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ABSTRACT 
This paper explores the application of the particle swarm 
algorithm for a NP-hard problem in the area of wireless 
communications. The specific problem is of detecting symbols in 
a Multi-Input Multi-Output (MIMO) communications system. 
This approach is particularly attractive as PSO is well suited for 
physically realizable, real-time applications, where low 
complexity and fast convergence is of absolute importance.  While 
an optimal Maximum Likelihood (ML) detection using an 
exhaustive search method is prohibitively complex, we show that 
the Swarm Intelligence (SI) optimized MIMO detection algorithm 
gives near-optimal Bit Error Rate (BER) performance in fewer 
iterations, thereby reducing the ML computational complexity 
significantly. The simulation results suggest that the proposed 
detector gives an acceptable performance complexity trade-off in 
comparison with ML and VBLAST detectors.  

Categories and Subject Descriptors 
C.2.1 [Computer-Communication Networks]: Network 
Architecture and Design – Wireless communication.  

General Terms 
Algorithms, Performance. 

Keywords 
PSO, Multi-Input Multi-Output systems, and symbol detection. 

1. INTRODUCTION 
Real life optimization problems are often so complex that finding 
the best solution becomes computationally infeasible. Therefore, 
an intelligent approach is to search for a good approximate 
solution consuming lesser computational resources. Several 
engineering problems contain multiple objectives that need  to  be  
addressed  simultaneously. Many  techniques  have been proposed 
that imitate nature’s own ingenious ways to explore optimal 
solutions for both single and multi-objective optimization 

problems. Earliest of the nature inspired techniques are genetic 
and other evolutionary heuristics that evoke Darwinian evolution 
principles. 

Particle Swarm Optimization (PSO) meta-heuristic is a 
population-based search algorithm, inspired by the coordinated 
movements of birds flocking introduced by Kennedy and Eberhart 
in 1995 [1],[2]. Standard PSO uses a real-valued multidimensional 
solution space [1], whereas in binary PSO particle positions are 
discrete rather than real valued [3]. Its simple mathematical model, 
resistance to being trapped in local minima and convergence to 
near optimal solution in fewer iterations makes it a suitable 
candidate for real-time NP-hard communication problems [4], in 
addition to other wide range of applications [5]. 

In this paper, PSO’s binary version is applied to a NP-hard 
problem in the area of wireless communications. The problem is to 
detect symbols from a composite signal, received at multiple 
receivers, transmitted from multiple transmitters. This MIMO 
detection problem is one of the most important issues faced in 
wireless communications area.  

The relevant information–theoretic analysis reveals that significant 
performance gains are achievable in wireless communication 
systems using a MIMO architecture employing multiple antennas 
[6]. This architecture is suitable for higher data rate multimedia 
communications [7]. Efficient exploitation of spatial diversity 
available in MIMO channel enables higher system capacity. 
Orthogonal Frequency Division Multiplexing (OFDM) employed 
in conjunction with MIMO architecture constitutes an attractive 
solution for modern wireless communications systems [8]. One of 
the challenges in building wide band MIMO systems is the 
tremendous processing power required at the receiver side. While 
coded MIMO schemes offer better performance than separate 
channel coding and modulation scheme by fully exploring the 
tradeoff between multiplexing and diversity [9], its hardware 
complexity can be significant, especially for wide band system 
with more than four antennas both at the transmitter and the 
receiver sides. On the other hand, it is easier to implement 
traditional channel coding schemes such as Convolution code and 
Turbo code for data rates of hundreds of Mbps. For this reason we 
discuss uncoded MIMO system also called spatial multiplexing as 
shown in Figure 1.  
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Figure 1: Spatial Multiplexing System 

MIMO symbol detection involves decoding of complex signals at 
the receiver, which is considerably complicated than Single-Input 
Single-Output (SISO) case, because of multiple transmitters and 
receivers. Simultaneous transmission of signals from multiple 
transmitters complicates the detection of composite signal at the 
receiver.  

There are many MIMO detection technologies for spatial 
multiplexing [10]. These techniques can be divided into linear and 
non-linear detection methods. Linear methods offer low 
complexity with degraded performance as compared to non-linear 
methods. This paper focuses on non-linear detectors and makes an 
effort to improve performance at the cost of complexity and vice 
versa. Maximum Likelihood (ML) and Vertical Bell labs Layered 
Space Time (V-BLAST) detectors [11],[12] are two famous non-
linear MIMO detection methods.  Both of these non-linear 
detectors have their own advantages. ML outperforms VBLAST, 
while VBLAST possess low complexity than ML.  Previous work 
[13],[14] tried to take advantage of these two methods and the 
results show a performance complexity trade off between the two 
methods.  

Worst-case complexity of computing the exact ML solution is 
generically exponential, due to NP-hardness [10]. ML detection in 
MIMO communication system belongs to a large class of 
combinatorial problem known as NP-hard optimization problems. 
Therefore, in order to solve these NP-hard problem for any non-
trivial problem size, one of the following approaches can be used: 
(1) Approximation: An algorithm which quickly finds a 
suboptimal solution which is within a certain range of the optimal 
one; (2) Probabilistic: An algorithm which provably yields good 
average runtime behavior for a given distribution of the problem 
instances; and (3) Heuristic: An algorithm which works 
“reasonably well” on many cases, but for which there is no proof 
that it is always fast (e.g., evolutionary techniques).  

We report a Binary PSO assisted MIMO detection algorithm with 
a reasonable performance complexity tradeoff and to the best of 
authors understanding this is first successful attempt to optimize 
MIMO detection using PSO meta-heuristics. 
The rest of the paper is organized as follows. Section-2 provides 
the wideband spatial multiplexing system model and sets-up 
MIMO detection problem for flat-fading channels. A brief 
overview of existing MIMO detectors is given in section-3. 
Section-4 details the proposed detection algorithm. Performance 
of the proposed detector is reported in next sections followed by 
conclusions. 

2. MIMO DETECTION FOR FLAT-
FADING CHANNEL 
2.1 MIMO Channel Model 
Consider a MIMO system where Nt different signals are 
transmitted and arrive at an array of Nr (Nt ≤ Nr) receivers via a 

rich-scattering flat-fading environment. Grouping all the 
transmitted and received signals into vectors, the system can be 
viewed as transmitting an Nt x 1 vector signal x through an Nt x Nr 
matrix channel H, with Nr x 1 Gaussian noise vector v added at 
the input of the receiver.  

                          y = Hx + v                                 (1) 

where y is the received Nr x 1 vector. The (nr, nt)th element of H, 

r tn nh , is the complex channel response from the nt
th transmit 

antenna to the nr
th receive antenna. x is zero mean and has 

covariance matrix of Rx = E{xx*} = 2 .xσ I  The vector v is also 

zero-mean and Rv = E{vv*} = 2 .vσ I  In frequency-selective fading 

channels, the entire channel frequency response 
r tn nh is no longer 

characterized by a constant, but rather a function of the frequency. 

                     ( ) ( ) ( ) ( )f f f fy  = H x  + v                     (2) 

When OFDM modulation is used, the entire channel is divided 
into a number of sub-channels. These sub-channels are spaced 
orthogonally to each other such that no inter-carrier interference 
(ICI) is present at the sub-carrier frequency subject to perfect 
sampling and carrier synchronization. When sampled at the sub-
carrier frequency of

cnf , the channel model becomes. 

( ) ( ) ( ) ( ) ; 2 ,...., 2 1.n n n nc c c c n N Nc c c=− −y  = H x  + v  (3) 

With Nc sufficiently large, the sub-channel at each of the sub-
carriers can be regarded as flat-fading. Therefore, when using 
OFDM, the MIMO detection over frequency-selective channels is 
transformed into MIMO detection over Nc narrowband flat-fading 
channels. For this reason, we only focus on the MIMO detection 
algorithms in flat-fading channels. The entries of the channel 
matrix H are assumed to be known to the receiver but not to the 
transmitter. This assumption is reasonable if training or pilot 
signals are sent to learn the channel, which is constant for some 
coherent interval. 

2.2 Problem Formulation 
 
The task is of detecting Nt transmitted symbols from a set of Nr 
observed symbols corrupted by a non-ideal communication 
channel, typically modeled as a linear system followed by an 
additive noise vector as shown in Figure 2. 

Figure 2: A simplified linear MIMO communication system 
showing the following discrete signals: transmitted symbol 
vector tNx χ∈ , channel matrix t rN xN∈H , additive noise 

vector tN∈v , receive vector tN∈y , and detected 

symbol vector ˆ rNs∈ . 
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Transmitted symbols from a known finite alphabet χ = 
{x1,…,xM}of size M are passed to the channel. The detector 
chooses one of the MNt possible transmitted symbol vectors from 
the available data. The optimal detector returns ˆ *x=x , the 
symbol vector whose (aposteriori) probability of having been sent, 
given observed vector y, is the largest: 

 arg max ( )* P was sent is observed
Ntx χ∈

x x y                    (4) 

     ( ) ( )
arg max

(

P is observed was sent P was sent

P is observed)Ntx χ
=

∈

y x x

y 
    (5) 

This is known as Maximum Aposteriori Probability (MAP) 
detection rule. Making the standard assumption that the symbol 
vectors tNχ∈x are equiprobable i.e. P(x was sent) is constant, 
the MAP detector rule can be written as: 

         arg max ( )* P is observed was sent
Ntx χ∈

x y x               (6)  

A detector that always returns an optimal solution satisfying (6) is 
called Maximum Likelihood (ML) detector. Assuming the additive 
noise v to be white and Gaussian, the ML detection problem of 
Figure 2 can be can be expressed as the minimization of the 
squared Euclidean distance to a target vector y over Nt-
dimensional finite discrete search set: 

                  2
arg min* H

Ntx χ
= −

∈

x y x                            (7) 

Optimal ML detection scheme needs to examine all MNt or 2bNt 

symbol combinations (b is the number of bits per symbol).  It finds 
the x that minimizes the most likely transmitted symbol that 
causes the smallest difference (squared error) from the received 
signal. The problem can be solved by enumerating over all 
possible x and finding the one that causes the minimum value as in 
(7). Therefore, the computational complexity increases 
exponentially with constellation size M and number of transmitters 
Nt. 
We present a BPSO algorithm assisted wide band spatial 
multiplexing systems symbol detector that views the MIMO 
symbol detection issue as a combinatorial optimization problem 
and try to approximate the near optimal solution iteratively. 

3. SOME EXISTING MIMO DETECTORS 

3.1 Linear MIMO Detectors 
A straightforward approach to recover x from y is to use an Nt x Nr 
weight matrix W to linearly combine the elements of y to estimate 
x, i.e. x̂ = Wy.  

3.1.1 Zero-Forcing(ZF) 
The ZF algorithm attempts to null out the interference introduced 
from the matrix channel by directly inverting the channel with the 
weight matrix [10]. 

3.1.2 Minimum Mean Squared Error (MMSE) 
A drawback of ZF is that nulling out the interference without 
considering the noise can boost up the noise power significantly, 
which in turn results in performance degradation. To solve this, 
MMSE minimizes the mean squared-error, i.e. J(W) = E{(x- x̂  
)*(x- x̂ )}, with respect to W [15], [16]. 

3.2 Non-Linear MIMO Detectors 
3.2.1 VBLAST 
A popular nonlinear combining approach is the vertical Bell labs 
layered space time algorithm (VBLAST) [11] This detection 
method is also called Ordered Successive Interference 
Cancellation (OSIC). It uses the detect-and-cancel strategy similar 
to that of decision-feedback equalizer. Either ZF or MMSE can be 
used for detecting the strongest signal component used for 
interference cancellation. The performance of this procedure is 
generally better than ZF and MMSE. VBLAST provides a 
suboptimal solution with lower computational complexity than 
ML. However, the performance of VBLAST is degraded due to 
error propagation. 

3.2.2 ML Detector 
Maximum Likelihood detector is optimal but computationally 
very expansive. ML detection is not practical in large MIMO 
systems.  

4. PSO FOR WIDE BAND SPATIAL 
MULTIPLEXING SYSTEM 

4.1 Particle Swarm Optimization (PSO) 
Swarm intelligence argues that intelligent cognition derived 

from interactions of individuals in a social world and this socio-
cognitive approach can be effectively applied to computationally 
intelligent systems [5]. A swarm consists of a number of particles 
(possible solutions) that move (fly) through the feasible solution 
space to explore the optimal solution that can be coded as binary 
strings or real-valued vectors. The particles are capable of 
interacting with each other in a given neighborhood, and traverse a 
search space where a quality measure, fitness can be evaluated. 
The particles are evolved through cooperation and competition 
among themselves over iterations. The coordinates of each particle 
represent a possible solution associated with two vectors, the 
position (Xi) and velocity (vi). In d-dimensional search space, the 
ith particle can be represented by d-dimensional position 
vector 1 2( , ,..., )i i i idx x x=X and another d-dimensional velocity 

vector 1 2( , ,..., )i i i idv v v=V . Each particle experiences an 
iterative procedure of adaptation to two types of major information 
i.e. individual learning and cultural transmission, which means the 
procedure, accelerates particles at each time step, towards personal 
best and the position of the most recent global best point, with the 
relative acceleration towards each determined stochastically.  A 
key attractive feature of the PSO approach is its simple 
mathematical model involving two model equations [5].  
In binary PSO [3], velocity loses its physical meaning.   It is used 
to determine a probability by squashing velocities to the range 
(0,1) by using sigmoid function.  

65



4.2 PSO based MIMO-OFDM Detection. 
Here we exploit parsimonious binary choice PSO algorithm’s 
potential to optimize MIMO symbol detection. An important step 
to implement PSO is to define a fitness function; this is the link 
between the optimization algorithm and the real world problem. 
Fitness function is unique for each optimization problem. The 
fitness function using the coordinates of the particle returns a 
fitness value to be assigned to the current location. If the value is 
greater than the value at respective personal best (pbest) for each 
particle, or global best (gbest) of the swarm, then previous 
locations are updated with the present locations. The velocity of 
the particle is changed according to the relative locations of pbest 
and gbest as shown in Figure 3. 
 

 
 

Figure 3.Vector representation of PSO model 
 

 
Once the velocity of the particle is determined, it simply moves to 
the next position. After this process is applied on each particle in 
the swarm, it is repeated till the maximum number of iterations is 
reached. PSO algorithms flow diagram is shown in Figure 4. This 
exploratory-exploitive optimization approach can be extended to 
MIMO detection optimization problem discussed below.  
The major challenge in designing Binary PSO based MIMO-
OFDM detector was selection of BPSO parameters that fit the 
symbol detection optimization problem. The basic fitness function 
used by the optimization algorithm to converge to the near optimal 
solution is (7) that is minimum Euclidian distance. Selection of 
initial guess is essential for these algorithms to perform. Therefore, 
our detector takes the output of ZF-VBLAST as its initial solution 
guess. This educated guess enables the algorithm to reach more 
refined solution iteratively by ensuring fast convergence. 
Assuming random initialization does not guarantee convergence to 
reasonable solution in lesser iterations. 

 
 Figure 4.  PSO flow diagram. 

The proposed detection algorithm is detailed below: 

1) Take the output of ZF-VBLAST such as {0,1}∈xi as initial 

particles (initial solution bit string) instead of selecting 
randomly from the solution space. 

2) The algorithm parameters are initialized. ‘vid’ is initialized to 
zero (equal probability for binary decision), ‘pbestid’ and 
‘gbestd’ are  initialized to maximum Euclidean distance 
depending upon the QAM size.  

3) Evaluate the fitness of each particle (bit): 

                                      
2

=f y - Hx                                     (8)  

        Minimum Euclidean distance for each symbol represents the 
fitness of solution. Effect on the Euclidean distance due to 
search space bits is measured. Find the global best 
performance ‘gbestd’ in the population that represents the 
least Euclidean distance found so far. Record the personal 
best ‘pbestid’ for each bit along its previous values.  

4) For each search space bit at dth side of the bit string of particle 
xi, compute bits velocity using following PSO velocity 
update equation: 

         
v (k) = v (k -1) + rand [ - x (k -1)] 1id id id1

          + rand [ x (k -1)]        2 id2

pbestid

gbestd

ϕ

ϕ −
  (9) 

      with vid ∈ {-vmax, vmax}. 
5) The particle position is updated depending on the following 

binary decision rule:  
            If  rand3 < S(vid(k)), then xid(k) =1,else xid(k) =0.       (10) 

6)    Goto step 3 until maximum number of iterations is reached. 
The number of iterations is system and requirement 
dependent (usually kept less than 25 to avoid large 
complexity). Solution gets refined iteratively. 

Here ‘k’ is the number of iterations, rand is a random number 
generated uniformly in [0,1] and ‘S’ is sigmoid transformation 
function.   
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1

( )
1 exp( )

S v (k)id v (k)id
=

+ −
                           (11) 

The parameter ‘vi’ is the particles predisposition to make 1 or 0, it 
determines the probability threshold to make this choice. The 
individual is more likely to choose 1 for higher vid(k), whereas its 
lower values will result in the choice of 0. Such a threshold needs 
to stay in the range of [0,1]. The sigmoid logistic transformation 
function maps the value of vid(k) to a range of [0,1]. The terms φ1 
and φ2 are positive acceleration constants used to scale the 
contribution of cognitive and social components such that φ1 + φ2 
<4 [2]. These are used to stochastically vary the relative pull of 
pbest and gbest. vmax sets a limit to further exploration after the 
particles have converged. Its values are problem dependent, 
usually set in the range of     [-4,+4] .  

5. SIMULATION AND NUMERICAL 
RESULTS 
This section provides some simulation and numerical results to 
prove the performance of the reported MIMO-PS detector. 

5.1 BER versus SNR Performance 
We evaluate the PSO based MIMO detectors performance for a 
3x3 (NtxNr), 4x4, 5x5 and 8x8 MIMO system using 4-QAM 
scheme. 128 sub-carriers and cyclic prefix of length 32 are used. 
The particle size (solution bit string length) ‘Np’ dependents upon 
the QAM size and number of transmitters used in the spatial 
multiplexing system. Np = bxNt where ‘b’ is bits per symbol. For 
3x3, 4-QAM system , ‘Np’ equals 6 and it grows to 16 for 8x8, 4-
QAM system.  ‘Nitr’ is kept in the range of 5 to 20 in our 
simulations. Iterations can be tuned like other algorithm 
parameters according to the system requirements. Larger Nitr can 
result in achieving better BER performance at the cost of 
complexity. φ1 = φ2=1 and vmax=±4 are assumed in the 
simulations. An average of no less than 10,000 simulations is 
taken to report statistically relevant results.  
The SNR (Eb/No) is the average Signal to noise ratio per antenna 

2
v( / ),P σ where P is the average power per antenna and 2

vσ  is 
noise variance. The simulation environment assumes Rayleigh 
flat-fading channel with no correlation between sub-channels. 
Figure 5 present the bit error rate (BER) versus Eb/No performance 
of proposed detector (Nitr=5) compared with ML and VBLAST 
detectors in 3x3 spatial multiplexing system. The proposed 
technique results in 3-dB degraded performance at 10-4 BER in 
comparison with ML. However, in comparison to VBLAST, it 
shows 13-dB better performance.  
In a 4x4, 4-QAM system shown in Figure 6, the performance gain 
compared to VBLAST is substantial. However, this BER gain is at 
a cost of increased computational complexity discussed in the next 
sub-section.   
Similarly, for a 5x5 and 8x8, 4-QAM, MIMO-OFDM system 
given in Figure 7 and Figure 8, the proposed detection techniques 
gives improved BER performance as compared to VBLAST with 
some complexity overhead. The performance degrades by 4-dB to 
5-dB comparative to optimal detector, but here the complexity 
gain is substantial (discussed next). 
 

 
Fig. 5.  BER versus Eb/No for 4-QAM 3x3 MIMO  system. 

 
Fig. 6.  BER versus Eb/No for 4-QAM 4x4 MIMO system. 

 

 
Fig. 7.  BER versus Eb/No for 4-QAM 5x5 MIMO system. 

 
With the increase in the MIMO system complexity (NtxNr), the 
size of search space also increase exponentially, therefore more 
algorithm iterations are required to reach near-optimal solution. A 
trade of between systems BER performance and iterations has to 
be maintained according to the system requirement and priority.  
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Fig. 8.  BER versus Eb/No for 4-QAM 8x8 MIMO system. 

 
5.2 Computational complexity comparison 
Here we examine the computational complexity of the reported PS 
detector and compare it with ML and VBLAST detectors. As the 
hardware cost of each algorithm is implementation-specific, we 
try to provide a rough estimate of complexity in terms of number 
of complex multiplications. The computational complexity is 
computed in terms of the Nt, Nr and M constellation size.  ML 
detection requires Nr(Nt+1)MNt. complex multiplications, as seen 
from (7). Where MNt(NrNt) is for matrix multiplication and MNtNr 
is for square operation. 
For VBLAST, the pseudo-inverse of matrix (HHH)-1HH takes 

3 24 2t t rN N N+ multiplications [17]. The pseudo-inverse matrix is 
calculated Nt times with decreasing dimension. In addition, the 
complexity of ordering and interference canceling is 

1

0
[ ( ) 2 ].

tN

t t t
i

N N i N
−

=

− +∑  Therefore, total complexity of VBLAST 

(γVBLAST) results in. 

              
1

3 2

0 0
(4 2 ) [ ( ) 2 ].

t tN N

r t t t
i i

i N i N N i N
−

= =
+ + − +∑ ∑=            (12) 

       
4 3 25 2 7 1

2 3 2 3VBLAST t r t r t t rN N N N N N Nγ ⎛ ⎞ ⎛ ⎞= + + + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

(13) 

For the proposed detector, first fitness using (7) in the bit-string 
(particle size) ‘Np’ is calculated. Multiplication complexity (γPS) 
becomes, 

                             ( )PS p t rN N Nγ =                                   (14) 

Velocity update for each particle requires μvel additional 
multiplications per iteration with rand and ϕ from (9). To reduce 
some complexity ϕ1+ϕ2=2 is assumed. Therefore μvel becomes 4, 
the complexity becomes,  

                      ( )PS p t r velN N Nγ μ= +                             (15) 

This procedure is repeated Nitr (number of iterations same as k) 
times to converge to the near-optimal BER performance. 
Therefore, 

                    ( )PS p t r vel itrN N N Nγ μ= +                          (16) 

Since the Proposed detector takes initial solution guess as the 
output of ZF-VBLAST therefore, total computational complexity 
of proposed detector results in,  

           
tatalPS PS VBLASTγ γ γ= +                                 (17) 

The complexity of the proposed method compared with ML and 
VBLAST detectors for several configurations is presented in 
Table-1. The complexity estimate in Table-1 is only meaningful in 
the order of magnitude sense since it is based on the number of 
complex multiplications. The above complexity is estimated on 
subcarrier-by-subcarrier for MIMO-OFDM system.  

5.3 Performance-complexity trade-off. 
Results in Table-2, show that a reasonable performance-
complexity trade-off exists when a comparison of the proposed 
detector is drawn with ML and VBLAST detectors. 
Compared with ML the complexity reduction of the proposed 
detector is significant for larger MIMO systems where ML is not 
practical to use. However, this complexity gain is at the cost of 
degraded BER performance. For a 5x5, 4-QAM system, at 10-4 

BER the performance of proposed detector is degraded by 4-dB, 
with 83% complexity reduction. Similarly, in 8x8, 4-QAM 
system, the proposed algorithm (Nitr=20) achieves 10-4 BER at 5-
dB more SNR than ML. However, the ML complexity reduction is 
99%. 
When compared with VBLAST the proposed detector complexity 
increase approximately 70 % with a BER gain up to 12-dB for 
larger systems. 

6. CONCLUSIONS 
In this contribution, application of Binary PSO algorithm for 
symbol detection in spatial multiplexing system is reported. PSO,s 
simple mathematical model, lesser implementation complexity, 
resistance to being trapped in local minima and convergence to 
reasonable solution in lesser iterations makes it a suitable 
candidate for real-time wireless communications systems. This 
algorithm shows promising results when compared with the 
optimal ML and traditional VBLAST detectors. Particle swarm 
intelligence optimized MIMO symbol detection mechanism 
approaches near-optimal performance with much reduced 
computational complexity, especially for complex systems with 
multiple transmitting antennas, where conventional ML detector is 
computationally expensive and impractical to deploy. Although 
VBLAST detector has a reduced complexity, its BER 
performance is inferior to the proposed detector. The simulation 
results suggest that the proposed detector improves ML 
complexity by as high as 99% with 5-dB BER performance 
degradation in a 8x8 MIMO system. 
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TABLE 1, 

COMPLEXITY COMPARISON (Complex Multiplications) – 4QAM NtxNr MIMO system 

Method 3x3 4x4 5x5 8x8 

ML ( MLγ ) 768 5120 30720 4.7 M 

VBLAST ( VBLASTγ ) 265 712 1572 8864 

Proposed 

PS detector (
tatalPSγ ) 

(Np=6, Nitr=5, 
μvel=4) 

655 

(Np=8, Nitr=8, 
μvel=4) 
1992 

(Np=10, Nitr=12, 
μvel=4) 
5052 

(Np=16, Nitr=20, 
μvel=4) 
30624 

 
TABLE 2, 

PERFORMANCE COMPLEXITY TRADE-OFF  – 4QAM NtxNr MIMO system 

Performance complexity comparison 3x3 4x4 5x5 8x8 

Complexity reduction 

( )ML PStatal
ML

γ γ
γ

−   

 
14% 

 
61% 

 
83% 

 
99% 

 
ML and 
proposed 
detector Performance degradation 

at 10-4 BER 
(approximately) 

 
3dB 

 
3dB 

 
4dB 

 
5dB 

Complexity increase 

( )PS VBLASTtatal
PStotal

γ γ
γ

−   

 
59% 

 
64% 

 
68% 

 
71% 

 
VBLAST and 

proposed 
detector Performance 

improvement at 10-4 
BER (approximately)  

 
13dB 

 
12dB 

 
12dB 

 
10dB 
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