
G.4 [Mathematical Software]: Algorithm design and anal-
ysis

General Terms
Algorithms

Keywords
Metaheuristics, combinatorial optimization, timetabling and
scheduling

1. INTRODUCTION
Hybrid Flow Shops (HFS) are processing environments

found in many real life applications such as real-time machine-
vision systems [15], paper bag manufacturing [1], electronic
systems [24], ceramic tile manufacturing [4], and others. It
is an active research area for which, however, the focus is
mostly on problems with assumptions making them different
from the problems encountered in real shops. Setup times,
for instance, are usually considered as part of the processing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

times of the jobs, and on occasions, totally neglected. But,
when the setup times are dependent on the jobs sequence
such as in [9] and [4], it is advisable to consider them sep-
arately from the processing times. It is also common that
new machinery is acquired in order to increase the process-
ing capacity of the shops. This situation leads to HFS with
uniform parallel machines (or machines in parallel with dif-
ferent speeds), see [16] for definition. This is because, often,
new machines are faster both in processing and setup times
than their older counterparts. We are concerned here, moti-
vated by the needs of a real world cardboard box company,
with HFS problems with sequence dependent setup times
(SDST), and uniform machines (UM). The problem is re-
ferred to as HFS-SDST-UM.

Estimation of Distribution Algorithms (EDA) are stochas-
tic optimisation methods which rely on the construction and
maintenance of a probability model that characterises sat-
isfactory solutions for a problem, [11], [14]. The model is
updated iteratively and used to sample new solutions. A
relatively new genetic operator, the Guided Mutation (GM)
[25], has been implemented and used as the mechanism to
generate new solutions in the EDA process. In order to
generate new solutions, EDA with GM (EDA-GM) uses the
global information provided by the probability model in con-
junction with the local information of a good known solu-
tion. EDA-GM has proved to be effective for the solution
of the Maximum Clique Problem [25], and the Quadratic
Assignment Problem [26]. It is, therefore, natural to try it
on HFS-SDST-UM.

The rest of the paper is organised as follows. Section 2
presents a brief review of HFS and the problem formula-
tion. Section 3 investigates the validity of the Proximate
Optimality Principal (POP), [5], in HFS-SDST-UM. Many
search technologies, including EDA-GM, rely on its validity
to be effective. Section 4 provides insights into EDA-GM
and how it can be applied to the problem addressed here.
Section 5 presents and discusses experimental results. Sec-
tion 6 discusses some properties of the convergence process
of EDA-GM. Section 7 is the conclusion.

2. PROBLEM DEFINITION
Hybrid Flow Shops (HFS) are manufacturing environments

characterised by a series ofm processing stages, each having,
potentially, multiple parallel machines [2]. The problem is
to schedule a set of n jobs, all following the same process di-
rection, such that a cost function is minimised. Even in the
case of two stages and considering preemptive schedules this

570

problem is N P−hard, [6], [7]. Mathematical programming
formulations, branch and bound algorithms, decomposition
heuristics, bottleneck exploiting procedures, adaptations of
heuristics for simplified versions of the problem and stochas-
tic search heuristics are all part of the portfolio of techniques
to solve it. We refer the reader to [22], [13], [9] and [4] for
good reviews.

Recent algorithms for the solution of different variants of
HFS, [20], [23], [21], [15], [8], [4], [18], exploit the observa-
tions reported in [19]. There, a method that enumerates
n! schedules, each stemming from a permutation of the n
jobs, is suggested. Each permutation is used to assign the
jobs in the first stage. The rest of the schedule is produced
in a First In First Out (FIFO) manner. Even though this
method does not guarantee finding the optimum solution,
it reaches it most of the time, and when not, it produces
solutions which are reasonably close to it.

An n! search space is still too large to enumerate. In [8]
a Random Keys Genetic Algorithm (RKGA) was employed
to explore the space of permutations and used for the solu-
tion of HFS with SDST. RKGA outperformed several other
specialised heuristics such as heuristics aimed at the travel-
ling salesman problem, Johnsons’ rule based heuristics and
in [10] an adaptation of an iterated local search algorithm
called the problem space based search method [12]. In [4]
a traditional permutation representation Genetic Algorithm
(GAH , as originally named) was employed to schedule a
HFS with SDST and unrelated machines in parallel. GAH

was compared with other heuristics and meta-heuristics and
outperformed them all.

2.1 Formulation
It is assumed that n jobs are to be processed through m

different stages. Each stage has at least one machine, with
one or more having at least two parallel machines, possibly
with different speeds. Any machine can process at most
one job at a time and any job is processed on at most one
machine at a time. Furthermore, every job is processed on
at most one machine in any stage. Preemptions are not
allowed. The setup times are dependent on the machine
and the jobs sequence.

In the following, j represents a job and k a stage. Each
job has to be processed in k stages. Let ojk be the corre-
sponding operation of job j in stage k and pjk be the amount
of work required by operation ojk in stage k. Let vlk ∈ N
be the speed of machine l in stage k. This is the units of
work that machine l can process per unit of time. Then,
the processing time required by operation ojk, if processed
in machine l, is pjkl =

pjk

vlk
. The setup work required by

operation ojk, if it is processed immediately after operation
oqk is sjqk. As with the processing times, the setup times
are also machine dependent, the setup time of operation ojk,
if processed immediately after operation oqk in machine l in
stage k, is sjkql =

sjqk

vlk
.

Let ωkl be a set of operations ojk assigned for processing
to machine l in stage k. Let Skl be a permutation of the
elements in ωkl representing the order in which operations
must be processed. Let Sk =

Smk
l=1S

kl and S =
Sm
k=1S

k,
where mk is the number of machines in stage k. S, being
the set of sequences of jobs in all machines, can be easily
translated into a unique schedule. S, to be feasible, must
ensure that all operations to be processed in stage k are
assigned for processing strictly once. Let ψ be a problem

instance of the type HFS-SDST-UM and Ωψ the set of all
feasible schedules. Let Cj(S) be the completion time of
the last operation of job j according to schedule S. The
maxj Cj(S) value is, then, the completion time of the las
operation to exit the shop, or the makespan. Using the
standard notation to refer to the makespan, maxj Cj will be
expressed, hereafter, Cmax. The problem investigated here
is that of finding S ∈ Ωψ such that its makespan, Cmax(S)
value, is minimum.

3. VALIDATING THE PROXIMATE
OPTIMALITY PRINCIPLE

Often, and certainly in the case of EDA-GM, heuristics
rely on the assumption that good solutions have similar
structures. This is the Proximate Optimality Principle (POP)
[5].

In order to verify the POP in our problem of interest,
8 instances, from the ones described in Section 5.1, were
selected so that different problem sizes were represented.
On these, the following experiments were carried out in a
similar fashion as in [26]. 1000 schedules Si, i = 1, . . . , 1000
were obtained as follows: a random permutation πi, of n
elements, was generated, and its corresponding schedule Si
constructed using the procedure described in Section 4.1.
These were evaluated and sorted in non-decreasing order
of their Cmax value. For every Si, 1000 new schedules Sji ,
j = 1, . . . , 1000, were built. To do this, πi was modified into
πji so that the latter is different from πi in 0.1n items. πji
was used to construct a new schedule Sji using the procedure
described in Section 4.1. For every new set of instances, the
average on their Cmax value was calculated.

Figure 1 plots the average of the 1000 instances gener-
ated from each Si. In the x axis are S1, . . . , S1000 in the
ascending order of their Cmax value. Note that, in all cases,
the average costs of the schedules increase along the x axis.
This provides evidence to support that the POP holds for
the HFS-SDST-DM problem. It is therefore, reasonable,
to construct new solutions using information collected from
good solutions visited in previous search.

4. EDA WITH GUIDED MUTATION FOR
THE HFS-SDST-UM

4.1 Solution representation
Let π = (π(1), π(2), . . . , π(n)), where π(i) is a job index,

be a permutation dictating the priorities of operations at
the first stage of the shop. A full schedule can be obtained
from π by assigning operations in the first stage in the or-
der dictated by it and constructing the rest by prioritising
operations according to increasing release times (rjk). In
all stages operations are assigned to the machine that al-
lows them the fastest completion time. See the following
procedure.

CP (π)

1. Set Skl = ∅ for all k and l (an initial empty schedule).

2. For i = 1, . . . , n : (generate schedule for stage 1)

(a) let ĵ = π(i)

571

0 200 400 600 800 1000
440

460

480

500

520

instance size (20 x 2)

0 200 400 600 800 1000
1400

1500

1600

1700
instance size (20 x 8)

0 200 400 600 800 1000
2150

2200

2250

2300
instance size (40 x 2)

0 200 400 600 800 1000

2400

2500

2600

2700

instance size (40 x 8)

0 200 400 600 800 1000

2700

2750

2800
instance size (60 x 2)

0 200 400 600 800 1000
4600

4700

4800

4900

5000

5100
instance size (60 x 8)

0 200 400 600 800 1000
4500

4550

4600

4650

4700

instance size (80 x 2)

0 200 400 600 800 1000
5500

5600

5700

5800

5900

instance size (80 x 8)

Figure 1: Verifying POP for 8 instances of the HFS-SDST-DM problem

572

(b) S1l = S1lSoĵ1, where l is the index of the ma-
chine that allows operation oj1 the fastest com-
pletion time;

(c) update release time of operation in next stage
rĵ2 = cĵ1, where cĵ1 is the completion time of
operation oĵk.

3. For k = 2, . . . ,m :

(a) let π′ be the set of job indices arranged in increas-
ing order of their release times at stage k

(b) For i = 1, . . . , n : (generate schedule for stage k)

i. ĵ = π′(i)

ii. Skl = Skl
S
oĵk), where l is the index of the

machine that allows operation oĵk the fastest
completion time;

iii. if k < m: update release time of next opera-
tion rĵ,k+1 = cĵ,k.

4. Return maxj Cj(S).

Remember that Skl is the set of sequences of jobs assigned
to machine l in stage k and S the set of all of them (see
Section 2.1). Note that, at steps 2.b and 3.b.ii, the release
time of each operation at stage k+1 is set as the completion
time of its precedent operation at stage k.

4.2 Estimation of Distribution Algorithm with
Guided Mutation

While Genetic Algorithms (GA) produce offspring through
recombination and mutation operators, EDA does it by sam-
pling from a probability model that characterises good solu-
tions, [11]. As GA, EDA-GM maintains a population of N
solutions Pop = {π1, . . . , πN}, but also a probability matrix:

prob(t) =

0B@prob11 · · · prob1n
...

. . .
...

probn1 · · · probnn

1CA ,

where prob(t) models the distribution of promising solutions
at iteration t. Value probij is the probability that job j is
considered at the ith place of a permutation, i.e., P (π(i) =
j).

Initially (t = 0), every element of prob(0) is set to 1
n2 ,

N permutations are sampled randomly and evaluated using
CP (π). At iteration t > 0, given a set of interesting per-
mutations, Pop(t), these are used to update the probability
matrix prob(t) :

probij(t) = (1−β)
1

N

NP
w=1

Iij(πw)+βprobij(t−1), (1 ≤ i, j ≤ n),

(1)
where πw is the wth element of Pop(t) and

Iij(π) =


1 if π(i) = j,
0 otherwise.

,

0 ≤ β ≤ 1 is a learning rate (to be tuned); the smaller it is,
the greater is the contribution of Pop(t) to prob(t).

4.2.1 Guided Mutation
A shortcoming of EDA is that, occasionally, solutions that

are not very representative of the current model, but never-
theless are good, are not well exploited in future iterations.
This is because the information of such solutions is too dif-
ferent from the one in the model. Therefore its impact is of
little importance. To overcome this limitation, the GM op-
erator was introduced, [25], [26]. GM allows a solution π∗ to
participate, in conjunction with prob(t), in the sampling of
new solutions. A parameter 0 < α < 1, establishes the level
of participation of π∗ and prob(t). GM starts selecting ran-
domly dαne elements from π∗ and copies them to the new
solution σ. The missing elements in σ are decided through
prob(t). See the following procedure.

GM(prob(t), π∗)

1. Set I = {1, 2, . . . , n}. Let K be a set of dαne elements
in I, selected random-uniformly. Set V = I\K.

2. For each i ∈ K :

(a) set σ(i) = π∗(i) and I = I\{π∗(i)}.

3. While (I 6= ∅):

(a) select an i from V and randomly choose a k ∈ I

with probability probikP
j∈I probij

;

(b) set σ(i) = k, I = I\{k} and V = V \{i}.

4. Return σ.

In this way, at every iteration t > 0, M new solutions are
generated through GM.

4.2.2 A restarting strategy
Once prob(t) has converged to a local optimum, it is dif-

ficult to escape from it. It is possible to sample new solu-
tions which are far from the current searching area by means
of 1−prob(t). After a specified number of iterations, L, with-
out an observed improvement, N solutions are generated as
follows, [26].

Restart(prob(t))

1. Set I = {1, 2, . . . , n}.

2. For i = 1, 2, . . . , n :

(a) randomly select a k ∈ I with probability
1−probikP

j∈I (1−probij)
;

(b) set σ(i) = k and I = I\{k}.

3. Return σ.

The complement of prob(t) is used to generate solutions
that are as different as possible from the ones represented by
the current model. This new sample is then used to update
prob(t), moving the search into a different area.

573

4.2.3 General framework
The general framework of EDA-GM to solve the HFS-

SDST-UM is as follows.

EDA−GM(HFS-SDST-UM instance, N,M,α, β, L)

1. Generate a set Pop(0) = {π1, . . . , πN} of N random
permutations. Evaluate them, i.e. CPNi=1(Pop(0)i).
Set π∗ to be the best solution in Pop(0); set t = 0 and
initialise prob(t).

2. Generate σ = {σ1, . . . , σM}, where σi = GM(prob(t),
π∗); CPmi=1(σi). In words, generate M solutions using
GM and evaluate them.

3. Let Pop(t+1) be the best N solutions from Pop(t)
S
σ.

Set t = t + 1; set π∗ to be the best solution found so
far. Update prob(t) using Formula 1.

4. If the stopping condition is met, stop. Return π∗.

5. If the restarting condition is not met go to 2.

6. Pop(t)Ni=1 = Restart(prob(t)), CPNi=1(Pop(t)i). I.e.
generate a new population Pop(t) of N elements us-
ing the previously described restarting procedure and
evaluate them. Let π∗ be the best solution found so
far. Update prob(t) using expression 1. Go to 2.

4.2.4 Parameter Tuning
In a pre-experimental tuning stage, combinations of the

following parameter values were evaluated. The one shown
in bold was found to be adequate.

• population: N ∈ {5,10, 15, 20}

• solutions generated per iteration: M ∈ {2,5, 10}

• the parameter for GM: α ∈ {0.05, 0.1,0.15, 0.2}

• learning rate to update prob(t): β ∈ {0.20,0.30, 0.40}

• restarting condition: after L ∈ {100,150, 200} itera-
tions without observed improvement

The settings in bold are used in the experiments reported
in the next section.

5. COMPUTATIONAL EXPERIENCE

5.1 Instance Generation
Even though our investigation is motivated by a real world

problem, not enough data is yet available to generate prob-
lem instances to evaluate the proposed heuristic. We rely,
therefore, on carefully generated random instances.

Each problem is a feasible combination of the following
factor levels (for a total of 4 × 4 × 2 × 2 × 2 × 2 = 512
instances):

• n ∈ {20, 40, 60, 80} ;

• m ∈ {2, 4, 6, 8} ;

• mk ∈ {U(2, 3), U(2, 6)} ;

• pjk ∈ {U(50, 70), U126(10, 100)} ;

• vlk ∈ {U(2, 3), U(1, 3)};

• sqjk ∈ {U(0.05E(pjk), 0.15E(pjk)),
U(0.1E(P), 0.3E(pjk))}.

The number of jobs and stages (instance size) are known
to have an important impact on the performance of algo-
rithms. Because of this, 4 levels were studied. Different
numbers of machines per stage produce instances with dif-
ferent bottleneck criticalness. The instances with 2 to 6
machines per stage are more likely to have important bot-
tlenecks than those with 2 to 3 machines. This is because in
the former case the chances of having stages with remarkably
higher capacity than others are higher than in the latter.

The processing times in the fastest machine per stage were
generated in two levels. This is in order to study the effect
of having instances where the processing times are similar
and those in which they are different. The setup times were
generated as a proportion of the fastest expected processing
time of operations; between 5% and 15% and between 10%
and 30% for cheap and expensive setups, respectively. The
speeds of the machines were generated between 2-3, and 1-3.
Bearing in mind that pjkl =

pjk

vlk
and that sjqkl =

sjqk

vlk
, these

two intervals generate instances where the fastest machine
in any stage is at most 1.5 times faster than the slowest one,
in the first case, and 3 times faster in the second one.

5.2 Evaluation metric
The performance of the heuristics is measured using the

deviation of its returned solution from a lower bound, LB,
proposed in [17], as follows:

devHψ =
Cmax(Hψ)− LB(ψ)

LB(ψ)
× 100. (2)

In Formula 2, devHψ is the error from LB obtained by
heuristicH on problem instance ψ. Cmax(Hψ) is the makespan
of the solution obtained by heuristic H for problem instance
ψ. Since LB is a lower bound, the dev value is an estimate
of the percentage error of a given solution from the opti-
mum. Since the reasoning behind LB is quite involving, the
interested reader is referred to [17] for further details.

5.3 Results obtained with EDA-GM
EDA was run 10 times with a stopping condition set to

10,000 solution evaluations. The results according to For-
mula 2 are reported as columns “mean” and “std” (mean
and standard deviation) under the heading EDA-GM of Ta-
ble 1.

According to Table 1 all variables have an impact on the
errors from the lower bound. However, the number of jobs,
the number of stages, and the setup times, seem to be the
ones that influence the most the results. This is not surpris-
ing, since at least for these variables (number of jobs and
stages) a similar effect has been observed, [20]. On the other
hand, given that LB2 is based on the p̃jkl values, which are
calculated considering the fastest possible processing and
setup times, an increase in the variation of machine veloci-
ties and setup times add to the errors of LB. We can just
conclude that both LB and the solution methods contribute
to the errors. Further analysis is necessary to establish in
what proportion each of these is responsible.

5.4 Results obtained with other methods
In [4] and [8] attempts have been made to solve variants of

HFS close enough to the one with which we are concerned

574

Table 1: Mean and standard deviation of the devHψ
values (on ten runs) obtained by each heuristic at
each level of the instances defining factors

INSTANCES EDA-GM RKGA GAH

factor level mean std mean std mean std

n 20 10.01 5.66 10.82 6.14 10.36 5.88
40 7.11 3.30 8.53 3.92 7.96 3.88
60 6.68 2.99 8.17 3.76 7.60 3.62
80 6.19 2.55 7.24 2.94 6.94 2.96

m 2 5.60 2.97 7.52 4.49 5.77 3.13
4 6.66 2.88 7.93 3.68 7.31 3.12
6 8.18 4.37 8.92 4.58 9.12 4.56
8 9.55 4.69 10.38 4.82 10.66 4.93

mk 2-3 7.00 3.36 7.91 3.50 7.61 3.70
2-6 7.99 4.67 9.46 5.27 8.82 4.96

pjk 50-70 6.77 3.29 7.99 3.56 7.40 3.56
10-100 8.23 4.65 9.39 5.25 9.03 5.00

vlk 2-3 7.22 3.78 8.42 4.21 7.94 4.02
1-3 7.78 4.37 8.96 4.83 8.49 4.76

sjqk 0.05-0.15 5.91 3.69 6.87 4.19 6.49 3.88
0.1-0.3 9.09 3.86 10.50 4.13 9.94 4.24

Table 2: Mean and standard deviation of the devHψ
values obtained by each heuristic on the full set of
instances

EDA-GM RKGA GAH

mean std mean std mean std
7.49 4.09 8.68 4.53 8.21 4.41

here. There, two methods, notably RKGA and GAH , al-
ready mentioned in Section 2, have been used with some
success. We think that it is worthwhile for the potential
reader to have an idea of how EDA-GM and these two meth-
ods compare on the instances that we have generated and
considered here. Indeed we have implemented RKGA and
GAH and applied both of them to the instances of HFS-
SDST-UM described above. The same parameter settings
recommended in [4] and [8] were adopted in our experi-
ments. This is given that the results with the best settings
we found were similar to those already recommended; any
change seemed to be unjustified. The results in terms of the
metric of Formula 2 are recorded in the last 4 columns of
Table 1 under the headings RKGA and GAH .

Note that all experiments were run 10 times on a 3.0 MHz
processor with 1.0 GB of RAM running Windows XP. All
implementations were in Java SE 5.0. All algorithms were
given the same number of function evaluations per run. A
summary of all results is given in Table 2. These results show
the relative superiority of EDA-GM over the other two on
the instances considered.

6. DISCUSSION
In order to visualise the convergence process of EDA-GM,

a graphical tool, consisting of a grid with the same number
of cells as elements in prob(t), has been developed. Every
cell i, j is coloured in proportion to probij , in this case in a
gray scale. Figure 2 shows 9 of these grids. The closest to
1 that probij becomes, the darker cell ij is. The 9 grids in
Figure 2show, from left to right and top to bottom, a typical
convergence process observed when solving HFS-SDST-UM.
As can be seen, the grid on the top left corner is light gray
(all probabilities are 1

n2). In the bottom-right one, there
is a single black cell by row and column and the rest close

Figure 2: Visualising the convergence process of
EDA-GM

to white. In the last case, the model has converged to a
solution.

In all the observed HFS-SDST-UM instances, the con-
vergence process was, as can be seen in Figure 2, from the
top of the grid to the bottom of it. In other words, the first
elements of the permutation converged first, then the second
ones and so on. The explanation for this behaviour, that we
believe influences the success of EDA-GM, is that the first
elements assigned to the permutation define the activation
of the processing stages, including the bottleneck (critical
stage). Methods such as the Shifting Bottleneck Procedure
(SBP) [3], base their decisions on detecting and activating,
as soon as possible, the critical stages. In a HFS, it is im-
portant to assign at the very beginning the jobs that allow
the bottleneck to become active as early as possible. As
the machines in the stages are loaded, the addition of jobs
becomes less relevant to the overall cost, and so, the last
elements of the permutation are the last to be decided on.

7. CONCLUSION
This paper studied a variant of the HFS scheduling prob-

lem which allows sequence dependent setup times and ma-
chines with different velocities per stage. This problem, be-
ing a generalisation of the HFS, matches a larger set of real
world cases. A relatively new algorithm, EDA-GM, has been
adapted to solve the mentioned problem. The performance
of the algorithm on the test set was compared with that
of two other heuristics. The reported results suggest that
EDA-GM is a good algorithm for the problem.

In order to understand how the algorithm works in prac-
tice, a graphical tool was developed and used. The tool
allowed us to observe that EDA-GM decides the first com-
ponents of the schedules first, i.e. the top components of the
permutations are settled early on in the search. This trend
is followed until the last component is decided.

575

8. ACKNOWLEDGMENTS
It is a pleasure to acknowledge the support from Conacyt

through grant 178473.

9. REFERENCES
[1] L. Adler, N. Fraiman, E. Kobacker, M. Pinedo, J. C.

Plotnicoff, and T. P. Wu. BPSS: A scheduling support
system for the packaging industry. Operations
Research, 41:641–648, 1993.

[2] S. A. Brah. Scheduling in a Flow Shop with Multiple
Processors. PhD thesis, University of Houston, 1988.

[3] J. Cheng, Y. Karuno, and H. Kise. A shiting
bottleneck approach for a parallel-machine flow shop
scheduling problem. Journal of the Operations
Research Society of Japan, 44:140–156, 2001.

[4] R. R. Garćıa and C. Maroto. A genetic algorithm for
hybrid flow shops with sequence dependent setup
times and machine elegibility. European Journal of
Operational Research, 169:781–800, 2006.

[5] F. Glover and M. Laguna. Tabu Search. Kluwer, 1997.

[6] J. N. D. Gupta. Two-stage hybrid flow shop
scheduling problem. Operational Research Society,
39:359–364, 1988.

[7] J. N. D. Gupta. Heuristics for hybrid flow shops with
controllable processing times and assignable due
dates. Computers and Operations Research,
29:1417–1439, 2002.

[8] M. E. Kurz and R. G. Askin. Comparing scheduling
rules for flexible flow lines. International Journal of
Production Economics, 85:371–388, 2003.

[9] M. E. Kurz and R. G. Askin. Scheduling flexible flow
lines with sequence dependent set-up times. European
Journal of Operational Research, 159:66–82, 2003.

[10] M. E. Kurz, M. Runkle, and S. Pehlivan. Comparing
problem-based-search and random keys genetic
algorithms for the SDST FFL makespan scheduling
problem. working paper, 2005.

[11] P. Larrañaga and J. A. Lozano. Estimation of
Distribution Algorithms: A New Tool for Evolutionary
Computation. Kluwer Academic Publishers, 2001.

[12] V. J. Leon and B. Ramamoorthy. An adaptable
problem space based search method for flexible flow
line scheduling. IIE Transactions, 29:115–125, 1997.

[13] R. Linn and W. Zhang. Hybrid flow shop scheduling:
A survey. Computers & Industrial Engineering,
37:57–61, 1999.

[14] H. Mühlenbein and G. Paass. From recombination of
genes to the estimation of distributions i. binary
parameters. In Proceedings of the 4th International
Conference on Parallel Problem Solving from Nature,
Lecture Notes In Computer Science, Vol. 1141,, pages
178–187. Springer-Verlag, 1996.

[15] C. Oguz and M. F. Ercan. A genetic algorithm for
hybrid flow shop scheduling with multiprocessor tasks.
Journal of Scheduling, 8:323–351, 2005.

[16] M. Pinedo. Scheduling Theory, Algorithms and
Systems. Prentice Hall, 2002.

[17] J. A. V. Rodŕıguez. Meta-hyper-heuristics for hybrid
flow shops. Ph.D. thesis, University of Essex, 2007.

[18] J. A. V. Rodŕıguez and A. Salhi. Performance of
single stage representation genetic algorithms in
scheduling flexible flow shops. In Congress on
Evolutionary Computation (CEC2005), pages
1364–1371. IEEE Press, 2005.

[19] D. L. Santos, J. L. Hunssucker, and D. E. Deal.
FLOWMULT: Permutation sequences for flow shops
with multiple processors. Journal of Information and
Optimization Sciences, 16:351–366, 1995.

[20] F. S. Serifoglu and G. Ulusoy. Multiprocessor task
scheduling in multistage hybrid flow shops: A genetic
algorithm approach. Journal of the Operational
Research Society, 55:504–512, 2004.

[21] H. W. Thornton and J. L. Hunsucker. A new heuristic
for minimal makespan in flow shops with multiple
processors and no intermediate storage. European
Journal of Operational Research, 152:96–114, 2004.

[22] H. Wang. Flexible flow shop scheduling: Optimum,
heuristics and artifical intelligence solutions. Expert
Systems, 22:78–85, 2005.

[23] B. Wardono and Y. Fathi. A tabu search algorithm for
the multi-stage parallel machines problem with limited
buffer capacities. European Journal of Operational
Research, 155:380–401, 2004.

[24] R. J. Wittrock. An adaptable scheduling algorithm for
flexible flow lines. Operations Research, 36:445–453,
1988.

[25] Q. Zhang, J. Sun, and E. Tsang. An evolutionary
algorithm with the guided mutation for the maximum
clique problem. IEEE Transactions on Evolutionary
Computation, 9:192–201, 2005.

[26] Q. Zhang, J. Sun, E. Tsang, and J. Ford. Estimation
of distribution algorithm with 2-opt local search for
the quadratic assignment problem. In J. Lozano,
P. Larrañaga, I. Inza, and E. Bengoetxea, editors,
Towards a New Evolutionary Computation. Advances
in Estimation of Distribution Algorithm, pages
281–292. Springer-Verlag, 2006.

576

