
Reducing the Space-Time Complexity of the CMA-ES

James N. Knight and Monte Lunacek
Computer Science Department

Colorado State University
Fort Collins, CO 80523-1873

nate@cs.colostate.edu, lunacek@cs.colostate.edu

ABSTRACT
A limited memory version of the covariance matrix adapta-
tion evolution strategy (CMA-ES) is presented. This algo-
rithm, L-CMA-ES, improves the space and time complex-
ity of the CMA-ES algorithm. The L-CMA-ES uses the
m eigenvectors and eigenvalues spanning the m-dimensional
dominant subspace of the n-dimensional covariance matrix,
C, describing the mutation distribution. The algorithm
avoids explicit computation and storage of C resulting in
space and time savings. The L-CMA-ES algorithm has
a space complexity of O(nm) and a time complexity of
O(nm2). The algorithm is evaluated on a number of stan-
dard test functions. The results show that while the number
of objective function evaluations needed to find a solution
is often increased by using m < n the increase in computa-
tional efficiency leads to a lower overall run time.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search; G.1.6 [Numerical Analysis]: Opti-
mization

General Terms
Algorithms

Keywords
Evolution Strategy, Covariance Matrix Adaptation, Com-
plexity

1. INTRODUCTION
The CMA-ES algorithm, introduced by Hansen et al. [7],

is an evolutionary strategy designed to detect and exploit
the local structure of a function being optimized. Its design
also makes it insensitive to rotations of the search space that
can cause serious degradation in performance for other lo-
cal search methods and evolutionary algorithms. CMA-ES

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7-11, 2007, London, England, United Kingdom
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

has proved to be very effective on many well known test
functions and on several real world applications. The de-
sign of CMA-ES, however, makes its application to high di-
mensional optimization problems expensive. The algorithm
stores and updates an n×n covariance matrix where n is the
problem dimension. Also, CMA-ES computes an eigen-value
decomposition (EVD) of this covariance matrix, an O(n3)
operation. This EVD computation can make the application
of the CMA-ES to high dimensional problems impractical.

To reduce the algorithm’s complexity, Hansen et al. [7]
suggest that the EVD only be computed every n

10
genera-

tions, instead of every generation. This effectively reduces
the complexity of CMA-ES to O(n2). However, computa-
tional complexity and data efficiency are often at odds in op-
timization. Reducing the computational complexity of each
generation will likely increase the adaptation time of the
distribution, resulting in an increased number of function
evaluation calls. Thus, a trade-off exists between computa-
tion time due to evaluation of the function and computation
time due to algorithm complexity. It is still unclear how this
technique scales with problem dimension, and Hansen et al.
[7] admit that for practical applications an update every
generation is often necessary.

In this paper, we propose a modification to CMA-ES that
reduces its space and time complexity in a more general way.
A tunable integer parameter, m, is introduced that controls
the computational complexity of CMA-ES. The computa-
tional complexity of the resulting algorithm is O(nm2) and
the storage requirements are O(nm). With m = n the
algorithm behaves like CMA-ES, and in fact is essentially
the same algorithm. Choosing m � n decreases the al-
gorithm’s computational complexity dramatically, but the
data efficiency—the number of evaluations necessary—can
be affected negatively. We explore this trade-off by directly
controlling m, and comparing these results with CMA-ES
on several benchmark functions. Our results show that the
data efficiency of the algorithm degrades gracefully as m de-
creases. That is, there is an increase in the number of eval-
uations required to reach the cutoff as the complexity of the
algorithm decreases. We also show that, in higher dimen-
sional test problems, reducing the complexity of CMA-ES
results in a more efficient overall algorithm, despite requir-
ing more evaluation calls.

In the following section it is shown how the essential com-
putations of the CMA-ES can be viewed as an eigen-vector
decomposition updating problem. The limited memory evo-
lution strategy with covariance matrix adaptation (L-CMA-
ES) algorithm, built on this update procedure, is then intro-
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duced. In Section 4, the L-CMA-ES is analyzed on a set of
standard test functions in high dimension. The possibility of
further reducing the algorithm’s complexity is discussed in
Section 5. We conclude the paper by discussing the relation
of the L-CMA-ES to other evolution strategies in Section 6.

2. THE CMA-ES
The canonical evolution strategy is an iterative process

where a population of μ distinct parents produce λ offspring
based on mutation distributions around the parents. Inter-
mediate recombination creates a single parent based on the
average position of the current population. A (μ, λ) selection
strategy considers only the best μ of the current population
for recombination.

An evolution strategy with Covariance Matrix Adapta-
tion, or CMA-ES, uses a fully parametrized multivariate
normal distribution to represent the mutation distribution.
The orientation and shape of the distribution are directly
calculated based on the evolution path [7]. Given an n-
dimensional optimization problem, the CMA-ES mutation
distribution is described by a symmetric matrix C ∈ R

n×n,
a mean vector s ∈ R

n, and a step-size parameter σ ∈ R. A
random population is generated by drawing samples from
the n-dimensional normal distribution, N (s, σ2C). Since
the covariance matrix can be written in terms of its eigen-
vector decomposition, C = BD2BT , the generation of a
sample population for the CMA-ES can be written as

z
(g+1)
i ∼ N (0, I) i ∈ [1, λ]

x
(g+1)
i = s(g) + σ(g)B(g)D(g)z

(g+1)
i .

(1)

Each iteration of the algorithm consists of this population
generation step and a parameter adaptation step. The co-
variance matrix, C, is updated by

C(g+1) = (1 − ccov)C(g) + ccovp(g+1)
c (p(g+1)

c )T (2)

where ccov is an algorithm-specific parameter. The path
cumulation variable, pc, is initialized to zero and is updated
by

p(g+1)
c = (1 − cc)p

(g)
c + cu

c
cw

σ(g)

“
〈x〉(g+1)

w − 〈x〉(g)
w

”

where cu
c and cw are algorithm parameters and 〈·〉(g)

w denotes
a weighted mean of the μ best individuals in the gth pop-
ulation. The complete algorithm is listed in Figure 1. As
given, CMA-ES requires O(n2) space for the storage of C
and O(n3) time for the computation of B and D.

The covariance matrix adaptation in CMA-ES is similar to
subspace tracking problems found in the signal processing
literature. We will now show that it is not necessary to
recompute a full EVD at each iteration. Given the EVD of
C(g) as BD2BT the update to C can be written as

(1 − ccov)C(g) + ccovp(g)
c (p(g)

c )T =h
B(g) p

(g)
c

i »
(1 − ccov)(D(g))2 0

0 ccov

– h
B(g) p

(g)
c

iT

(3)

The EVD of (3) can be computed using the algorithm in
Figure 2 which is adapted from [3].

The singular value decomposition updating algorithm de-
veloped in [3] can be derived for the current problem as
follows. We drop the superscript (g) for the remainder of

s ∈ R
n, σ ∈ R, C = I, B = I, D = I, pc = 0, pσ = 0

χN = E{||N (0, I)||}

Until Converged

(1) zi ∼ N (0, I) i ∈ [1, λ]

(2) xi = s + σBDzi

(3) s = s + σBD 〈z〉μ
(4) pc = (1 − cc)pc + cu

c
cw

σ

“
〈x〉(g+1)

w − 〈x〉(g)
w

”

(5) C = (1 − ccov)C + ccovpcp
T
c

(6) [B, D2] = EVD(C)

(7) pσ = (1 − cσ)pσ +
p

1 − (1 − cσ)2
√

μeff 〈z〉μ
(8) σ = σ exp

„
cσ

dσ

„ ||pσ||
χN

− 1

««

Figure 1: The CMA-ES algorithm. The parameters
cc, cu

c , ccov, cσ, dσ, and μeff are described in [7].

the discussion. The matrix
ˆ
B pc

˜
in (3) is rewritten as

ˆ
B pc

˜
=

ˆ
B P

˜ »
I q
0 Ra

–

where P , q, and Ra are defined in Figure 2. Note that the
columns of B and the vector p are orthogonal. Now, (3) can
be written as

(1 − ccov)C + ccovpcp
T
c =

ˆ
B P

˜ »
I q
0 Ra

– »
(1 − ccov)D2 0

0 ccov

– »
I q
0 Ra

–T ˆ
B P

˜T
.

The matrix K is defined by

K =

»
I q
0 Ra

– »
(1 − ccov)D2 0

0 ccov

– »
I q
0 Ra

–T

or more conveniently as

K =

»
βD2 0

0 0

–
+ ccov

»
q

Ra

– »
q

Ra

–T

with β = 1−ccov . Since K is symmetric it has an eigenvalue
decomposition, K = US2UT . Finally, the eigen-decomposition
of (1 − ccov)C + ccovpcp

T
c can be computed as

B̃S2B̃T =
`ˆ

B P
˜
U

´
S2

`ˆ
B P

˜
U

´T
.

The final step of the algorithm is to select out the leading
n-dimensional submatrix of B̃ and S.

As written the algorithm is less efficient than the standard
CMA-ES procedure, since K has dimension (n+1)×(n+1).
The special structure of K, however, can be exploited to re-
duce the complexity of the EVD. Computation of the EVD
of a diagonal plus rank one matrix, like K, has been exten-
sively researched. The computation is a key part of efficient
algorithms for finding the EVD of symmetric tridiagonal ma-
trices (see [5] and references therein). The resulting compu-
tation takes on the order of n2 computations and does not
require an explicit computation of K. Note however that
the overall asymptotic complexity is still O(n3) due to the
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(1) q = BT pc

(2) p = pc − Bq

(3) Ra = ||p||
(4) P =

1

Ra
p

(5) β = (1 − ccov)

(6) K =

»
βD2 0

0 0

–
+ ccov

»
q

Ra

– »
q

Ra

–T

(7) [U, S2] = EVD(K)

(8) B̃ =
ˆ
B P

˜
U

(9) B = B̃(:, 1 : n)

(10) D = S(1 : n, 1 : n)

Figure 2: An algorithm for computing the EVD of
a matrix plus rank-1 update. Using a special eigen-
decomposition, Step 6 can be avoided. Matlab no-
tation is used in Lines 9 and 10 to denote selection
of submatrices.

matrix multiplication in Line 8. Empirical tests suggest that
the updating algorithm runs slightly faster than the original
implementation.

3. THE L-CMA-ES
The reformulation of CMA-ES as an eigen-decomposition

updating problem does not immediately improve its asymp-
totic computational complexity. Here, we show how the
asymptotic space and time complexity of the CMA-ES com-
putations can be reduced by a modification to the updating
algorithm. The L-CMA-ES is a modified version of CMA-
ES that uses a reduced dimensional representation of the
mutation distribution. The dimensionality of the represen-
tation is controlled by the parameter, m. In the L-CMA-ES,
only the m dominant eigen-pairs of C are computed. The
updating approach described in the previous section is used
to avoid the explicit computation and storage of the covari-
ance matrix C. When m < n both computational and space
savings are achieved. Note that this does not necessarily im-
ply a reduction in the overall runtime of the optimization as
this is also a function of the data efficiency of the algorithm.
These issues are addressed in the next section.

The L-CMA-ES is derived from the algorithm in Figure 1
with the key modifications described presently. To begin,
define the matrices B̂ ∈ R

n×m and D̂ ∈ R
m×m, and initialize

them by

B̂ =

»
I
0

–

D̂ = I.

The generation of a new population from B̂ and D̂ requires
a modification to Equation 1. The equation is rewritten as

z
(g+1)
i ∼ N (0, Im×m)

x
(g+1)
i = s(g) + σB̂(g)D̂(g)z

(g+1)
i

(4)

for L-CMA-ES. The generation of a population according

to Equation 4, however, is flawed in the following way: each
new population will span only an m-dimensional subspace of
the optimization problem’s domain. Unless the optimization
problem is rank deficient, this flaw will limit optimization to
a subspace of the domain. For example, in a two dimensional
problem with m = 1, the algorithm would search only in a
line and thus could, in general, only find the optimum if
the function was constant in one direction. The direction in
which the population adapts would be fixed for the entire
run of the algorithm.

To correct for this problem we would like to approximate
the remaining eigenvalues by the smallest known eigenvalue,
d̂ = D̂(m,m),

D ≈

2
6664

D̂ 0 . . . 0

0 d̂ . . . 0
...

...
. . .

...

0 0 . . . d̂

3
7775 ,

and use a set of vectors spanning the subspace orthogonal
to the range of B̂. On the other hand, it is essential to avoid
computing this remaining set of vectors as this adds unde-
sirable, additional computation. Instead, an n-dimensional
isotropic distribution with variance d̂2 is used in conjunction
with the m-dimensional distribution defined by B̂ and D̂.
The mutation distribution in L-CMA-ES is thus described
by

z
(g+1)
i ∼ N (0, Im×m) i ∈ [1, λ]

w
(g+1)
i ∼ N (0, In×n)

x
(g+1)
i = s(g) + σB̂(g)D̂(g)z

(g+1)
i + σd̂w

(g+1)
i .

(5)

The use of the scaled isotropic distribution results in a
regularization of the low rank approximation to C given by
B̂D̂2B̂T . Consider that

E{xxT } = E{(σB̂D̂z + σd̂w)(σB̂D̂z + σd̂w)T }
= E{σ2(B̂D̂zzT D̂T B̂T + d̂2wwT +

d̂B̂D̂zwT + d̂wzT D̂T B̂T )}
= σ2(B̂D̂E{zzT }D̂T B̂T + d̂2E{wwT } +

d̂B̂D̂E{zwT } + d̂E{wzT }D̂T B̂T )

= σ2(B̂D̂2B̂T + d̂2I)

which illustrates the connection between the mutation dis-
tributions of L-CMA-ES and CMA-ES.

Once a population has been generated, the variables pc

and pσ are computed as shown in Figure 1. The matrices,
B̂ and D̂, are then updated using a modified version of the
algorithm in Figure 2. The algorithm is changed slightly by
using B̂ and D̂ in place of B and D and using m in place of n
in the last two lines. The matrix B̂ will contain the m eigen-
vectors of C corresponding to the m largest eigenvalues. The
matrix D̂ has the m largest eigenvalues of C on the diagonal.
Computing the EVD of K has a complexity of O(m2) as
discussed previously. The matrix multiplication in Line 8 of
Figure 2 dominates the asymptotic complexity with order
O(nm2).

The final development in L-CMA-ES is a change in the
computation of χN . This parameter influences the adapta-
tion of σ as shown in line 7 of Figure 1. The parameter
measures the expected magnitude of z (see [7] for a discus-
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sion). For the CMA-ES this quantity is given by

χN = E{||z||} =
√

2
Γ

`
n+1

2

´
Γ

`
n
2

´ .

If z is generated as in L-CMA-ES by

z ∼ N (0, Im×m) + N (0, In×n)

then

χN = E{||z||} =
√

2
Γ

`
n+m+1

2

´
Γ

`
n+m

2

´ .

4. EMPIRICAL EVALUATION
The time (and space) complexity of L-CMA-ES can be

directly controlled. When m < n, L-CMA-ES does less work
per generation than CMA-ES. This decrease in complexity
does not come for free; L-CMA-ES uses less information
to update the mutation distribution. Intuitively, we would
expect L-CMA-ES to require more generations to optimize
a function, and it does. One of the goals in this section is to
show that as m decreases, L-CMA-ES degrades “gracefully”
in terms of the number of evaluations needed to reach the
global optima.

On higher dimensional problems, the complexity of CMA-
ES becomes a liability that is difficult to ignore, but this is
hidden in a comparison that only considers the number of
evaluations. There is an observable time difference between
CMA-ES and L-CMA-ES and in order to understand the
actual difference in overall efficiency—the main reason to
prefer L-CMA-ES—we must measure CPU time. The sec-
ond goal in this section is to show that L-CMA-ES, with
m < n, is more efficient in high dimensions than CMA-ES.

Normally, optimization algorithms are evaluated and com-
pared based on how many evaluation calls they make to the
objective function. This is the most accepted, and generally
the most fair, way of comparing algorithm efficiency. An
empirical comparison using CPU time generally says more
about the implementation details of an algorithm than it
does about how well a particular algorithm optimizes a given
problem. Needless to say, great care must be taken when
comparing clock cycles. In order to mitigate the undesir-
able affects of comparing CPU times, we implemented both
algorithms in C++ using the same base code. The only im-
plementation difference in the algorithms is the way in which
they update the distribution. Isolating the distribution up-
date as the only difference in implementation results in a
fair comparison in terms of time complexity. In the stan-
dard CMA-ES implementation a call to the LAPACK rou-
tine syevr [4] is made to compute the eigen-decomposition of
the matrix C. The rank one update is performed using the
BLAS routine dsyr. In the L-CMA-ES implementation the
eigen-decomposition of K was done using a slightly modified
version of the LAPACK routines laed7 and laed81. All other
matrix operations were performed by the BLAS library. All
experiments were run on Dell Precision 530s with 1.5Ghz
Xeon processors and 512Mb of RAM.

4.1 Evaluation of Data Efficiency
We compare each algorithm on three standard unimodal

test functions in 30 dimensions: the sphere, the ellipsoid,

1Implementations of the two algorithms are available for
download at http://www.cs.colostate.edu/∼nate/lcmaes.

and Rosenbrock’s function. Table 1 lists the exact details
of each problem. Although the sphere is separable, sym-
metric, equally-scaled, and unimodal, Bäck points out the
importance of simple functions like the sphere: “..., before
we can expect an algorithm to be successful in the case of
hard problems, it has to demonstrate that it does not fail to
work on simple problems” [1]. The ellipsoid is similar to the
sphere in all its properties except that it is scaled differently
in each dimension, which creates ridges in the landscape.
Rosenbrock’s function is the “classic” ridge problem. It is
both non-symmetric and non-separable.

We ran each algorithm with the population size of λ =
4 + 	3 log(n)
, which is the default suggested in [7]. For the
thirty dimension problems λ = 14. The initial step-size was
set to σ = 0.5 times the length of a side of the bounding box
on the functions domain. The other algorithm parameters
were set as suggested in [7]. Three different values of m were
considered: 	√n
, 	n/2
, n. With n = 30, this corresponds
to m = 5, 15, and 30. Figures 3, 4, and 5 show the behavior
of each algorithm on the sphere, ellipsoid, and Rosenbrock’s
function, respectively, as best fitness achieved versus the
number of evaluations.

0 5 10 15

−
15

−
10

−
5

0
5

Evals x 1000

F
itn

es
s

LCMA 5
LCMA 15
LCMA 30
CMA

Figure 3: L-CMA-ES and CMA-ES on the 30 di-
mensional sphere function. There is no significant
difference in performance between the three algo-
rithms.

On the sphere function there is no significant difference
in the performance of the algorithms, including CMA-ES.
Since the initial mutation distribution of all algorithms, an
isotropic normal distribution, is optimal for this function,
this experiment tests the modified step-length adaptation
used in L-CMA-ES. In Section 3 we described a modification
to the value of χN , necessary because of the change in how
the population is generated, that affected the adaptation of
σ. The results of this experiment show that this modification
did not negatively affect the algorithm.

On the ellipsoid function the story is different. When
m = n, the number of evaluations required to reach the
optimal solutions is indistinguishable when compared with
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Name Function Domain

Sphere f(xi| i=1,n) =
Pn

i=1 x2
i [−5.0, 5.0]

Ellipsoid f(xi| i=1,n) =
Pn

i=1(1000
i−1
n−1 xi)2 [−5.0, 5.0]

Rosenbrock f(xi, | i=1,n−1) =
Pn−1

i=1 100(x2
i − xi+1)2 + (1 − xi)2 [−2.0, 2.0]

Table 1: The test functions used in this paper.
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F
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LCMA 5
LCMA 15
LCMA 30
CMA

Figure 4: L-CMA-ES and CMA-ES on the 30 dimen-
sional ellipsoid function. Notice that as m decreases,
L-CMA-ES requires significantly more evaluations
to converge.
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Figure 5: L-CMA-ES and CMA-ES on the 30 di-
mensional Rosenbrock function. Here the most data
efficient algorithm is L-CMA-ES using m = 5. It
reaches the solution in the fewest number of evalua-
tions, and is also the most computationally efficient
algorithm.

662



CMA-ES. This is expected since both algorithms are using
the same information when updating the mutation distri-
bution. As m decreases, however, L-CMA-ES becomes less
efficient in terms of the number of evaluation calls. Note,
however, that it never fails to reach the optimal solution.
The decrease in data efficiency appears to be smooth with
respect to changes in the parameter m. As m decreases
the number of evaluations needed increases. In fact, further
experimentation with other values of m shows a gradual in-
crease in the number of necessary evaluations as m goes from
1 to n.

In the third experiment CMA-ES and the L-CMA-ES are
compared on Rosenbrock’s function. We observe that the
smallest m value is actually the most data efficient on Rosen-
brock’s function. This result is unexpected given the behav-
ior of L-CMA-ES on the ellipsoid function. Certain features
of the function contribute to this behavior. Recently, Voigt
has shown that the curvature of the ridge, not the scale, is
the primary feature that makes the high dimensional Rosen-
brock problem difficult [10]. In light of this, we conjecture
that the accuracy of the mutation distribution is less impor-
tant than the adaptability of the search direction. Although
small values of m may create a less accurate model of the
“true” CMA-ES mutation distribution, the distribution it-
self has less parameters and may adapt more quickly to the
curvature in Rosenbrock’s function.

Also, we note that the definition of Rosenbrock’s function
is such that there is only local parameter interaction as op-
posed to the global interaction in functions like the ellipsoid.
An example run of the CMA-ES algorithm on Rosenbrock’s
in 30 dimensions is shown in Figure 6. The structure of
Rosenbrock’s function contributes to a particular behavior
in CMA-ES. After an initial phase, the algorithm proceeds
to optimize overlapping subsets of parameters. The L-CMA-
ES behaves in essentially the same way. It appears that only
information about the interaction between a small set of pa-
rameters is needed at any particular time. The L-CMA-ES
with m = 5 does not need to update and adapt unnecessary
parameters and thus is more efficient on this function.

0 1000 2000 3000 4000 5000
−0.5
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0.5
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Number of Evaluations

V
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 s

 in
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ll 
30

 d
im
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si
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Figure 6: The structure of Rosenbrock’s function
contributes to a particular behavior in CMA-ES. Af-
ter an initial phase, the algorithm proceeds to opti-
mize an overlapping set of parameters.

4.2 Measuring CPU-time
The ellipsoid presents the greatest challenge to L-CMA-

ES in terms of the necessary number of function calls, espe-
cially with small values of m. Referring back to Figure 4,
notice that the number of evaluations for m = 5 is substan-
tial. With the following experiment we answer the question:
how does the complexity of each algorithm, measured in
terms of CPU time, scale with dimensionality.

We measured the amount of time and the number of eval-
uations needed for the algorithms to reach 1 × 10−6 on the
ellipsoid in 50, 100, 150, and 200 dimensions. The average
number of evaluations, based on twenty-four trials, are dis-
played in Figure 7. Notice that as dimensionality increases,
L-CMA-ES continues to require the greatest number of eval-
uations, which increases with a decreasing m. Again, this is
not surprising because lower m values are considering less
information and require more generations to converge. Note
also that the rate at which the number of evaluations grows
appears to be linear for all three algorithms.

Figure 8 shows the averaged CPU times for the twenty-
four trials. The opposite is true here; as dimensionality
increases, the most efficient algorithm is L-CMA-ES. The
configuration with m =

√
n performs the best. Here, the

rate at which the computation time grows for each algo-
rithm is different. At some value of n the computational
complexity will always come to dominate the total run time
of the CMA-ES. For m =

√
n the computational complex-

ity of L-CMA-ES grows at a rate of n2 as opposed to the
n3 of the original algorithm. The difference in the rate of
growths of the computational complexity, coupled with the
relatively constant rates of growth in the number of evalu-
ations, leads to the improvement in overall performance for
the L-CMA-ES.
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+
06

CMA
LCMA m=n/2
LCMA m=sqrt(n)

Figure 7: The average number of evaluations re-
quired for L-CMA-ES and CMA-ES on the ellipsoid
function in high dimensions.

The point here is not to suggest that L-CMA-ES is a
better algorithm than CMA-ES. Instead, we are document-
ing that there are high-dimensional, relatively fast objec-
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Figure 8: The average CPU time required for L-
CMA-ES and CMA-ES on the ellipsoid function in
high dimensions.

tive functions where the complexity of CMA-ES hinders its
ability to efficiently solve these problems. This is where L-
CMA-ES is most appropriately used. For problems with
more expensive evaluation functions, the cross over point at
which it becomes more efficient to use m < n will change.
Unless these problems are of very high dimension it may be
more efficient to keep m = n.

5. FUTURE WORK
We began the development of the L-CMA-ES algorithm

by noting the connection between adaptation of the CMA-
ES mutation distribution and subspace tracking problems.
In this development we chose to use an algorithm capable
of tracking the m dominant eigen-values and eigen-vectors
of C exactly. A further improvement in the computational
complexity of the algorithm can be achieved by only approx-
imately tracking the subspace of interest. In particular we
are currently exploring use of the YAST algorithm [2], that
has a computational complexity of O(nm). The effect of the
approximation on the data efficiency of the L-CMA-ES has
yet to be explored.

In [6], Hansen et al. modify the CMA-ES mutation distri-
bution update by adding in a rank-μ update to C, built from
the μ best members of the current population. Equation 2
is modified such that

Z(g+1) =
1

μ

X
i∈Isel

x
(g+1)
i

“
x

(g+1)
i

”T

C(g+1) = (1 − ccov)C(g) +

ccov

“
αcovp(g+1)

c (p(g+1)
c )T + (1 − αcov)Z(g+1)

”

where Isel contains the indices of the μ best individuals. The
modification allows the information contained in large pop-
ulations to be exploited and leads, on a set of test functions,
to a decrease in the number of function evaluations necessary

to reach a fixed level of fitness. It is also demonstrated that
larger population sizes improve the performance of CMA-ES
on multi-modal functions. In this paper we have restricted
our attention to unimodal functions and to the original im-
plementation of the CMA-ES for the initial exploration of
the proposed technique. Nevertheless, the rank-μ update
proposed in [6] can be incorporated into the L-CMA-ES.
The addition of this update term will affect the number of
computations by requiring a more general EVD procedure to
be used on Line 7 of the update algorithm in Figure 2. Cur-
rently an efficient algorithm with complexity O(m2) can be
used, but the more general procedure would have complex-
ity O(m3). The overall asymptotic complexity of O(nm2)
would be preserved, but the trade-off analyzed in the previ-
ous sections would be affected. An analysis of the effect of
these changes is left for future work.

6. SUMMARY
We have presented an algorithm that reduces the space-

time computational complexity of the CMA-ES algorithm.
The reduction in complexity can cause a decrease in the data
efficiency of the algorithm. This trade-off between compu-
tational complexity and data efficiency is controlled by an
adjustable parameter. The overall complexity of the algo-
rithm can be improved for certain values of this parameter
that are problem dependent. While there is yet no way to
determine the optimal setting of this parameter a priori,
understanding the construction of the algorithm can guide
its selection. As the parameter m decreases the amount of
parameter interaction that can be modeled decreases. For
functions with strong coupling between the parameters, val-
ues of m near n will tend to be best. On the other hand, for
functions with weaker coupling, such as Rosenbrock’s func-
tion, smaller values of m can improve overall performance as
was seen in the experiments. Further exploration into the re-
lationship between the coupling of parameters and the value
of m will give insight on how to set this parameter. Also,
as was suggested in [3], we believe it might be possible to
adapt this parameter during optimization.

The algorithm we have presented is connected to the whole
spectrum of derandomized adaptation evolution strategies.
It is obvious that for m = n the algorithm is equivalent to
the original CMA-ES formulation. When the parameter m
equals zero, the algorithm is a cumulative step-size adap-
tation (CSA) style algorithm with an isotropic mutation
distribution [8]. When m = 1 the algorithm is quite sim-
ilar, in behavior and complexity, to the main vector adap-
tation (MVA) algorithm described in [9]. While a direct
comparison was not performed, the results on the ellipsoid
and Rosenbrock’s function presented in [9] agree with re-
sults produced by L-CMA-ES using m = 1. Specifically, the
MVA, like L-CMA-ES, performs poorly on the ellipsoid and
similar to CMA on Rosenbrock’s function. The L-CMA-ES
algorithm fills the gap between MVA-ES and CMA-ES by
allowing the number of adaptation directions to vary from
one to n. The algorithm is a flexible tool for optimizing
functions with various levels of parameter interaction.
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