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ABSTRACT

This paper studies the performance of multi-recombinative
evolution strategies using isotropically distributed mutations
on a class of convex quadratic objective functions that is
characterised by the presence of only two different eigenval-
ues of their Hessian. A simplified model of the strategy’s
behaviour is developed. Using it, expressions that approx-
imately describe the stationary state that is attained when
the mutation strength is adapted are derived. The perfor-
mance achieved when using cumulative step length adapta-
tion is compared with that obtained when using optimally
adapted step lengths.

Categories and Subject Descriptors

G.1.6 [Optimization]: Unconstrained Optimization; I.2.8
[Problem Solving, Control Methods, and Search];
I.2.6 [Learning]: Parameter Learning

General Terms

Algorithms, Performance, Theory

Keywords

Evolution strategy, cumulative step length adaptation, pos-
itive definite quadratic form

1. INTRODUCTION
Analyses of the performance of evolutionary algorithms

(EAs) on selected objective functions serve the purposes of
highlighting differences as well as strengths and weaknesses
of strategy variants, of deriving recommendations with re-
gard to the setting of strategy parameters, and of gaining in-
sights that may be of use when developing adaptation strate-
gies. In the realm of continuous (i.e., real-valued) evolution-
ary optimisation, such analyses have predominantly focused
on classes of objective functions that are both amenable to
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mathematical analysis and suitable for revealing important
aspects of the algorithms being studied. Examples include
the sphere and corridor models, the ridge function class, and
various noisy and time varying variants thereof [1, 4, 12].

The sphere and parabolic ridge models are at opposite
ends of the spectrum of test functions in that while the con-
dition number (i.e., the ratio of largest to smallest eigen-
value) of the Hessian matrix of the former is one (and thus
minimal), that of the latter is infinite. As real-world optimi-
sation problems exhibit various degrees of ill-conditioning,
it is desirable to extend analyses of the behaviour of EAs
to problems with condition numbers between those two ex-
tremes. A class of test functions that offers the opportunity
to consider varying condition numbers while retaining math-
ematical tractability is the class of positive definite quadratic
forms (PDQFs). A number of PDQFs have been used exten-
sively in empirical investigations of the behaviour of EAs [7,
13]. However, there have been few attempts to study proper-
ties of EAs optimising PDQFs other than the sphere model
analytically.

Among the exceptions is an investigation of the steady
state of evolution strategies optimising general ellipsoidal
objective functions disturbed by noise [5] as well as two im-
portant recent papers by Jägersküpper [9, 10] that study the
performance of the (1 + 1)-ES on PDQFs of bounded band-
width (i.e., with condition number in O(1)) as well as on
a particular class of ill-conditioned PDQFs. Jägersküpper
derives the following results:

• For a PDQF of bounded bandwidth in R
N , the number

of steps needed to reduce the approximation error to
a 2−b-fraction (b ≥ 1 polynomial in N) is Ω(bN) both
in expectation and with overwhelming probability, in-
dependently of how the mutation strength is adapted.
If the 1/5th rule is used (and the mutation strength is
initialised appropriately), then the number of steps is
O(bN) with overwhelming probability.

• For PDQFs with only two different eigenvalues of their
Hessian, both occurring in equal proportions, and with
condition number ξ polynomially bounded in N such
that 1/ξ → 0 as N → ∞, if the mutation strength
is initialised appropriately, then the number of steps
needed to reduce the initial approximation error to a
2−b fraction (b ≥ 1 polynomial in N) is Θ(bξN) with
overwhelming probability.

Loosely speaking, the first of the two results states that for
quadratic functions “sufficiently close” to the sphere model,
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the (1 + 1)-ES can at best achieve linear convergence, with
the speed of convergence inversely proportional to the di-
mensionality N of the search space. If the mutation strength
is adapted using the 1/5th rule, the performance differs from
optimal performance by no more than a constant factor.
The behaviour is thus asymptotically the same as on the
sphere model [8]. The second result states that on the par-
ticular class of ill-conditioned PDQFs considered, for large
condition numbers the speed of convergence decreases pro-
portionally with the degree of ill-conditioning.

Jägersküpper’s results provide a valuable, rigorously de-
rived understanding of important aspects of search proper-
ties of the (1+1)-ES on both mildly and certain severely ill-
conditioned PDQFs. However, they are qualitative in that
the asymptotic notation hides constants. For example, while
a PDQF with condition number 10 is “close to the sphere”
in an asymptotic sense, to a user who applies an EA to
a 40-dimensional optimisation problem with that condition
number, it is significant what fraction of the performance on
the sphere model is obtained. It is also of interest to study
population-based rather than point-based strategy variants,
and to compare different step length adaptation mechanisms
with regard to what fraction of the optimal performance
they are able to achieve.

This paper takes a step in direction of an understanding
of population-based EAs in ill-conditioned environments by
studying the behaviour of an adaptive, multi-recombinative
evolution strategy on PDQFs of the form

f(x) = ξ

Nϑ
X

i=1

x2
i +

N
X

i=Nϑ+1

x2
i (1)

where x = 〈x1, . . . , xN〉 ∈ R
N and where ϑ ∈ [0, 1] is such

that Nϑ is integer. Rather than employing asymptotic nota-
tion and attempting to derive results rigorously, a simplified
dynamic model of the optimisation process is studied. The
simplifications assume that N and ϑ are such that both Nϑ
and N(1− ϑ) are large. Computer experiments are used to
evaluate the accuracy of the approximations. The approach
makes it possible to determine (approximately) optimal pa-
rameter settings, and to reveal information about constants
that are hidden in the asymptotic notation employed in the
rigorous approach.

For symmetry reasons, it can be assumed without loss
of generality that ξ ≥ 1. Clearly, the parameter ξ is the
condition number of the Hessian matrix of the function. It
is important to note that while in the formulation in Eq. (1)
the coordinate basis coincides with the principal axes of the
Hessian and the function is thus separable, this does not
constitute a limitation as both mutation and recombination
operators of the strategy considered here are isotropic. The
function could be subjected to an arbitrary rotation (and
thus made non-separable) without influencing the results.

Several test functions that are frequently used for (em-
pirically) evaluating EAs occur as special cases of Eq. (1).
For ϑ ∈ {0, 1} or for ξ = 1, the sphere model is obtained.
For ϑ = (N − 1)/N , Eq. (1) becomes the cigar function;
for ϑ = 1/N , it is the discus (or tablet) function. Neither
of the latter cases is included in the discussion here due to
the assumption that both Nϑ and N(1− ϑ) are large. The
special case that ϑ = 0.5 is referred to by Hansen and Oster-
meier [7] as the two-axes function and is the ill-conditioned
case considered by Jägersküpper [9, 10].

The remainder of the paper is organised as follows. Sec-
tion 2 gives a brief description of the (µ/µ, λ)-CSA-ES. In
Section 3, the symmetries of the class of PDQFs considered
are exploited to describe the behaviour of the strategy us-
ing a small number of state variables. Stochastic evolution
equations are derived that describe the dynamics of those
variables for single time steps. Section 4 introduces several
simplifications that make it possible to obtain an analytical
solution to the evolution equations. Computer experiments
are used to evaluate the accuracy of the predictions. Sec-
tion 5 is devoted to the analysis of the step length adaptation
mechanism. Section 6 concludes with a brief discussion of
the results and their significance.

2. STRATEGY
The (µ/µ, λ)-CSA-ES is an evolution strategy for the op-

timisation of functions f : R
N → R that uses the cumulative

step length adaptation mechanism proposed by Ostermeier
et al. [11] for the control of its mutation strength. In every
time step the strategy computes the centroid of the popu-
lation of candidate solutions as a search point x ∈ R

N that
mutations are applied to. A vector s ∈ R

N that is referred to
as the search path is used to accumulate information about
the directions of the most recently taken steps. An iteration
of the (µ/µ, λ)-CSA-ES updates the search point along with
the search path and the mutation strength of the strategy
in five steps:

1. Generate λ offspring candidate solutions y(i) = x +
σz(i), i = 1, . . . , λ, where mutation strength σ > 0 de-
termines the step length and the z(i) are mutation vec-
tors consisting of N independent, standard normally
distributed components.

2. Determine the objective function values f(y(i)) of the
offspring candidate solutions and compute the average

z(avg) =
1

µ

µ
X

k=1

z(k;λ) (2)

of the µ best of the z(i). The index k; λ refers to the
kth best of the λ offspring candidate solutions. Vector
z(avg) is referred to as the progress vector.

3. Update the search point according to

x← x + σz(avg). (3)

4. Update the search path according to

s← (1− c)s +
p

µc(2− c)z(avg) (4)

where the cumulation parameter c is set to 1/
√

N .

5. Update the mutation strength according to

σ ← σ exp

„

‖s‖2 −N

2DN

«

(5)

where damping parameter D is set to
√

N .

See [6] for a more comprehensive discussion of evolution
strategies and their parameters.

The behaviour of the (µ/µ, λ)-CSA-ES on the class of
PDQFs defined in Eq. (1) is illustrated in Fig. 1. While
a single run of the strategy is shown, the same qualitative
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Figure 1: Objective function value f(x) of the search
point and normalised mutation strength σ∗ plotted
against time t for a typical run of the (3/3, 10)-CSA-
ES (N = 40, ξ = 10, ϑ = 0.5).

behaviour can be observed in other runs as well as for other
settings of the parameters. Initially, the strategy is in a
transitory period (that lasts for about 40 time steps in the
figure). The length of that period increases with increasing
values of N and ξ, and during it, the behaviour of the strat-
egy depends on how x and σ are initialised. Afterwards, the
strategy enters a phase that is stationary in that the aver-
age relative progress becomes constant (i.e., the logarithm
of the objective function value of the search point decreases
linearly). The steeper the slope of a regression line fitted to
the graph of the logarithmic function values, the faster the
progress toward the optimal solution. That slope is

∆ = E

»

− log

„

f(x(t+1))

f(x(t))

«–

(6)

where superscripts indicate time, and is referred to as the
quality gain of the strategy. It is the purpose of the following
sections to compute an approximation to that quality gain.

3. DYNAMIC SYSTEM
The following discussion builds extensively on techniques

previously used in connection with the sphere model [1, 4,
12]. The analysis of the behaviour of evolution strategies
on the sphere model relies on a decomposition of vectors
that is illustrated in Fig. 2. Consider points x and y =
x+σz at distances R and r from the centre x̂ of the sphere,
respectively. Let zA = z ·(x̂−x)/R denote the signed length
of the component of z in direction of the centre of the sphere.
Decompose vector z into vectors zA = zA(x̂ − x)/R and
zB = z− zA. It follows using elementary geometry that

r2 = (R− σzA)2 + σ2‖zB‖2

= R2 − 2RσzA + σ2‖z‖2. (7)

Moreover, if z is a mutation vector then zA is standard nor-
mally distributed and ‖z‖2 is χ2

N -distributed.
The PDQF defined in Eq. (1) is the weighted sum of two

independent, spherically symmetric functions. Let x ∈ R
N

be the search point of the strategy and write

R2
1 =

Nϑ
X

i=1

x2
i and R2

2 =
N
X

i=Nϑ+1

x2
i

R

r
x

y

x̂

σz

σzA

σzB

Figure 2: Decomposition of a vector z into compo-

nents zA and zB. Vector zA is parallel to x̂ − x, vec-

tor zB is in the (N − 1)-dimensional hyperplane per-

pendicular to that.

for the squared distances from the centres of the two spheres,
yielding

f(x) = ξR2
1 + R2

2.

Let z1 = 〈z1, . . . , zNϑ〉 ∈ R
Nϑ consist of the first Nϑ com-

ponents of vector z ∈ R
N and let z2 = 〈zNϑ+1, . . . , zN〉 ∈

R
N(1−ϑ) consist of the remaining N(1 − ϑ) components.

Then for y = x + σz the respective squared distances

r2
1 =

Nϑ
X

i=1

y2
i and r2

2 =
N
X

i=Nϑ+1

y2
i

are in immediate analogy to Eq. (7)

r2
1 = R2

1 − 2R1σzA1 + σ2‖z1‖2 (8)

r2
2 = R2

2 − 2R2σzA2 + σ2‖z2‖2 (9)

where zA1 and zA2 are standard normally distributed, ‖z1‖2
is χ2

Nϑ-distributed, and ‖z2‖2 is χ2
N(1−ϑ)-distributed. Fur-

thermore, using Eqs. (8) and (9), the objective function
value of y is

f(y) = ξr2
1 + r2

2

= f(x)− 2R1ξσzA1 − 2R2σzA2 + ξσ2‖z1‖2 + σ2‖z2‖2.

Selection picks those µ of the λ mutation vectors z that yield
the smallest values of f(x + σz). Recombination according
to Eq. (2) averages the selected mutation vectors. With

the progress vector z(avg) taking the place of z, Eqs. (8)
and (9) describe the evolution of the state of the strategy
(without step length adaptation) from one time step to the

next. It thus remains to compute z
(avg)
A1 , z

(avg)
A2 , ‖z(avg)

1 ‖2,
and ‖z(avg)

2 ‖2.

4. STATIC PERFORMANCE
The stochastic dynamic system described in the previous

section does not allow for an exact analytical solution. For
the sphere model, an approximate solution can be obtained
by making several simplifications that in essence rely on the
assumption that the search space dimensionality N is very
high [4, 12]. For the PDQF in Eq. (1) it is assumed that both
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Nϑ and N(1−ϑ) are large, making it possible to use the sim-
plifications for the sphere model for both of the spherically
symmetric functions that form the objective.

For the range of mutation strengths that afford positive
quality gain, the variance of the normally distributed terms
in Eqs. (8) and (9) for growing N increasingly outweighs
that of the χ2-distributed ones. For high search space di-
mensionality, it is thus possible to replace the χ2-distributed
random variables with their mean values, yielding

r2
1 = R2

1 − 2R1σzA1 + Nϑσ2

r2
2 = R2

2 − 2R2σzA2 + N(1− ϑ)σ2

as simplified evolution equations. Similarly, the objective
function value of offspring candidate solution y = x + σz is

f(y) = f(x)−2R1ξσzA1−2R2σzA2 +Nϑξσ2 +N(1−ϑ)σ2.

The first, fourth, and fifth terms on the right hand side are
identical for all offspring; the second and third terms are
normally distributed. Therefore, as the task is minimisation,
the offspring selected to survive are those with the largest
values of R1ξzA1 + R2zA2. The signed lengths zA1 and zA2

of the components of the mutation vectors that point in di-
rection of the optimum are concomitants of the order statis-
tics f(y(k;λ)) upon which selection is based. While ideally
both are large and the values of both impact selection, they
are not selected independently. The contribution to the ob-
jective function value of one of the two spheres acts as noise
impacting selection of the signed length of the component
of the mutation vector toward the optimum of the other.

According to Eq. (2), the signed lengths in direction of the
optimum of the progress vector are the averages of the re-
spective signed lengths of the selected mutation vectors. The
noise-to-signal ratios that impact selection are R2/(R1ξ) and
R1ξ/R2, respectively. Using results on expected values of
concomitants of order statistics derived in [1, 2] it follows
that

E
h

z
(avg)
A1

i

=
cµ/µ,λ

p

1 + (R2/(R1ξ))2
(10)

and

E
h

z
(avg)
A2

i

=
cµ/µ,λ

p

1 + (R1ξ/R2)2
(11)

where cµ/µ,λ is the (µ/µ, λ)-progress coefficient defined in [4]
and describes the effect of selection in the absence of noise.
Moreover, in analogy to results derived for the sphere model
in that same reference,

E

"

‖z(avg)
1 ‖2
Nϑ

#

= E

"

‖z(avg)
2 ‖2

N(1− ϑ)

#

=
1

µ
(12)

where the factor µ in the denominator reflects the fact that
averaging uncorrelated random vectors results in a vector
with a length that is reduced compared to the lengths of the
vectors being averaged. Eqs. (10), (11), and (12) are exact
in the limit N →∞ if ϑ ∈ (0, 1) is fixed. They will be seen
below to yield approximations provided that both Nϑ and
N(1− ϑ) are sufficiently large.

Using Eqs. (10), (11), and (12) in Eqs. (8) and (9) makes it
possible to obtain the expected behaviour of the search point
in a single time step. With normalised mutation strength
σ∗ = σNϑ/R1 and location parameter

ζ =
R2

R1ξ

that determines the relative positions of the search point on
the two spheres it follows that

E
h

R
(t+1)
1

2
i

= R
(t)
1

2

"

1− 2

Nϑ

 

σ∗cµ/µ,λ
p

1 + ζ2
− σ∗2

2µ

!#

(13)

and

E
h

R
(t+1)
2

2
i

= R
(t)
2

2

"

1− 2

Nϑ

 

σ∗cµ/µ,λ

ξ
p

1 + ζ2

− σ∗2(1− ϑ)

2µϑξ2ζ2

!#

(14)

where superscripts indicate time.
If the step length is adapted successfully, then σ and R1

decrease in equal proportions and consequently, the nor-
malised mutation strength σ∗ fluctuates around a stationary
average value (compare Fig. 1). The relative magnitude of
the variations decreases with increasing N . The same holds
for location parameter ζ. Assuming that the normalised mu-
tation strength is constant, an approximation to the steady
state value of ζ can be obtained from Eqs. (13) and (14).
The terms in the square brackets in those equations must
be (approximately) equal as otherwise ζ would have a bias
toward either larger or smaller values. Introducing stan-
dardised mutation strength σ̄ = σ∗/(µcµ/µ,λ), elementary
transformations yield stationarity condition

2
ξ − 1

ξ
ζ2 = σ̄

p

1 + ζ2

„

ζ2 − 1− ϑ

ϑξ2

«

(15)

that can be solved numerically for the location parameter.
Fig. 3 illustrates how ζ depends on the normalised mutation
strength σ∗. The lines in the figure have been obtained from
Eq. (15). The dots represent values measured in runs of the
evolution strategy with constant σ∗.1 It can be seen that
the quality of the approximation is quite good for a wide
range of condition numbers ξ. The most significant devia-
tions occur for ϑ = 0.25, where for N = 40 the sphere with
the higher curvature is only 10-dimensional and variations
have a significant impact on measured values. Agreement
of the values measured for N = 400 with theoretical pre-
dictions is generally good. It can also be seen that while
for larger values of ξ the location parameter is relatively in-
dependent of both ϑ and ξ, it (and with it the trajectory
of the search point) depends strongly on the value of the
normalised mutation strength.

It remains to compute the quality gain achieved by the
strategy. It can be seen from Eqs. (13) and (14) that the
magnitude of the changes of R2

1 and R2
2 in a single time step

is inversely proportional to N . (This has been shown rigor-
ously for the case of the (1 + 1)-ES by Jägersküpper [10].)
The quality gain of the strategy, too, is thus inversely pro-
portional to the search space dimensionality. For large val-
ues of N , the logarithm in Eq. (6) can thus be expanded into
a Taylor series with terms beyond the linear one dropped,

1Keeping σ∗ constant of course requires information typi-
cally not available to optimisation algorithms. The exper-
iments only serve the purpose of evaluating the quality of
the approximation derived and do not constitute a viable
optimisation strategy.
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Figure 3: Location parameter ζ of the (µ/µ, λ)-ES
plotted against normalised mutation strength σ∗

for µ = 3, λ = 10, ξ ∈ {4, 10, 40, 100}, and ϑ ∈
{0.25, 0.50, 0.75}. The dots mark measurements made
in runs of the strategy in search spaces with N =
40 (+) and N = 400 (×).

yielding

∆ = E

»

1− f(x(t+1))

f(x(t))

–

= 1−
E
h

R
(t+1)
1

2
i

ξ + E
h

R
(t+1)
2

2
i

R
(t)
1

2
ξ + R

(t)
2

2

where the expected values in the second line can be com-
puted using Eqs. (13) and (14). Taking into account that
in the steady state the values in the parentheses in those
equations are equal, the squared distances R2

1 and R2
2 can-

cel out. Introducing normalised quality gain ∆∗ = ∆Nϑ/2
along with standardised quantity ∆̄ = ∆∗/(µc2

µ/µ,λ) yields

∆̄ =
σ̄

p

1 + ζ2
− σ̄2

2
. (16)

Fig. 4 illustrates for several values of ξ > 1 how the nor-
malised quality gain of the strategy depends on the nor-
malised mutation strength. The lines have been obtained
from Eq. (16) with the location parameter computed numer-
ically using Eq. (15). The dots mark measurements made
in runs of the strategy with constant σ∗. It can be seen
that the quality of the approximation is good for small val-
ues of the normalised mutation strength, but that relatively
large values of N are required to observe good agreement of
measurements and predictions for larger values of σ∗. The
inaccuracies for small N stem from replacing χ2-distributed
random variables with their means, from the linearisation of
the logarithm in the definition of the quality gain, and from
variations in the value of the location parameter.

The results thus obtained allow computing the maximum
mutation strength that affords non-negative quality gain.
Demanding that ∆̄ = 0 in Eq. (16) and using Eq. (15) to
solve for the location parameter yields ζ2 = (1 − ϑ)/(ϑξ).
The resulting standardised mutation strength is

σ̄max =
2

p

1 + (1− ϑ)/(ϑξ)

and corresponds to the positive zero of the quality gain in
Fig. 4. As 0 < σ̄max < 2 for any setting of ϑ and ξ, useful
values of the normalised mutation strength σ∗ are always
smaller than 2µcµ/µ,λ.

Finally, Eqs. (15) and (16) can be used to compute opti-
mal settings of the mutation strength and the corresponding
quality gain. For ξ = 1, the optimal standardised mutation
strength and quality gain are σ̄opt =

√
ϑ and ∆̄opt = ϑ/2

in agreement with results for the sphere model [4] (notice
the differing normalisations). For ξ > 1, computing the
derivative of Eq. (16) and using Eq. (15) to eliminate the
standardised mutation strength results in

2ϑ2ξ3ζ6 + 2ϑ(1− ϑ)ξ(1− 2ξ)ζ4

+ 2ϑ(1− ϑ)ξ(2− ξ)ζ2 − 2(1− ϑ)2 = 0. (17)

Solving the equation numerically for ζ and using Eqs. (15)
and (16) to compute the standardised mutation strength
and quality gain yields the dashed lines in Fig. 6. The
asymptotic behaviour for large condition numbers can be
determined analytically. For large ξ, solving Eq. (17) yields
ζ = ((1−ϑ)/(ϑξ))0.25. The corresponding standardised mu-
tation strength is σ̄opt = 2, resulting in standardised quality
gain ∆̄opt = 2/ξ. The inverse proportionality of the optimal
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Figure 4: Normalised quality gain ∆∗ of the (µ/µ, λ)-
ES plotted against normalised mutation strength σ∗

for µ = 3, λ = 10, ξ ∈ {4, 10, 40, 100}, and ϑ ∈
{0.25, 0.50, 0.75}. The dots mark measurements made
in runs of the strategy in search spaces with N =
40 (+) and N = 400 (×).

quality gain to the condition number for large values of ξ
parallels the corresponding result for the (1 + 1)-ES derived
by Jägersküpper [10].

5. DYNAMIC PERFORMANCE
In the previous section, it was assumed that σ∗ is con-

stant. As can be seen in Fig. 1, successful step length adap-
tation leads to the normalised mutation strength fluctuating
around a stationary average value. This section computes
an approximation to that average value assuming that the
mutation strength is adapted using cumulative step length
adaptation as described in Section 2.

Compared to Section 4, considering cumulative step length
adaptation requires introducing several additional state vari-
ables. The performance of the (µ/µ, λ)-CSA-ES on the
sphere model is analysed in [1, 3]. For that model, the
additional state variables are the signed length sA of the
component of the search path that points in direction of
the optimum, the squared length ‖s‖2 of the search path,
and the normalised mutation strength σ∗. The approach to
the analysis is the same as that employed in Section 4: de-
rive equations that describe the expected behaviour of the
state variables in a single time step, make simplifications for
large N , and determine steady state values of the variables
by assuming that their expected values do not change.

In [1, 3], steady state values

sA =

r

µ(2− c)

c
cµ/µ,λ

„

1√
1 + δ2

− σ∗

µcµ/µ,λ

«

(18)

where δ denotes the noise-to-signal ratio, and

‖s‖2 = N +
2(1− c)
p

c(2− c)

√
µsAE

h

z
(avg)
A

i

(19)

are derived for the noisy sphere model. For the PDQF in
Eq. (1), the signed lengths of the components of the search
path toward the optimum need to be considered separately
for the two spheres that form the objective. Requiring sta-
tionarity of the expected value yields in direct analogy to
Eq. (18)

sA1 =

r

µ(2− c)

c
cµ/µ,λ

 

1
p

1 + ζ2
− σ∗

µcµ/µ,λ

!

. (20)

Notice that the noise-to-signal ratio is ζ as seen in Section 4
and is a result of contributions to the objective function
value from the second sphere that interfere with the selection
of good components of the mutation vector for the first. An
analogous calculation for the second sphere yields

sA2 =

r

µ(2− c)

c
cµ/µ,λ

 

ζ
p

1 + ζ2
− σ∗(1− ϑ)

µcµ/µ,λϑξζ

!

(21)

where the extra factors in the second summand result from
the fact that the normalisation of the mutation strength
introduced in Section 4 uses quantities from the first sphere.

Replicating the steps made in the derivation of Eq. (19)
yields for the PDQF from Eq. (1)

‖s‖2 = N +
2(1− c)
p

c(2− c)

√
µ
“

sA1E
h

z
(avg)
A1

i

+ sA2E
h

z
(avg)
A2

i”

.

Using Eqs. (10), (11), (20), and (21) and rearranging terms
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yields

‖s‖2 = N +
2(1− c)

c
µc2

µ/µ,λ

·
"

1− σ̄
p

1 + ζ2

„

1 +
1− ϑ

ϑξ

«

#

(22)

as an approximation for the steady state squared length of
the search path.

It remains to compute the (average) normalised mutation
strength that using cumulative step length adaptation re-
sults in. Rewriting Eq. (5) in terms of the normalised muta-
tion strength, assuming that σ∗ is unchanged by the update
rule and cancelling it out, and squaring both sides of the
equation yields

R
(t+1)
1

2

R
(t)
1

2 = exp

„

‖s‖2 −N

DN

«

. (23)

According to Eq. (22) with the settings for c and D from Sec-
tion 2, the argument to the exponential function is inversely
proportional to N . For high search space dimensionality,
the exponential can thus be expanded into a Taylor series
with terms beyond the linear one dropped. Replacing the
left hand side of Eq. (23) with its expected value and using
Eq. (13) it follows that

1−
2µc2

µ/µ,λ

Nϑ

 

σ̄
p

1 + ζ2
− σ̄2

2

!

= 1 +
2(1− c)

cDN
µc2

µ/µ,λ

"

1− σ̄
p

1 + ζ2

„

1 +
1− ϑ

ϑξ

«

#

.

Simplifying and recognising that (1 − c) tends to one as N
increases yields

ξ
`

σ̄2 − 2ϑ
´
p

1 + ζ2 = 2σ̄(1− ϑ)(ξ − 1) (24)

as a condition that the steady state mutation strength gen-
erated by cumulative step length adaptation can be obtained
from. Notice that for ξ = 1 the previously obtained result
for the sphere model is recovered [1, 3].

Fig. 5 illustrates how the normalised mutation strength σ∗

and the resulting normalised quality gain ∆∗ of the (µ/µ, λ)-
CSA-ES depend on the condition number ξ of the Hessian.
The lines have been obtained by using Eqs. (15) and (24) to
compute the normalised mutation strength and the location
parameter. The normalised quality gain has subsequently
been obtained from Eq. (16). The dots mark measurements
made in runs of the (µ/µ, λ)-CSA-ES. It can be seen that
the accuracy of the approximation increases with increasing
search space dimensionality. While deviations for N = 40
are in the double digit range, those for N = 400 are generally
below 10%. Not shown, larger values of µ and λ typically
require larger values of N for the same degree of accuracy.

Finally, Fig. 6 compares the mutation strength and quality
gain obtained when using cumulative step length adaptation
with the optimal values derived in Section 4. Due to the use
of standardised quantities, the curves are independent of µ
and λ. It can be seen that for ξ = 1, as previously found for
the sphere model [1, 3], the mutation strength generated is
larger than optimal by a factor of

√
2, and that the resulting

quality gain is below optimal by a factor of 2(
√

2 − 1). For
large values of the condition number the situation is reversed
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Figure 5: Average normalised mutation strength σ∗

and normalised quality gain ∆∗ of the (µ/µ, λ)-CSA-
ES plotted against condition number ξ for µ = 3,
λ = 10, and ϑ ∈ {0.25, 0.50, 0.75}. The dots mark
measurements made in runs of the strategy with
N = 40 (+) and N = 400 (×).

in that the adapted mutation strength is below the optimal
one. The standardised mutation strength approaches

√
2

while asymptotically, σ̄ = 2 is optimal. The resulting stan-
dardised quality gain asymptotically equals ∆̄ = 1/ξ and is
thus half of the asymptotically optimal quality gain derived
in Section 4.

6. DISCUSSION AND FUTUREWORK
The results derived in this paper extend those by Jägers-

küpper by considering a more advanced evolution strategy
and a generalisation of the ill-conditioned objective function
in [10]. Most importantly, they add detail by providing an
approximation to the quality gain for arbitrary degrees of ill-
conditioning and not using asymptotic notation that hides
constants, albeit at the cost of a loss of mathematical rigour.

In [10] Jägersküpper contends that “Gaussian mutations
adapted by the 1/5th rule make the optimization process
stabilize such that the trajectory of the evolving search point
takes course very close to the gentlest descent of the ellip-
soidal fitness landscape, i.e., in the region of (almost maxi-
mum curvature)”. The results arrived at here suggest that
for ill-conditioned functions the mutation strength employed
in fact has a significant impact on the trajectory of the
search point. Fig. 3 illustrates that the deviation from the
“gentlest descent” trajectory increases with increasing nor-
malised mutation strength.
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Figure 6: Standardised mutation strength σ̄ and
standardised quality gain ∆̄ of the (µ/µ, λ)-CSA-ES
plotted against the condition number ξ of the Hes-
sian. The lines correspond to, from bottom to top,
ϑ = 0.25, 0.50, and 0.75. Shown are both optimal
values (dashed lines) and values generated by cu-
mulative step length adaptation (solid lines). The
dotted lines indicate the limit behaviour for large ξ.

The result for the standardised quality gain derived here is
independent of the population size parameters µ and λ. As a
result of the standardisation and properties of the (µ/µ, λ)-
progress coefficient [4], the (not standardised) quality gain
is thus roughly proportional to the population size if both
µ and λ are increased in equal proportions. However, it is
important to keep in mind that as on the sphere model, the
accuracy of the approximations decreases with increasing
population size parameters, and that for finite N the speed-
up is significantly sublinear unless µ and λ are small.

A further interesting insight gained from Fig. 6 is that
both the optimal quality gain and the quality gain achieved
with cumulative step length adaptation decrease very slowly
with increasing condition number for values of ξ in the vicin-
ity of one (the derivative ∂∆/∂ξ|ξ=1 equals zero). The
gap between optimal performance and the performance of
the (µ/µ, λ)-CSA-ES in fact narrows with increasing condi-
tion number before it starts widening. This may be of sig-
nificance in connection with covariance matrix adaptation
strategies such as the CMA-ES [7]. Such strategies strive
to learn a mutation covariance matrix that transforms ill-
conditioned objective functions locally into functions with
low condition numbers. As adaptation is never perfect, con-
dition numbers observed in practice are typically larger than
one. Fig. 6 suggests that the impact of the imperfect adap-

tation of the covariance matrix is rather minor, and that
cumulative step length adaptation (which is employed in
the CMA-ES) is rather well suited for this case.

Finally, numerous ways of extending the results presented
in this paper are conceivable. It is desirable to obtain a
better understanding of the behaviour of EAs for PDQFs
other than the class considered here. The cigar and discus
functions are two natural candidates to be considered. It is
also of interest to investigate other mutation strength adap-
tation mechanisms, and to compare their performance with
that of cumulative step length adaptation.
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