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ABSTRACT
This paper presents a hybrid evolutionary programming al-
gorithm to solve the spread spectrum radar polyphase code
design problem. The proposed algorithm uses an Evolution-
ary Programming (EP) approach as global search heuristic.
This EP is hybridized with a gradient-based local search pro-
cedure which includes a dynamic step adaptation procedure
to perform accurate and efficient local search for better solu-
tions. Numerical examples demonstrate that the algorithm
outperforms existing approaches for this problem.

Categories and Subject Descriptors
J.6 [Computer Applications]: Computer-aided Engineer-
ing.

General Terms
Algorithms, Design.

Keywords
Polyphase codes, code design, evolutionary programming,
hybrid algorithms

1. INTRODUCTION
Range resolution of radar systems can be significantly im-

proved by using short pulses. Unfortunately, utilizing short

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

pulses decreases the average transmitted power, which can
affect the radar’s normal modes of operation. Since the av-
erage transmitted power is directly linked to the receiver
SNR, it is often desirable to increase the pulse width (i.e.,
increase the average transmitted power) while simultane-
ously maintaining adequate range resolution. This can be
made possible by using pulse compression techniques. Pulse
compression allows us to achieve the average transmitted
power of a relatively long pulse, while obtaining the range
resolution corresponding to a short pulse. Thus, the ma-
jority of modern radars systems generally incorporate pulse
compression waveforms.

In radar systems with pulse compression, the choice of the
appropriate waveform is a key point. There are several pulse
compression methods, like Barker codes, chirp-type modula-
tion or polyphase codes [1]. Among these methods for radar
pulse modulation, the polyphase codes offer some conve-
nience in comparison to analog techniques, such as chirp-
type modulations [2]: polyphase codes produce lower side-
lobes in the compressed signal, and easier digital processing
techniques implementation. Figure 1 shows a possible im-
plementation of polyphase codes in a radar system.

In [2], Dukic and Dobrosavljevic introduced a new method
for polyphase pulse compression code design, based on the
properties of the aperiodic autocorrelation function, and
considering coherent radar pulse processing in the receiver.
It can be modelled as a min-max nonlinear optimization
problem, in the following way:

min
x∈X

f(x) = max{ϕ1(x), · · · , ϕ2m(x)}, (1)

X = {(x1, · · · , xn) ∈ R
n|0 ≤ xj < 2π, j = 1, · · · , n}, (2)

where m = 2n − 1, and
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(4)

ϕm+i(x) = −ϕi(x), i = 1, . . . , m.

Note that the variables xk represent symmetrized phase
differences, and the objective of the problem is to minimize
the module of the biggest among the samples of the auto-
correlation function ϕ.
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Figure 1: Configuration of a radar system using the
proposed polyphase codes. Abbreviations PRP and
BPF stand for Pulse Repetition Period and Band-
Pass Filter, respectively. S stands for a switch which
is turned from position 1 to 2 with PRP.

The problem associated with the design of polyphase codes
in radar systems using this model is usually called Spread
Spectrum Radar Polyphase code design problem (SSRP),
and has been tackled using different approaches in the liter-
ature. In [6] a Tabu search approach has been proposed to
solve the problem. In [3] several heuristic algorithms to the
SSRP are proposed and compared, including a multi-level
tabu search heuristic and a variable neighborhood algorithm
among them. In [8] a genetic algorithm is able to improve
the results obtained by the Tabu search in several SSRP
instances.

In this paper we present a novel approach to the SSRP,
based on a memetic algorithm [10]. Our memetic approach
is based on a Fast Evolutionary Programming approach [7],
hybridized with a Gradient-guided local search procedure to
improve the quality of the individuals in the population. We
implement a gradient-guided local algorithm with controlled
step size. This technique is easy to implement and does not

increase much the computational cost of the algorithm. Our
approach is compared with the results obtained by previous
approaches to the SSRP: a tabu search, a variable neighbor-
hood search and a genetic algorithm are compared with our
hybrid EP approach. We show that our proposal obtains
the best solutions for the SSRP instances compared.

The rest of the paper is structured as follows: next section
describes the hybrid evolutionary programming approach
proposed in this paper, including gradient-based local search
procedure. Section 3 presents several simulations in differ-
ent instances to show the performance of our algorithm.
Comparisons with the results obtained by a tabu search
approach, a variable neighborhood search and an existing
genetic algorithm are provided. Section 4 gives some final
conclusions for this paper.

2. A HYBRID EVOLUTIONARY
PROGRAMMING APPROACH

Evolutionary Programming (EP) [7], is a population-based
meta-heuristic algorithm which has been successfully ap-
plied to many numerical and combinatorial optimization
problems. Optimization using EP can be summarized to
have two major steps: first, mutation of solutions in the
current population, and second, selection of the next gener-
ation population from the mutated and the current solutions
set. The algorithm starts with a randomly generated initial
population of strings, where each string is formed by a pair
of real encoded vectors. The first part of the string is a
possible value of the problem solution vector of phase dif-
ferences x, and the second part of the encoding is formed
by the standard deviations for the mutations which will be
applied following in the algorithm. These standard devia-
tions are self-adaptive parameters in the EP algorithm [7].
The population is then evaluated, assigning a fitness score to
each individual. This fitness score is based on the objective
function of the SSRP, given by Equation (1). Each parent
creates then a single offspring by means of applying a muta-
tion procedure. Several mutations have been used, with dif-
ferent properties, depending on the problem tackled, among
them, Gaussian mutations and Cauchy-type mutations have
been applied with success in continuous optimization prob-
lems [7]. The Classical Evolutionary Programming (CEP)
can be summarized with the following steps.

1. Generate an initial population of μ individuals (solu-
tions). Set k = 1. Each individual is taken as a pair
of real-valued vectors (xi, σi), ∀i ∈ {1, · · · , μ}, where
xi’s are objective variables (e.g., magnitudes of the
phase differences for the SSRP), and σi’s are standard
deviations for Gaussian mutations.

2. Evaluate the fitness value for each individual (xi, σi)
(using the defined objective function in Equation (1)).

3. Each parent (xi, σi), ∀i ∈ {1, · · · , μ} then creates a
single offspring (x′

i, σ′
i) as follows:

x′
i = xi + σi · N(0,1) (5)

σ′
i = σi · exp(τ ′ · N(0, 1) + τ · N(0,1)) (6)

where N(0, 1) denotes a normally distributed one di-
mensional random number with mean zero and stan-
dard deviation one, and N(0,1) is a vector containing
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random numbers of mean zero and standard deviation
one, generated anew for each value of i. The param-

eters τ and τ ′ are commonly set to (
√

2
√

n)−1 and

(
√

2n)−1, respectively [7].

4. If xi(j) ≥ 2π or xi(j) < 0 then xi(j) = xi mod 2π.

5. Calculate the fitness values associated with each off-
spring (x′

i,σ
′
i).

6. Conduct pairwise comparison over the union of par-
ents and offspring: For each individual, p opponents
are chosen uniformly at random from all the parents
and offspring. For each comparison, if the individ-
ual’s fitness is better than the opponent’s, it receives
a “win”.

7. Select the μ individuals out of the union of parents and
offspring that have the most wins to be parents of the
next generation.

8. Stop if the halting criterion is satisfied, and if not, set
k = k + 1 and go to Step 3.

The Fast Evolutionary Programming (FEP) is described
and compared with the CEP in [7]. The FEP is similar to
the CEP algorithm, but it performs a mutation following
a Cauchy probability density function, instead of a Gaus-
sian based mutation. The one dimensional Cauchy density
function centered at the origin is defined by

ft(x) =
1

π

t

t2 + x2
(7)

where t > 0 is a scale parameter. See [7] for further in-
formation about this topic. Using this probability density
function, the FEP algorithm substitutes step 5 of the CEP
by the following:

x′
i = xi + σiδ (8)

where δ is a Cauchy random variable vector with the scale
parameter set to t = 1.

In order to perform a more accurate search for the current
vector of phase differences x, we incorporate a local search
procedure to the EP algorithm, to form a hybrid evolution-
ary programming approach [5].

2.1 Gradient-guided local search procedure
For each phase difference vector x in the population, the

gradient-guided local search works in the following way:

1. Set a maximum number of iterations max ite, and set
a counter k = 1, and x̂ = x.

2. Calculate the value of the objective function f(x̂) =
max{ϕ1(x̂), · · · , ϕ2m(x̂)}.

3. Calculate the gradient of f(x̂), defined as

φ(x̂) =
∇f(x̂)

‖∇f(x̂)‖ (9)

4. Set an initial step size ε.

5. Modify vector x̂, ε units backwards the direction of
φ(x̂):

x̂ = x̂ − ε · φ(x̂), (10)

and calculate then f(x̂) = max{ϕ1(x̂), · · · , ϕ2m(x̂)}.
6. The value of the parameter ε is dynamically adapted,

in such a way that if the value of function f(x̂) is
improved five times in a row, then the parameter ε is
increased to 1.5ε. On the other hand, if the value of
function f(x̂) is not improved in any of three times in
a row, the parameter is decreased to ε

2
.

7. If k < max ite: k = k +1, go to 2. Otherwise: f(x) =
f(x̂), stop.

The gradient-guided local search with dynamic step adap-
tation performs an accurate minimization in the neighbor-
hood of the initial point x. The fitness associated with the
final point reached (x̂) is assigned to the original individual
x in the EP algorithm substituting its initial value.

2.2 Mixing the EP and the gradient-guided
local procedure

The gradient-guided local search procedure is applied in
the EP after the mutation operator, as a previous step to the
selection mechanism. The complete hybrid EP algorithm
takes the form given in Section 2, including the following
points:

4. · · ·
5. Calculate the fitness values associated with each off-

spring (x′
i,σ

′
i).

6. Launch the gradient-guided local search procedure, with
starting point the individuals of the Evolutionary Pro-
gramming x = x′

i.

7. Replace the fitness value of the population with the
fitness function value of the individuals after the ap-
plication of the gradient-guided local search procedure.

8. Conduct pairwise comparison over the union of par-
ents and offspring: For each individual, p opponents
are chosen uniformly at random from all the parents
and offspring. For each comparison, if the individ-
ual’s fitness is better than the opponent’s, it receives
a “win”.

9. · · ·

Note that we have described our hybrid EP algorithm
using the CEP algorithm, however, we have implemented
an improved FEP (IFEP) [7], where the Cauchy pdf given
by Equation (7) is also used to perform the mutation of
the EP in our algorithm, and then the best result obtained
between the Gaussian mutation and the Cauchy mutation
is selected to complete the process.

3. EXPERIMENTAL PART
The performance of our algorithm has been evaluated in

several SSRP instances, with different values of the param-
eter n. We compare the results obtained by our hybrid
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Figure 2: Example of the gradient-guided proce-
dure’s performance; (a) 3D view; (b) View in a map
of equal height lines.

EP algorithm with the performance of several algorithms:
a Tabu Search approach [3], a variable neighborhood search
approach [3], and a genetic algorithm described in [8]. All
the algorithms have been implemented for a precision of
N = 32 bits. First we describe the main characteristics
of these algorithms and then we show the results obtained
with the hybrid EP and the comparison approaches.

3.1 Implemented algorithms for comparison

3.1.1 Tabu search
Tabu search is a metaheuristic that guides the local explo-

ration of a given search space by means of a ”tabu list”, or
forbidden moves to previous low-quality solutions, to avoid
local optimum solutions [11], [12], [13]. A search begins with
a feasible solution usually produced with another heuristic.
For each feasible solution, a class of neighbor solutions is
generated by a move or a perturbation. A move is gen-
erally obtained by changing some of the attributes of the
current solution. The aim of moves is to search for better
solutions. In order to prevent the algorithm from determin-
istically cycle among solutions already visited, one or more
of the attributes of the current solution are kept in the tabu
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Figure 3: Example of the gradient-guided proce-
dure’s performance starting from a different initial
point; (a) 3D view; (b) View in a map of equal height
lines.

list as forbidden moves. The number of moves in the list is
referred to as the tabu length. The exclusion period that a
move remains in tabu is called the tabu tenure of it. The
key to TS is to force a problem-specific local search heuris-
tic to accept ”uphill moves” to escape local optimality and
sometimes to jump to a totally new region for carrying on
searching.

When a better, not forbidden, solution is found, the cur-
rent solution is replaced and the search continues from it.
If all moves are worse than the current solution or the bet-
ter ones are forbidden, the best among those that are not
forbidden is selected. In this way, the algorithm is able to
accept a worse solution to avoid being trapped in local op-
tima. The best solution that has been found so far in the
search is labelled as “best” to avoid lost. If a move is better
than the “best”, it is selected as a new “best”. However,
if it is forbidden, the aspiration criterion enables the tabu
status to be overridden, and thus a new “best” is established
too. This process is repeated for a pre-specified number of
iterations then the ”best” visited so far is designated as the
optimal solution to the problem.

A Tabu search approach mixed with a local search algo-
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rithm has been successfully proposed for the SSRP in [6]
and [3].

3.1.2 Variable neighborhood search
Variable Neighborhood Search (VSN) is a recently pro-

posed metaheuristic [14], [15] for solving combinatorial op-
timization problems. It is based on the use of more than
a neighborhood structure (tabu search uses only one, for
example), and to proceed to a systematic change of them
within a local search. The algorithm retains the best so-
lution found so far, until another better solution is found.
Neighborhoods are usually ranked, in such a way that in-
tensification of the search around the current solution is fol-
lowed naturally by diversification. Results on the applica-
tion of Variable neighborhood search to the SSRP can be
found in [3].

3.1.3 Genetic algorithm
Genetic Algorithms (GAs) have been widely used as global

search heuristics in hybrid algorithms [9], [10]. In our case,
the standard GA is used, which applies the following basic
operators:

• Selection, where the individuals of a new population
are selected from the old one. In the standard imple-
mentation of the Selection operator, each individual
has a probability of surviving for the next generation
proportional to its associated objective function value
(roulette wheel).

• Crossover, where new individuals are searched starting
from couples of individuals in the population. Once
the couples are randomly selected, the individuals have
the possibility of swapping parts of themselves with its
couple, the probability of this happens is usually called
crossover probability, Pc.

• Mutation, where new individuals are searched by ran-
domly changing bits of current individuals with a low
probability Pm (probability of mutation).

A genetic algorithm has been applied to the SSRP in [8].

3.2 Results
Before presenting the results obtained by the compared

algorithms, we show two examples of how the guided-local
search procedure used in our hybrid EP works, for the case
of n = 2. Figures 2 and 3 show the two examples of the
procedure performance, for two different values of the start-
ing point x (note that the final local solution found by the
gradient-guided procedure completely depends on the initial
starting point x). In both cases (Figures 2 (b) and 3 (b) it
can be seen that the moves in x follow the direction of a line
orthogonal to the equal height lines of the function f(x).
Figures 2 (a) and 3 (a) display the same cases in a 3D view.
Figure 4 shows how is the evolution of the objective function
value (n = 2) within the 200 iterations of the local search.
Figure 4 (a) shows this evolution for the case of Figure 2,
whereas Figure 4 (b) shows it for the case of Figure 3. It
is easy to appreciate that when a flat region is reached, the
objective function values quickly vary in a narrow band, and
finally, the best local minimum is reached in both cases.

Table 1 presents the values of the objective function, cal-
culated by means of Equation (1), obtained by the four com-

Table 1: Results obtained with the different meth-
ods compared in the SSRP instances tackled, for dif-
ferent values of vector of phase differences’ dimen-
sion (n). Symbol * stands for the optimum known
values of the objective function, obtained by means
of an Implicit Enumeration Technique [7], in prob-
lems n = 1 to n = 5. Symbol † stands for the best
over all values found by the algorithms.

n TS VNS GA HEP

2 0.3852∗† 0.3852∗† 0.3852†∗ 0.3852∗†

3 0.2611 0.2610∗† 0.2610∗† 0.2610∗†

4 0.0573 0.0562 0.0560∗† 0.0560∗†

5 0.3404 0.3375 0.3374 0.3371∗†

6 0.4574 0.4562 0.4645 0.4556†

7 0.5114 0.4972 0.5232 0.4963†

8 0.4130 0.3871 0.4328 0.3854†

9 0.3548 0.3290 0.3386 0.3208†

10 0.4568 0.4105 0.4709 0.4067†

Table 2: Results obtained with the hybrid evolu-
tionary programming proposed.

n best worst mean std. dev.
2 0.3852 0.3852 0.3852 0
3 0.2610 0.2610 0.2610 0
4 0.0560 0.0560 0.0560 0
5 0.3371 0.3371 0.3371 0
6 0.4556 0.4556 0.4556 0
7 0.4963 0.4963 0.4963 10−6

8 0.3854 0.3854 0.3854 0
9 0.3208 0.5632 0.3387 0.0578
10 0.4067 0.5405 0.4346 0.0291

pared algorithms. The hybrid EP (HEP in the table) algo-
rithm produces better results than the compared approaches
in all considered cases (the best values obtained by compar-
ing all the considered algorithms have been marked with a
† symbol). Optimal known values of the objective function
are obtained with the hybrid EP for problems n = 2, 3, 4
and 5. Table 2 shows a summarize of the results obtained
with our hybrid approach, including the best and worst ob-
jective function values found, and the mean and standard
deviation of the 20 experiments run for each value of n.

The effect of including the local search procedure into the
EP can be analyzed by comparing the results of Table 2
with the results obtained using the EP algorithm without
local search. Table 3 shows the results obtained by the EP
algorithm without gradient local search applied. The results
reported in Table 2 are more accurate than the results in
Table 3, as expected. Finally, the best phase differences
obtained for each instance are provided in Table 4.

4. CONCLUSIONS
This paper proposes a hybrid evolutionary programming

approach to the spread spectrum radar polyphase codes de-
sign problem (SSRP). The algorithm is formed by a fast evo-
lutionary programming hybridized with a gradient-guided
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Figure 4: Evolution of the objective function value
when the local search is applied; (a) Local search
starting from point 1 (case of Figure 2); (b) Local
search starting from point 2 (case of Figure 3).

Table 3: Results obtained with the evolutionary pro-
gramming without local search.

n best worst mean std. dev.
2 0.3852 0.3852 0.3852 0
3 0.2610 0.2610 0.2610 0
4 0.0560 0.0562 0.0560 6 · 10−5

5 0.3371 0.4798 0.3782 0.0493
6 0.4557 0.6476 0.5078 0.0668
7 0.4969 0.8165 0.6079 0.1053
8 0.4284 0.9097 0.6428 0.1270
9 0.3682 1.0592 0.7878 0.1521
10 0.6276 1.0725 0.8202 0.1269

local search procedure to improve the search space explo-
ration. Simulations in several SSRP instances have shown
that our approach improves the performance of previous ap-
proaches to this problem.
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