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ABSTRACT
Constrained continuous optimization is still an interesting
field of research. Many heuristics have been proposed in the
last decade. Most of them are based on penalty functions.
Here, we experimentally investigate the two constraint han-
dling heuristics proposed by Kramer and Schwefel [15]. The
two sexes evolution strategy (TSES) is inspired by the bio-
logical concept of sexual selection and pairing. The death
penalty step control evolution strategy (DSES) is based on
the controlled reduction of a minimum step size depending
on the distance to the infeasible search space. These two
methods are able to overcome the problem of premature
mutation strength reduction, a result of the self-adaptation
mechanism of evolution strategies in constrained environ-
ments. All methods are experimentally evaluated on a cou-
ple of typical constrained test problems. These experiments
offer recommendations for the TSES population ratios and
the speed of the ε-reduction process of the DSES.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—Constrained
optimization

General Terms
Algorithms, Experimentation

Keywords
Evolution Strategies, Constrained Real Parameter Optimiza-
tion

1. INTRODUCTION
In this paper we concentrate on the experimental evalu-

ation of two of the three constraint handling methods for
evolution strategies (ES) proposed by Kramer and Schwe-
fel [15]. After the definition of the NLP problem and a
short introduction to ES, we summarize preliminary work
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in the field of constraint handling and describe the problem
of premature mutation strength reduction. In section 2 we
present the two sexes ES (TSES) with a short description, its
pseudo code and an experimental parameter analysis on two
test problems. The TSES allows a part of the population to
discover the infeasible part of the search space. Afterwards,
we present the death penalty step control evolution strategy
(DSES) in section 3. The DSES makes use of a minimum
mutation strength in order to prevent premature step size
reduction. A heuristic is introduced to reduce this minimum
value. Finally, we summarize the experimental analysis on
all constrained test functions and draw our attention to an
outlook to future work.

1.1 The NLP Problem
First of all, we repeat the definition of the constrained con-

tinuous nonlinear programming problem: In the N-dimen-
sional search space IRN find a solution x = (x1, x2, ..., xN)T ,
which minimizes f(x):

f(x) → min ., x ∈ IR with subject to
inequalities gi(x) ≤ 0, i = 1, ..., n1

equalities hj(x) = 0, j = 1, ..., n2

(1)

A feasible solution x satisfies all n1 inequality and n2 equal-
ity constraints. Many constraint-handling techniques like
penalty functions make use of a constraints violation mea-
surement G:

G(x) =

n1∑
i=1

max[0, gi(x)]β +

n2∑
j=1

|hj(x)|γ (2)

The parameters β and γ are usually chosen as one or two.
In the following, only inequality constraints are taken into
account.

1.2 Evolution strategies
We focus our research about constraint handling on ES.

For a comprehensive introduction to ES see Beyer and Schwe-
fel [3]. A (μ/ρ +, λ)-ES for continuous search spaces uses a
parent population with cardinality μ and an offspring pop-
ulation with cardinality λ. In the standard (μ +, λ)-ES a
vector of nσ = N step sizes is used, which results in muta-
tion ellipsoids:

�z := (σ1N1(0, 1), ..., σNNN (0, 1)) (3)

The corresponding strategy parameter vector is mutated
with the extended log-normal rule:

�σ′ := e(τ0N0(0,1)) · (σ1e
(τ1N1(0,1), ..., σNe(τ1NN (0,1)) (4)
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There exist two main variants of recombination within evo-
lution strategies. The intermediate crossover produces new
offspring �o = (o1, ..., oN ) by calculating the arithmetic mean
of ρ parents pi with 1 ≤ i ≤ ρ with pi = (pi

1, ..., p
i
N):

ok :=
1

ρ

ρ∑
i=1

pi
k (5)

For discrete representations rounding procedures have to be
used.

The dominant crossover chooses each component from one
of the m parents randomly with uniform distribution.

ok := pi
k with i := Random {1, ..., ρ} (6)

As an extension of the comma selection scheme (selec-
tion of the best μ individuals exclusively out of the current
offspring generation) the parameter κ specifies the number
of reproduction cycles individuals are allowed to survive in
the parental population if they cannot be replaced by fitter
offspring solutions.

1.3 Preliminary work
Most of the constraint handling methods for evolutionary

algorithms are based on penalty functions. An early, rather
general penalty approach is the SUMT (sequential uncon-
strained minimization technique) by Fiacco and McCormick
[9]. The constrained problem is solved by a sequence of un-
constrained optimizations in which the penalty factors are
stepwise intensified. In other penalty approaches penalty
factors can be defined statically [11] or depending on the
number of satisfied constraints [16]. They can dynamically
depend on the number of generations of the EA as Joines
and Houck propose [13]. Annealing penalties can be adapted
according to an external cooling scheme [13] or by adaptive
heuristics [1]. In the death penalty (DP) approach infeasi-
ble solutions are rejected and new solutions are created un-
til enough feasible ones exist. There exist other constraint
handling methods as well, e.g. the segregated genetic algo-
rithm by Le Riche et al. [23] where two penalty functions,
a weak and an intense one, are calculated in order to sur-
round the optimum. In the coevolutionary penalty-function
approach by Coello Coello [6] the penalty factors of an inner
evolutionary algorithm are adapted by an outer EA. Some
methods are based on the assumption that any feasible so-
lution is better than any infeasible one [22], [8]. An example
are the metric penalty functions by Hoffmeister and Sprave
[10]. Decoders build up a relationship between the con-
strained search space and an artificial search space easier
to handle [18], [14]. Repair algorithms either replace infea-
sible solutions or only use the repaired solutions for eval-
uation of their infeasible pendants [7], [2]. Multiobjective
optimization techniques are based on the idea of handling
each constraint as an objective and are used by Parmee and
Purchase [21], Jimenez and Verdegay [12], Coello Coello [5],
and Surry et al. [26]. In the behavioral memory-method
by Schoenauer and Xanthakis [24] the EA concentrates on
minimizing the constraint violation of each constraint in a
certain order and optimizing the objective function in the
last step. A predator-prey approach to handle constraints is
proposed by Paredis [20] using two separate populations. A
comprehensive overview to constraint handling techniques is
given by Coello Coello [7] and also by Michalewicz [18]. Re-
cently, Coello Coello [19] introduced a technique based on

a multimembered evolution strategy combining a feasibil-
ity comparison mechanism with several modifications of the
standard ES. Other approaches point at using differential
evolution for constraint handling [4]. Most state-of-the-art
methods and their experimental validation can be found in
the CEC 2006 Special Session on Constrained Real Param-
eter Optimization.

1.4 Premature step size reduction
Often, ES suffer from premature step size reduction in

case of active inequality constraints. This problem is de-
scribed in detail in [15]. Here, we shortly revise the reason
for premature stagnation. When the distance of individuals
of a population to the boundary of the feasible search space
is smaller than the mutation step size, a huge part of the re-
gion where better individuals are produced is cut off. Also
in the case of penalty functions this region is punished with
worse fitness. The success region is not cut off or punished
in the case of smaller step sizes. Hence, the self-adaptation
favors smaller step sizes before reaching the optimum. This
is called premature mutation strength reduction and results
in premature fitness stagnation. To overcome this problem,
in the following two heuristics are proposed. The TSES aims
at getting rid of constraint boundaries by letting a part of
the population discover the infeasible region. The DSES
hinders the self-adaptation to reduce the mutation strength
beyond a minimum value, but reduces this minimum value
with a control heuristic.

2. CONSTRAINT HANDLING WITH TWO
SEXES

At first, we introduce the TSES and describe its biologi-
cal motivation. Afterwards, we analyze its behavior under
different parameter settings experimentally on two test func-
tions.

Infeasible
search space

Infeasible

Optimum
of unconstrained
objective function

Optimum at vertexOptimum at vertex
of boundaries of boundaries

Feasible
search space search space

Optimum
of unconstrained
objective function

search space
Feasible

Figure 1: Idea of pairing in the vertex of feasibility:
the intermediary recombination allows the TSES to
approach the optimum from two sides.

2.1 Biologically inspired constraint-handling
The idea of the TSES is to handle the objective function

and the constraint functions as separate objectives [15]. Ev-
ery individual of the TSES is assigned to a new feature called
its sex. Similar to nature, individuals with different sexes
are selected according to different objectives. Individuals
with sex o are selected by the objective function. Individu-
als with sex c are selected by the fulfillment of constraints.
The intermediary recombination operator allows only pair-
ing between parents of different sex. Consider the situation
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TSES κ best avg worst dev cv σ ffc/cfc
g01
(8 + 8, 13 + 87) 200 −15.0 −14.800866854295 −12.461685434305 5.45 · 10−2 0.0 1.47 · 10−11 360599

(20 + 20, 25 + 200) 50 −15.0 −14.999999999999 −14.999999999999 9.11 · 10−15 0.0 2.72 · 10−14 243920
(20 + 20, 25 + 200)∗ 50 −15.0 −14.895808401022 −12.440215102243 4.06 · 10−2 0.0 2.94 · 10−14 277823

(40 + 40, 50 + 400) 50 −15.0 −14.999999999999 −14.999999999999 5.36 · 10−15 0.0 1.86 · 10−14 411 732

(40 + 40, 50 + 400)∗ 50 −15.0 −14.999999999999 −14.999999999999 5.58 · 10−15 0.0 1.74 · 10−14 468 580
DP 0 −14.999999999966 −14.173473498602 −11.5825566209 1.106 0.0 5.164 · 10−11 143187
g12

(8 + 8, 15 + 85) 50 −1.0 −1.0 −1.0 0.0 0.0 5.56 · 10−8 12305
(8 + 8, 15 + 85)∗ 50 −1.0 −1.0 −1.0 0.0 0.0 5.92 · 10−8 11722

(8 + 8, 13 + 87) 50 −1.0 −0.9999437499999 −0.9943749999921 5.62 · 10−5 0.0 1.71 · 10−7 14534

(8 + 8, 13 + 87)∗ 50 −1.0 −1.0 −1.0 0.0 0.0 6.92 · 10−8 12720
(8 + 8, 10 + 90) 50 −1.0 −0.9999999999999 −0.9999999999999 7.46 · 10−16 0.0 1.57 · 10−6 18938

(8 + 8, 10 + 90)∗ 50 −1.0 −0.9999999999999 −0.9999999999999 1.64 · 10−16 0.0 1.49 · 10−6 17237

(15, 100) DP 0 −1.0 −0.9999999999982 −0.9999999999802 2.94 · 10−13 0.0 5.76 · 10−5 20318

Table 1: Above: Experimental analysis of the TSES on problem g01. The standard DP method and the
(8+8,13+87)-TSES show bad results, an increase of population sizes is necessary. All other experiments were
more successful, the optimum could be reached in almost every run. Below: the TSES on problem g12. The
TSES approximates the optimum −1.0 in most of the experiments with sufficient accuracy. In some runs of
the (8 + 8, 13 + 87)-TSES with fixed starting points a premature termination was observed.

presented in figure 1. The optimum lies at the boundaries of
the feasible search space. The optimum of the unconstrained
objective function lies in the infeasible search space. In the
(μo +μc, λo +λc)-TSES μo parents are selected out of λo in-
dividuals with sex o, whereas μc parents are selected out of
λc offspring individuals of the previous generation with sex
c. As the individuals with sex o are selected according to the
objective function, they tend to lie finally in the infeasible
search space (black squares) whereas the c-individuals are
selected by the fulfillment of all constraints and mostly lie in
the feasible search space (white circles). The measurement
G for the fulfillment of constraints has already been defined
in equation 2. By means of intermediary recombination, all
individuals get closer to the optimum of the problem, but
still are found on opposite sides of the boundaries between
the feasible and the infeasible search space. The TSES does
not demand feasible starting points during initialization.
Figure 2 shows the pseudo-code of the TSES. The usual

1 Start
2 t:=0;
3 Initialize partental population Po with sex o;
4 Initialize partental population Pc with sex c;
5 Repeat
6 For k=1 To λ1 + λ2 Do
7 Choose one parent from Pt

o and one from Pt
c

8 recombination step sizes;
9 recombination objective variables;
10 mutation step sizes;
11 mutation objective variables;
12 fitness of ak := f(xk);
13 If k < λ2 Then
14 sex(ak) = o;
15 Else
16 sex(ak) = c;
17 Add ak to offspring population O zu;
18 Next;
19 Select parental population Po

20 from O considering the fitness function;
21 Select parental population Pc

22 from O considering the constraint violation;
23 t := t + 1;
24 Until termination condition
25 End

Figure 2: Pseudo-code of the TSES.

self-adaptation process effects an explosion of the mean step
sizes, as the invasion of c-individuals into the unconstrained
search space is beneficial. To prevent this we introduce
a two-step selection operator for the sex c, according to
the metric penalty function by Hoffmeister and Sprave [10].
At first, we select these individuals by fulfillment of con-
straints, secondly, if enough feasible solutions exist by the
objective function. Another modification is the introduc-
tion of a finite life span 1 < κ < ∞ for individuals with
the sex c. These modifications lead to promising results on
test functions. Experiments show that the population of c-
individuals should be much higher than the population of
o-individuals which furthermore emphasizes the importance
of c-individuals.

2.2 Parameter analysis of the TSES
We now accomplish some experimental runs of the TSES

under various parameter settings for μo, μc, λo, λc and κ.
Table 1, upper part, shows the outcome of the experiments
on problem g01. Problem g01 exhibits a quadratic objec-
tive function and nine linear inequality constraints. The
experiments marked with a star make use of randomized
starting individuals. The other tests use a fixed initial-
ization. A (8+8,13+87)-TSES was not at all able to ap-
proximate the optimum. But a modification of the sex ra-
tios could change the situation. Both, a (20+20,25+200)-
and a (40+40,50+400)-TSES, were able to find the opti-
mum with arbitrary accuracy in almost every run. Only the
(20+20,25+200)-TSES with randomized starting point suf-
fered from premature step size reduction before reaching the
optimum. In comparison to DP a significant improvement
could be observed.

Let us now have a look onto the behavior of the TSES on
problem g12. What we can observe here is a high quality of
the experimental results. The (8+8,15+85)-, the (8+8,13+87)-
as well as the (3+3,10+90)-TSES find the optimum with
satisfying accuracy. The only exception is the (8+8, 13+87)-
TSES with a fixed initial starting point. These results can
be explained with outliers as the neighboring sex ratios are
successful. Again, we observe a saving of constraint function
calls in comparison to DP.
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3. CONSTRAINT HANDLING WITH DEATH
PENALTY AND STEP CONTROL

As mentioned in section 1.4 the DP method suffers from
premature step size reduction because of insufficient birth
surplus. The death penalty step control evolution strategy
(DSES) is based on DP, i.e. rejection of infeasible solutions.
For the initialization feasible starting points are required.
The key principle of the approach is a minimum step size
ε, a lower bound on the step sizes σ, that prevents the self-
adaptation from premature step size reduction. But it also
prevents the optimization process from unlimited approxi-
mation of the optimum when reaching the range of ε. Con-
sequently, a control mechanism is introduced with the task
of reducing ε when approximating the optimum. Intuitively,
the reduction process depends on the number of infeasible
mutations produced when reaching the area of the optimum
at the boundary of the feasible search space.

Feasible
search
space

Infeasible
search
space

Infeasible
search
space

Feasible
search
space

Feasible
search
space

search
space

Infeasible

P1

P
1

P1

(a) (b) (c)

σ=ε

σ=ε

1

1 σ=ε2

Optimum Optimum Optimum

Figure 3: Working principle of the DSES. In the
vicinity of the infeasible search space (a) the pop-
ulation approximates the optimum until the mini-
mum mutation strength ε decreases the probability
for successful offspring (b). It is time for reduction
of ε for further approximation (c). When the num-
ber of infeasible trials exceeds the parameter mod
the minimum step size ε is reduced and a further
approximation of the optimum becomes possible.

Consider the situation presented in figure 3. Again, for
the sake of better understanding we assume that all muta-
tions fall within a σ-circle around the parental individual
instead of using a normal distribution with standard devia-
tion σ. On the left (a), the parent P has come close to the
optimum at a vertex of the feasible search space. Further
approximation (b) with the same minimum step size means
an increase of infeasible mutations which are counted with
the parameter z. The reduction process of ε depends on the
number z of rejected infeasible solutions: Every 
 infeasible
trials ε is reduced by a factor 0 < ϑ < 1 according to the
equation:

ε′ := ε · ϑ (7)

The DSES is denoted by [
; ϑ]-DSES. Figure 4 shows the
pseudo-code of the DSES.

3.1 Parameter analysis of the DSES
The analysis of the DSES parameter settings shows ta-

ble 2. Above, the analysis of the DSES on problem g01
reveals a significant improvement in comparison to DP. The
[400;0.5]-, the [400;0.3]- and the [400;0.1]-DSES were able to
approximate the optimum with arbitrary accuracy. The ε-
reduction was performed too fast for the [100,ϑ]-DSES with
ϑ = 0.1, 0.3, 0.5.
We analyze the behavior of the DSES on problem g07. In
comparison to the method DP a significant improvement of

1 Start
2 t:=0;
3 Initialize parental population P
4 Repeat
5 For k=1 To λ Do
6 z = 0;
7 Repeat
8 Choose ρ parents from P
9 recombination step sizes;
10 recombination objective variables;
11 mutation step sizes;
12 If (z mod mod) == 0 Then
13 ε = ε· melt;
14 For j=1 To N Do

15 If σk
j < ε Then

16 σk
j = ε

17 Next
18 mutation objective variables;
19 fitness of ak := f(x);
20 z:=z+1;
21 Until ak feasible
22 Add ak to offspring population O;
23 Next
24 Select parental population P from O;
25 t := t + 1;
26 Until termination condition
27 End

Figure 4: Pseudocode of the DSES.

accuracy can be observed. The slower ε is decreased the
more the quality of the results can be improved. But we
have to admit that the number of fitness function calls ffc
and in particular the number of constrained function calls
cfc explode. Hence, we can only recommend the DSES on
such problems when ffc and cfc are not too expensive. The
experiments show that DP completely fails concerning the
quality of the results.

4. EXPERIMENTAL ANALYSIS
We summarize the results of our experimental analysis

on the various constrained problems. Note that we trans-
late equality constraints hj(x) = 0, j = 1, ..., n2 into in-
equality constraints gi(x) ≤ ε, i = 1, ..., n2 and gj(x) ≤
−ε, j = 1, ..., n2 and ε = 0.0001. For all ES we used
nsigma = N step sizes (N ist the dimension of the problem)
and in most cases the mutation parameter recommendation

τ0 = (
√

2N)−1 and τ = (
√

2
√

N)−1. We chose the initial

step sizes σi = |x(0)−x∗|
N

with 1 ≤ i ≤ N , starting point

x(0) and optimum x∗. As termination condition we chose
premature mutation strength reduction, i.e. the ES is ter-
minated if the difference between the best individuals of two
successive generations is smaller than ι = 10−12. All DP and
DSES tests are based on a (15/2,100)-ES with intermediary
recombination. Population sizes of the TSES are marked
out explicitly.

The measured parameters are the usual ones concerning
the fitness of the best individual in the last generation of
the various runs (best, avg, worst and dev). Parameter cv
measures the constraint violation of this best individual. Pa-
rameter σ is the mean of the mutation strength in the last
generation and therefore and indicator for premature stag-
nation. Ffc counts the number of fitness function calls, cfc
the number of constraint function calls. For the DSES tries
counts the average number of tries the ES needs to produce
a feasible individual.
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DSES best avg worst dev cv σ ffc cfc tries
g01
[400; 0.5] −14.999999999889 −14.999999999128 −14.9999999908 1.781 · 10−9 0.0 2.062 · 10−10 93224 3174166 34.0

[400; 0.3] −14.999999999925 −14.999999998887 −14.9999999888 2.379 · 10−9 0.0 2.139 · 10−10 75484 2035043 26.9

[400; 0.1] −14.999999999953 −14.999999997637 −14.9999999550 8.908 · 10−9 0.0 3.712 · 10−10 55992 1136101 20.2
[100; 0.5] −14.999999999940 −14.919999999578 −12.9999999998 0.399 0.0 6.875 · 10−11 51764 548682 10.6

[100; 0.3] −14.999999999979 −14.818124750686 −12.4531187811 0.634 0.0 1.329 · 10−10 40372 312837 7.7

[100; 0.1] −14.999999999978 −14.753748891277 −12.8437223436 0.681 0.0 2.617 · 10−10 37716 260461 6.9
DP −14.999999999966 −14.173473498602 −11.5825566209 1.106 0.0 5.164 · 10−11 33067 110120 3.3
g07

[70; 0.7] 24.306237739205 24.306723093725 24.3081991031 4.574 · 10−4 0.0 3.828 · 10−9 1 655 956 11 159 837 6.7
[70; 0.5] 24.306330953891 24.307474634131 24.3103445834 9.562 · 10−4 0.0 9.199 · 10−10 936 436 6 287 404 6.7

[70; 0.3] 24.306433546473 24.309502933630 24.3276119592 0.004 0.0 1.792 · 10−9 577 736 3 850 091 6.6

[40; 0.7] 24.308209926624 24.335015185002 24.3771310990 0.019 0.0 6.385 · 10−11 68 436 401 509 5.8
[40; 0.5] 24.315814462518 24.357010892756 24.4785842220 0.039 0.0 8.378 · 10−11 47 996 263 890 5.5

[40; 0.3] 24.337966344507 24.400529764694 24.5778543888 0.055 0.0 2.158 · 10−10 37 084 189 393 5.1

DP 24.449127539670 26.337577676591 30.9348325535 1.472 0.0 1.208 · 10−11 30 835 87 884 2.8

Table 2: Above: Experimental analysis of a (15/2, 100)-DSES with intermediary recombination and an initial
step size of σi = 0.1 on problem g01. The DSES is able to approximate the optimum with arbitrary accuracy
while DP fails on g01. Below: A (15/2, 100)-DSES with intermediary recombination on problem g07. The
initial step size was chosen as σ = 10.93 for the DSES and σ = 0.1 We observe significant better results than
with DP and achieve the best results with the slowest ε-reduction. On the other hand the slow reduction
causes an explosion of constraint function calls.

4.1 The TSES on all functions
The upper part of table 3 shows the experimental results

of the TSES on all considered problems. The behavior of
the TSES on g01 has already been described. On problem
g04 a (8+8,15-85)-TSES failed, but the TSES with an off-
spring sex ratio of 13+87 and 10+90 found the optimum in
every run. Again, the improvement in comparison to DP is
significant. On problem g06, a highly constrained problem
with a ratio of only 0.0066% of feasible search space, all al-
gorithms, including DP were successful. The TSES could
improve the results on problem g08 in comparison to DP,
but demands a higher number of ffc/cfc. The results of the
TSES on g09 were not satisfying, but slightly better than
DP. Again, this improvement has to be paid with approx-
imately 5 to 10 times higher number of ffc/cfc. On prob-
lem g11 various experiments around the offspring sex ratio
(8+8,13+87) like recommended by Kramer and Schwefel [15]
could not achieve promising results. Tests around the ratio
(8+8,10+200) were more successful. All experiments with
the (8+8,10+200)-TSES and κ = 200 or κ = 300 showed
sufficient results. A higher κ causes a loss of efficiency. We
have to emphasize that the standard DP method shows com-
parable results concerning the quality of the results. But the
number of constraint function calls (cfc) is about ten times
higher than the cfc values of the TSES. So, we can observe
a efficiency advantage of the TSES.

The experiments on problem g12 have already been com-
mented in section 2.2. On problem g16 the (8+8,13+87)-
TSES is not more successful, but less efficient than DP
with an average accuracy of 3 decimal places. But the
(40+40,50+400)-TSES reaches the optimum with arbitrary
accuracy demanding 3-4 times more ffc/cfc. The (8+8,10+90)-
TSES is the best compromise between quality of the results
and efficiency on problem g24. But we recommend to use
DP as it demands much less ffc/cfc.

While DP completely fails on Schwefel’s constrained prob-
lem 2.40 the (8+8,13+87)-TSES reaches the optimum in ev-
ery run. The same behavior can be observed on Schwefel’s
problem 2.41. In contrast to these problems the TSES is not

able to approximate the optimum of problem TR2 arbitrar-
ily. But at least a significant improvement in comparison to
the results with DP can be observed.

4.2 The DSES on all functions
The experimental results of the DSES on all considered

problems are summarized in table 3, lower part. The behav-
ior of various [
; ϑ]-settings on problem g01 have already
been described in section 3.1. On g02 the experiments show
that also a slow reduction of ε can only improve the quality
of the results slightly, but has to be paid with a high number
of fitness and constraint functions calls. Obviously, we can-
not recommend to use the DSES on problem g02, because
no significant improvement can be achieved although we pay
with inefficiency.

On problem g06 all tested DSES variants achieved promis-
ing results. The standard DP has to be recommended as
the cfc values are lower in comparison. The behavior of the
DSES on g07 has already been described. Like on g06 the
DSES and DP are able to approximate the optimum of g08
very well. But here, the method DP exhibits no significant
performance advantages. Only the slowest decrease of ε on
problem g09 enables the DSES to approximate the optimum
better than DP and faster DSES variants. Again, this im-
provement has to be paid with higher ffc and cfc. As already
stated, the method DP performs well on problem g24. The
DSES performs similarly on this problem.

On Schwefel’s problem 2.40 and 2.41 the DSES is able to
approximate the optimum with most of the tested settings.
DP fails on these problems and suffers from premature mu-
tation strength reduction. Problem TR2 is hard to tackle.
But the results of a [15; 0.5]-DSES on TR2 are slightly bet-
ter than standard DP. As expected the number of ffc and
cfc explode, i.e. they are 100 times higher.

5. CONCLUSION AND FUTURE WORK
Constraint handling for evolutionary computation offers a

huge potential for heuristics. We analyzed the two heuristics
TSES and DSES experimentally on known constrained prob-
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pb TSES κ best avg worst dev
TSES
TR2 (8+8,13+87) 300 2.0000000000 2.0000000095 2.0000000633 1.19 · 10−8

2.40 (8+8,13+87) 50 −5000.0000000000 −4999.9999999999 −4999.9999999997 3.31 · 10−7

2.41 (8+8,13+87) 50 −17857.1428571482 −17857.1428571426 −17857.1428571374 8.56 · 10−10

g01 (40+40,50+400) 50 −14.9999999999 −14.9999999999 −14.9999999999 5.36 · 10−15

g02 (40+40,50+400) 50 −0.7926079090 −0.6583469345 −0.4352731883 0.009732
g04 (8+8,13+87) 50 −30665.5386717833 −30665.5386717833 −30665.5386717832 1.78 · 10−11

g06 (8+8,10+90) 50 −6961.8138755801 −6961.8138755801 −6961.8138755801 8.69 · 10−13

g07 (40+40,50+400 50 24.3171014481 24.4613633236 24.8935876076 0.0101172
g08 (8+8,15+85) 50 −0.0958250414 −0.0958250414 −0.0958250414 5.64 · 10−18

g09 (8+8,13+87) 50 680.6303038768 680.6345393750 680.6530448662 4.65 · 10−4

g11 (8+8,10+200) 300 0.7499900000 0.74999001691 0.7499903953 4.43 · 10−9

g12 (8+8,10+90) 50 −1.0000000000 −0.9999999999 −0.9999999999 7.46 · 10−16

g16 (40+40,50+400) 50 −1.9051552585 −1.9051552585 −1.9051552585 1.65 · 10−15

g24 (8+8,10+90) 50 −5.5080132715 −5.5080132715 −5.5080132715 4.36 · 10−13

DSES
TR2 [15; 0.3] 2.0000000008 2.0000042774 2.0000539455 8.45 · 10−6
2.40 [100; 0.7] −4999.9999999999 −4999.9999999995 −4999.9999999960 7.99 · 10−10

2.41 [75; 0.7] −17857.1428571428 −17857.1428571425 −17857.1428571404 4.71 · 10−10

g01 [400; 0.5] −14.9999999998 −14.9999999991 −14.9999999908 1.78 · 10−9

g02 [15; 0.3] −0.8036187549 −0.7658619287 −0.6999587065 0.029
g04 [25; 0.7] −30665.5386717833 −30665.5386717831 −30665.5386717826 1.60 · 10−10

g06 [10; 0.3] −6961.8138755801 −6961.8138755801 −6961.8138755800 1.90 · 10−11

g07 [70; 0.7] 24.3062377392 24.3067230937 24.3081991031 4.57 · 10−4

g08 [2; 0.9] −0.0958250414 −0.0958250414 −0.0958250414 9.06 · 10−17

g09 [18; 0.7] 680.6301304921 680.6308434198 680.6322597787 6.59 · 10−4

g11 [10; 0.5] 0.7499000007 0.7499008144 0.7499035419 1.02 · 10−6

g12 [200; 0.5] −0.9999999999 −0.9999999999 −0.9999999999 2.05 · 10−12

g16 [100; 0.5] −1.9051552585 −1.9051552584 −1.9051552580 9.12 · 10−11

g24 [15; 0.3] −5.5080132715 −5.5080132715 −5.5080132714 2.36 · 10−11

Table 3: Comparison of the experimental results of the TSES (upper part) and the DSES (lower part) on
the considered problems. The best, the average, and the worst fitness as well as the standard deviation of
the best solution of the last generations of 50 runs are shown.

lems from literature. Our experiments revealed the short-
comings of the standard method DP. We showed that the
introduction of a least mutation strength ε together with
an adaptation technique to reduce ε offers the possibility to
approximate the optimum in many cases. 
 and ϑ define
the speed of the ε-reduction process. Before applying the
DSES it has to be considered whether it is worth to invest
the higher number of fitness and constraint function calls.

The TSES is inspired by the concepts of sex and pair-
ing. The experiments revealed that the TSES is able to
approximate the optimum in most of the cases. Sometimes
a performance win in comparison to DP or the DSES was
observed. An advantage of the TSES is that no infeasible
starting points have to be available at the beginning of the
search.

The main disadvantage of the proposed methods is the
dependence on new parameters. But this argument can be
weakened. Population sizes have to be defined for almost ev-
ery EA. The success of the TSES depends on the sex ratios,
but here we offer examples for successful population ratios.
The DSES only depends on two new parameters, 
 and ϑ,
which can be treated as only one parameter: speed. In the
future we will focus our attention on a further experimen-
tal and also theoretical analysis of the proposed methods.
We will also try to answer the question how we can identify
features of the constrained problems which determine the
applicability of the proposed methods.

APPENDIX

A. PROBLEMS

Tangent problem.
Minimize

F (x) =
n∑

i=1

x2
i (n-dim. sphere model) (8)

Constraints

g(x) =

n∑
i=1

xi + t > 0, t ∈ IR (tangent) (9)

For n=k and t=k the minimum is

x∗ = (1, ..., 1)T , mit F (x∗) = k. (10)

Problem 2.40.
Schwefel’s problem 2.40 [25]

Minimize:

f(x) = −
5∑

i=1

xi

Constraints:

gj(x) =

⎧⎨
⎩

xj ≥ 0, for j = 1, ..., 5

−
5∑

i=1

(9 + i)xi + 50000 ≥ 0, for j = 6
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Minimum:

x∗ = (5000, 0, 0, 0, 0)T

f(x∗) = −5000

g2 to g6 active.

Problem 2.41.
Schwefel’s problem 2.41 [25]

Minimize:

F (�x) = −
5∑

i=1

(ixi)

Constraints like problem 2.40.
Minimum:

x∗ = (0, 0, 0, 0,
50000

14
)T

f(x∗) = −250000

14

gj active for j = 1, 2, 3, 4, 6.

problems g**.
For the definition of the constrained g**-problems, see [17]

for example.
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editors, Proceedings of the Fifth Annual Conference on
Evolutionary Programming (EP’96), pages 289–294,
San Diego, California, Februar 1996. The MIT Press.

[11] A. Homaifar, S. H. Y. Lai, and X. Qi. Constrained
Optimization via Genetic Algorithms. Simulation,
62(4):242–254, 1994.
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