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ABSTRACT
A new mutation concept is proposed to generalize local selection
based Differential Evolution algorithm to work in general multi-
modal problems. Three variations of the proposed method are com-
pared with classic Differential Evolution algorithm using a set of
five well known test functions and their variants. The general idea
of the new mutation operation is to divide the mutation into two
parts: the local and global mutation. The global mutation works as
a migration operator allowing the algorithm perform global search
efficiently, while the local mutation improves the efficiency of local
search.

The results show that the concept of global mutation is able to
generalize the good performance of local selection based Differ-
ential Evolution from convex uni-modal functions to general non-
convex and multi-modal problems. Among the tested functions, the
new method was able to outperform the classic Differential Evo-
lution in all but one. A limited analysis of the effects of control
parameters to the performance of the algorithm is also done.

Categories and Subject Descriptors
G.1.6 [Numerical analysis]: Optimization, Global optimization

General Terms
Algorithms

Keywords
Differential Evolution, Selection, Mutation

1. INTRODUCTION
In [7], a comparison between the original Differential Evolution

algorithm, which uses global selection (DEGS) and a new, fun-
damentally different Differential Evolution algorithm using local
selection (DELS), was performed. The results suggested DELS
to clearly outperform DEGS in convex uni-modal functions as the
dimensionality of the problem is increased. A strong dependence
between the population size (NP) and the mutation scale factor (F)
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in DEGS was observed, which prevents the effective use of small
F in conjunction with small NP. The results showed that values
of F smaller than 0.5 will not increase the algorithms performance
because of the required increase in NP to prevent premature con-
vergence. DELS has no such dependence and allows the effective
use of smaller F values which are effective in high dimensional
problems. However, the results obtained for Rosenbrock’s function
verified that the simple DELS approach works only for convex uni-
modal functions and an additional migration mechanism is needed
to generalize DELS for more complicated problems.

In this paper a new mutation concept is introduced to expand
the DELS algorithm to work in multi-modal problems. An either-
or concept [8, p.117] is used to divide the mutation operation into
two parts: the local- and global mutation. Three variations of the
new mutation operation used with DELS, are compared with DEGS
using five well known test problems and their variants.

2. DIFFERENTIAL EVOLUTION
The Differential Evolution (DE) algorithm [14, 8, 4, 6] was in-

troduced by Storn and Price in 1995 [13]. The design principles of
DE were simplicity, efficiency, and use of floating-point encoding
instead of binary numbers.

2.1 The Classic DE
In this paper the term classic DE refers to the DE/rand/1/bin

scheme. DE starts from a random initial population. In each gen-
eration g, DE goes through each D dimensional target vector �xi,g
of the population and creates a corresponding trial vector �ui,g using
mutation (eq. 1) and crossover (eq. 2) operations. The difference
between two randomly chosen population vectors

(
�xr1,g −�xr2,g

)
de-

fines the magnitude and direction of the mutation. This makes the
mutation operation self adaptive because the average mutation step
length decreases as the population converges.

v j,i,g = x j,r0,g +F ·(x j,r1,g −x j,r2,g
)

(1)

u j,i,g =
{

v j,i,g if rand[0,1] ≤CR∨ j = jrand
x j,i,g otherwise

(2)

The control parameters for classic DE are crossover rate CR, mu-
tation factor F and the population size NP. F ∈]0,1+] is a scal-
ing factor for the mutation step length and affects the population’s
convergence speed. CR ∈ [0,1], controls the crossover by determin-
ing the average number of parameters the trial vector �ui,g inherits
from the mutated vector�vi,g. An important aspect to consider when
using crossover is that the smaller the used value of CR, the less
rotationally invariant the search becomes [8]. When the crossover
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is disabled (CR = 1), the search becomes rotationally invariant. To
prevent crossover from duplicating the objective vector,�ui,g always
inherits the parameter with randomly chosen index jrand from�vi,g.
Indices r1, r2, and r0 are mutually different and drawn from the set
of population indices. rand[0,1] is a random number drawn anew
for each round from uniform distribution in the range [0,1].

At the end of each generation the selection (eq. 3) operation is
performed comparing each trial vector �ui,g to the corresponding
target vector �xi,g. If the trial has equal or lower cost, it replaces
the target vector.

�xi,g+1 =
{

�ui,g if f (�ui,g) ≤ f (�xi,g)
�xi,g otherwise

(3)

The classic DE is described in algorithm 1.

Algorithm 1 DE/rand/1/bin
1: Initialize population, g = 1
2: while termination criterion not met do
3: for i = 1; i ≤ NP; i = i+1 do
4: Randomly pick r0,r1,r2 ∈ {1,2, . . . ,NP} ,r0 �=r1 �=r2 �= i)
5: Randomly pick jrand ∈ {1,2, . . . ,D}
6: for j = 1; j ≤ D; j = j +1 do
7: Perform mutation using equation 1
8: Perform crossover using equation 2
9: end for

10: end for
11: for i = 1; i ≤ NP; i = i+1 do
12: Perform selection using equation 3
13: end for
14: g = g+1
15: end while

2.2 Global and Local Selection
The global selection in classic DE refers to the fact that the base

vector �xr0,g is different than the target vector �xi,g. This allows the
under performing population members to be replaced by variants
of the population’s better solutions.

In local selection the equation 1 is modified so that the target and
base vectors are the same (r0 = i). Now each population member
is always compared to it’s own mutant in the selection phase. In
effect local selection partitions the population into NP niches which
evolve in isolation.

The important difference between local and global selection is
that DELS is able to maintain the population diversity more ef-
ficiently compared to DEGS. Especially when F gets smaller in
DEGS, the takeover time for the best solutions to take over the pop-
ulation will decrease. DELS, on the other hand, behaves quite the
contrary: As the F decreases, the takeover time increases and ap-
proaches infinity as the F approaches zero. In practice this means
that DEGS requires increase in population size to compensate the
decreasing value for F to prevent premature convergence, which in
turn decreases the convergence speed. For more information, refer
to [7].

Experimental results for mutation only DE in [7] demonstrated
that DEGS is unable to take advantage of the values of F below
0.5 efficiently. On the other hand the optimal value of F for DELS
was perceived to scale roughly according to F = 1.3/

√
D in con-

vex uni-modal problems. The experiments confirmed that as the
dimensionality of the problems were increased the performance of
DEGS started to drop more rapidly compared to DELS. However,
the good results did not generalize in Rosenbrock’s function (9)

where DELS performed poorly compared to DEGS. It seems that
the isolated niches of DELS may form a problem in more compli-
cated problems. Especially in multi-modal problems, the algorithm
relies too much on the initial population, because good solutions
cannot migrate efficiently. It would be possible to use the tradi-
tional uniform crossover operation also with DELS, but it would
make the algorithm rotationally variant, which is not desirable. For
this reason a new migration mechanic is needed to generalize DELS
concept for multi-modal problems.

2.3 Modified Algorithm
The basic idea of the proposed algorithm is to divide the muta-

tion operation into two parts: the local- and global mutation using
either-or concept [8, p.117]. The local part is simply the normal
DELS mutation with optimized F for convex uni-modal problems
(F = 1.3/

√
D). This part is intended to import the algorithm a good

behavior in uni-modal problems and increases the efficiency of lo-
cal search in multi-modal cases. The local mutation is described by
equation 4.

�ui,g =�xi,g +1.3/
√

D ·(�xr1,g −�xr2,g
)

(4)

For the global scale, a method is needed to allow more efficient
migration of the solutions to new areas of the search space and es-
cape local optima. In this paper we propose three variants of global
mutation concept for this task. In all cases Gaussian probability
distribution function is used to provide variance for the mutation
factor, to increase the pool of potential trials, and avoiding the stag-
nation problem [5].

Because the scale of the mutation is now global, the expectation
for the mutation step length is always the unscaled length of the
differential to represent the actual scale of the population.

2.3.1 Dither
The simplest version of the global mutation uses the dither scheme

[8, p.80]. The mutation differential is multiplied with a random
number A, drawn anew for each mutation from Gaussian distribu-
tion, with expectation 1 and standard deviation σ . Dither random-
izes the length of the differential, but does not affect its direction:
the mutation can only reach points in a line along the differential
vector, not potentially anywhere in the search space. This means
that the process retains the rotation invariance of the mutation.

Equation 5 describes the dither version of the global mutation.

�ui,g =�xi,g +A ·(�xr1,g −�xr2,g
)

(5)

2.3.2 Jitter
In jitter scheme [8, p.80] the mutation differential is multiplied

component-wise with a D dimensional vector �B of random num-
bers, drawn anew for each mutation from Gaussian distribution,
with expectation 1 and standard deviation σ . The fundamental dif-
ference to jitter is that now each parameter of the differential vec-
tor is multiplied with a different number. In addition to scaling the
length, the jitter mutation also changes the direction of the differ-
ential making it possible for the mutation to potentially reach any
point of the search space with positive probability as long as the
differential is not zero.

Equation 6 describes the jitter version of the global mutation.

�ui,g =�xi,g +�B ·(�xr1,g −�xr2,g
)

(6)

The downside of jitter is that it is not a rotationally invariant
process, but tends to turn the differential towards coordinate axes
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which are closest the differential’s direction as can be seen from
figure 1. The problem becomes worse as larger values for σ are
used.

2.3.3 Additive Jitter
To achieve rotational invariance, an additive version of jitter (ajit-

ter) can be used. Now the jitter-like effect is acquired by adding a
vector �C of length D to the differential. The �C is constructed by
drawing random numbers from Gaussian distribution with expec-
tation 0 and using the length of the differential scaled by σ/

√
D as

the standard deviation as described in equation 7. New �C is con-
structed for each mutation operation.

Cj = N
(

0, |�xr1,g −�xr2 ,g| ·σ/
√

D
)

, j = 1,2, . . . ,D (7)

The scaling by the length of unit vector keeps the length of �C
independent of the dimension of the problem and σ represents the
proportional length of the differential. The scaling is necessary to
allow ajitter to remain self-adaptive to the changes of population.

Like jitter, ajitter mutation may potentially reach any point of the
search space with positive probability as long as the differential is
not zero. Ajitter is also rotationally invariant process because the
construction of �C is not biased in any way. Equation 8 describes
the additive jitter version of the global mutation.

�ui,g =�xi,g +
(
�xr1,g −�xr2,g

)
+�C (8)

Figure 1 displays the distributions acquired by generating 400
random points for three differently aligned differentials of equal
length using dither, jitter and ajitter versions of the global mutation
with σ = 0.1. As can be seen dither and ajitter always produce
similar distribution, but with jitter the shape of the distribution is
affected by the rotation of the differential.

2.3.4 The Algorithm
The proposed version of DELS is described in algorithm 2. Com-

pared to classic DE two new parameters are required, PX and σ .
On the other hand parameters F and CR from classic DE are not re-
quired anymore and the total amount of parameters does not change.
The frequency to use either local or global mutation is controlled
by PX such that with PX = 0 global mutation is never used and with
PX = 1 global mutation is always used. σ basically controls how
large role the differential has in the global mutation. with σ = 0
the differential solely defines the mutation and increasing the value
takes the global mutation towards a random search.

3. TEST FUNCTIONS
A five well known test problems and their variants were used

to test the suggested three variants of the DELS scheme and for
comparison similar tests were performed with classic DE. In the
following the problems are introduced briefly. More detailed in-
formation of the functions is available from http://www.it.
lut.fi/ip/evo/functions/functions.html

The first of the used functions, the Generalized Rosenbrock’s
function (9) is non-separable and uni-modal with D < 4. In [12]
Shang and Qiu prove that there exists one local minimum in ad-
dition to the local minimum with 4 ≤ D ≤ 30 and leave open the
possibility of additional local minima with higher dimensions. The
function is unconstrained, but we initialized the population in range
−30 ≤ xi ≤ 30 i = 1, . . . ,D.

f4(�x) =
D−1

∑
i=1

(
100(xi

2 −xi+1)2 +(1−xi)2
)

(9)
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Figure 1: Graphical presentation of 400 random points pro-
duced by dither (top row), jitter (middle row) and additive jit-
ter (bottom row) mutation operations with σ = 0.1. The points
i,r1 and r2 represent the end points of vectors �xi, �xr1 and �xr2

starting from point 0,0 and the r1 − r2 is the differential which
is added to i.

Second function was the generalized Rastrigin function (10), which
is highly multi-modal but separable function with optimum in the
middle. A randomly rotated (11) and randomly rotated, miss-scaled
(12) versions of the Rastrigin were also used to change the function
to non-separable form. Randomly rotated means that for each run
the rotation angle changes randomly. All versions of the Rastrigin
function are unconstrained. For initialization the range −5.12 ≤
xi ≤ 5.12 i = 1, . . . ,D was used. In addition comparable runs were
performed using −0.12 ≤ xi ≤ 10.12 i = 1, . . . ,D as the initializa-
tion range for the f5 to see if the placement of optimum has effect
on the performance of the algorithms.

f5(�x) = 10D+
D

∑
i=1

(
xi

2 −10cos(2πxi)
)

(10)

f5.1(�y) = 10D+
D

∑
i=1

(
yi

2 −10cos(2πyi)
)

(11)

Where �y = [�o1, . . . ,�oD]T�x and the matrix [�o1, . . . ,�oD]T imple-
ments an angle preserving linear transformation of�x [2].

f5.3(�y) = 10D+
D

∑
i=1

(
(10

i−1
D−1 yi

2 −10cos(2π ·10
i−1
D−1 yi)

)
(12)

The third used function was the normalized Schwefel function
(13). Schwefel function is a separable multi-modal function with
optimum close to the border. The search area was constrained in
range −512 ≤ xi ≤ 512, i = 1, . . . ,D. A non-separable version
was generated similarly as in Rastrigin by randomly rotating the
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Algorithm 2 Modified DELS Algorithm
1: Initialize population, g = 1
2: while termination criterion not met do
3: for i = 1; i ≤ NP; i = i+1 do
4: Randomly pick r1,r2 ∈ {1,2, . . . ,NP} ,r1 �= r2)
5: if rand[0,1] < PX then
6: Perform global mutation using equation 5, 6 or 8
7: else
8: Perform local mutation using equation 4
9: end if

10: end for
11: for i = 1; i ≤ NP; i = i+1 do
12: Perform selection using equation 3
13: end for
14: g = g+1
15: end while

function (14). Also the constraints were rotated to be in range
−512 ≤ yi ≤ 512, i = 1, . . . ,D in this version.

f6(�x) =
∑D

i=1−xi sin(
√|xi|)

D
(13)

f6.1(�y) =
∑D

i=1−yi sin(
√|yi|)

D
(14)

The fourth function was the Whitley’s function (15) which is a
unconstrained non-separable multi-modal function. The function
combines a very steep overall slope with highly multi-modal area
around the optimum, which is located at xi = 1, i = 1, . . . ,D. The
initialization range of −5.12 ≤ xi ≤ 5.12 i = 1, . . . ,D was used.

f8(�x) =
D

∑
i=1

D

∑
j=1

((
100(x2

i −x j)2 +(1−x j)2
)2

4000
−

cos
(
100(x2

i −x j)2 +(1−x j)2)+1
)

(15)

The last function was the normalized Rana’s function (16) which
is a very hard multi-modal non-separable function with optimum
close to the border. The search area was constrained in range −520≤
xi ≤ 520 i = 1, . . . ,D

f12(�x) =
( D

∑
i=1

(
xi sin

(√|x j +1−xi|
)

cos
(√|x j +1+xi|

)
+

(x j +1)cos
(√|x j +1−xi|

)
sin

(√|x j +1+xi|
)))

/D (16)

Where j = (i+1) mod D.

4. TEST SETUP
The algorithmic performance was measured by calculating the

average number of function evaluations (NFE) required to find the
optimum with accuracy ε from 100 independent runs. For f4 a
value of ε = 10−6 and for other functions a value of ε = 10−2

was used. A run was counted success if it found the optimum be-
fore reaching defined maximum number of function evaluations,
NFEmax. The NFEmax was scaled in proportion to D and NP such
that for f4 a value of NFEmax = 1000D ·NP, for f12 a value of
NFEmax = 20000D ·NP and for the other functions a value of
NFEmax = 3000D ·NP was used. The fraction of successful runs (s)

from the performed 100 independent runs was calculated and used
to estimate the probability of success. Using this a success perfor-
mance (Sp) was calculated by dividing the NFE by s. Because Sp
combines the speed of algorithm and the estimated percentage of
successes in one number, it is a useful performance measure. It
would consider two methods to be equally effective if other solves
the problem twice as often but uses also on average twice the time
as the other. However, when s is very small the value of Sp is not
very informative since a small change in s results in huge change in
Sp and the variance in the s becomes an issue. For this reason the
Sp values are calculated only for cases, when the problem is con-
sidered ’solved’. In this paper a value of s > 5/100 was required
to categorize the problem ’solved’. A term ’occasional success’ is
used to refer the runs for which s ≤ 5/100.

4.1 Dimensionality
Our goal was to measure how the algorithms perform with dif-

ferent problems as the dimensionality is increased. The function
f4 was sampled D = 2,6, . . . ,50, f12 was sampled D = 2,3, . . . ,5
and other problems were sampled D = 2,4, . . . ,20. However to save
computation time, the higher dimensional runs were not performed,
if the algorithm had already failed to solve a lower dimensional ver-
sion of the problem with all tested parameter combinations.

4.2 Used Control Parameter Setup
Because the test setup was very time consuming, not all possible

parameter combinations were tested. For classic DE the crossover
was disabled using always CR = 1 to achieve rotation invariance.
For F , values of 0.5,0.6 . . .1 were tested in all cases. The values
F < 0.5 were left out, because of the findings in [7], which suggest
that DEGS can not benefit from small values of F .

Based on earlier experience of DE (for example [10] and [3]),
the increase in population size decreases the speed of algorithm lin-
early after reaching a minimum size which is required to solve the
problem. Also the required population size is proportional to the
problem dimension. A value of NP = 9D was tested with all meth-
ods and functions because it was close the optimum NP value iden-
tified for Rosenbrock’s function ( f4) in [7]. Additionally for classic
DE a value of NP = 2.4D1.5, and for DELS based methods, a value
of NP = 3D were tested on all problems. These values are close to
the optimum NP values identified for convex uni-modal problems
for DEGS and DELS in [7] and can be considered the lower bound
for viable NP values for any harder problems. Because DEGS typ-
ically requires larger population sizes compared to DELS, due to
larger selection pressure, a value of NP = 20D was also tested with
classic DE in all other problems except the f4. Lastly with the f12
all methods were tested also with values NP = 20D and NP = 40D.

For the DELS based methods, values of σ = 0.1 and σ = 0.01
were tested for all problems. σ = 0 was also tested to make sure the
use of gaussian distribution based mutation really offers something
to the algorithm. Additionally a value of σ = 0.5 was occasionally
used, to get an impression how much larger σ values would per-
form and to make sure the used magnitude of σ is not too small
altogether. These tests were not used, however, when determining
the best Sp values, because a complete set of results were not gener-
ated using σ = 0.5. The selected values are somewhat based on the
author’s earlier experiences using jitter with DEGS [11], but can
not be considered to be optimal values, rather educated queses, and
more research is required in future to identify the optimal range for
the values of σ . Lastly, the PX value was scaled from 0.2,0.4, . . . ,1
for all DELS based methods and all problems. In addition a value
PX = 0 was tested to make sure that the global mutation part really
is needed and useful in tested problems.
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Figure 2: Best achieved Sp values for f4 (Rosenbrock)

5. RESULTS
Success performance was used as the main factor when deciding

how well the algorithms performed and no other figures have been
included into this paper due to lack of space. More comprehensive
set of figures, can be found from: http://www.it.lut.fi/
ip/evo/.

5.1 Rosenbrock
All tested algorithms were able solve the Rosenbrock’s function

regardless of the dimension. As can be seen from figure 2 all DELS
based methods performed almost similarly and were clearly faster
than DEGS. The relative difference between DELS and DEGS grows
larger as the dimension of the problem increases.

5.2 Rastrigin
The results for unrotated Rastrigin are presented in figures 3 and

4. Changing the initialization range of population from centered
to non-centered had no considerable effect on any of the methods.
DEGS was able to solve (attain s > 5) when D ≤ 8. For the DELS
methods, dither was able to solve the problem when D ≤ 10, ajitter
when D ≤ 14 and jitter with all tested dimensions. For the Sp,
DEGS was again the slowest while jitter was able to outperform
the dither and ajitter when D > 8.

The situation changes, when the Rastrigin function is rotated,
which makes the function non-separable. As can be seen from fig-
ures 5 and 6, miss-scaling did not have significant effect on the per-
formance of any of the algorithms. Also the rotation had negligible
effect on the performance of DEGS, dither and ajitter. However, the
results of jitter decrease notably and are now comparable to those
of ajitter.

5.3 Schwefel
Also in Schwefel’s function, DELS outperformed DEGS, as can

be seen from figures 7 and 8. DEGS was able to solve the prob-
lem when D ≤ 14 and the rotation again had only small effect on
the performance. Ajitter had problems with the higher dimensional
versions and was unable to solve (other than occasional successes)
the unrotated version with D = 20 and the rotated version with
D > 16. Dither and jitter were able to solve the problem with all
tested dimensions. DEGS was the slowest, when comparing Sp.
Again jitter outperformed the other DELS algorithms in the unro-
tated versions, but in the rotated version dither was the fastest.
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Figure 3: Best achieved Sp values for f5 (Rastrigin) with cen-
tered initialization

2 4 6 8 10 12 14 16 18 20
10

3

10
4

10
5

10
6

10
7

10
8

Best success performance

D

S
P

*

DELS/dither
DELS/jitter
DELS/ajitter
DEGS

Figure 4: Best achieved Sp values for f5 (Rastrigin) with non-
centered initialization
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Figure 5: Best achieved Sp values for f5.1 (Rotated Rastrigin)
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Figure 6: Best achieved Sp values for f5.3 (Rotated miss-scaled
Rastrigin)
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Figure 7: Best achieved Sp values for f6 (Schwefel)
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Figure 8: Best achieved Sp values for f6.1 (Rotated Schwefel)
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Figure 9: Best achieved Sp values for f8 (Whitley)
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Figure 10: Best achieved Sp values for f12 (Rana)

5.4 Whitley
Whitley’s function was the only one from the test set where

DEGS was able to outperform DELS. DEGS managed to solve
the problem when D ≤ 18 when all DELS methods only managed
to solve it when D ≤ 16 (Still all methods scored occasional suc-
cesses with all tested dimensions). When comparing the Sp values
from figure 9, DEGS was clearly faster than DELS regardless of the
dimension. The differences between performance of the different
DELS methods were rather small.

5.5 Rana
Rana’s function was clearly the hardest on the test setup. DEGS

was able to solve it only when D = 2,3 while all DELS methods
were able to solve it when D = 2,3,4. Dither was the only method
to get occasional successes when D = 5 In terms of Sp (figure 10),
DEGS was the slowest when D = 2 and shared the slowest perfor-
mance with ajitter when D = 3. Among the DELS methods ajitter
was the slowest and jitter the fastest.

5.6 Control Parameters
The value of PX = 0 (Global mutation disabled) performed very

poorly in all tested cases throughout the test set. In Rosenbrock
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all DELS methods behaved rather similarly and small values per-
formed best. Increasing the value up to 0.6 did not have a signifi-
cant effect in most cases, but using higher values started to decrease
the performance of the algorithms. In the other functions PX did
not have a clear optimum value. For dither, the optimum PX typ-
ically got smaller as the dimensionality of the problem increased.
For jitter and ajitter the trend was not as clear.

In most cases smaller values for σ increased the speed, but de-
creased the percentage of successful runs. In the Rosenbrock’s
function small σ values performed generally well and it was the
only tested function where the value of σ = 0 was able to compete
in performance for the larger values. In Rastrigin and Schwefel
value of σ = 0.01 performed well with small D, but with increasing
dimensionality, σ = 0.1 gained the upper hand (except for ajitter in
Schwefel) because of increased s. In Whitley’s function dither per-
formed well with σ = 0.1, but for jitter and ajitter the best value for
σ was more often 0.01 than 0.1.

The best performing population sizes for all DELS methods on
Rosenbrock were NP = 3D for all dimensions and for DEGS they
followed NP = 2.4D1.5 as was expected. For Rastrigin all DELS
methods performed best with NP = 9D, which was also the best
population size for DEGS when D ≤ 4. With increased dimension
DEGS required NP = 20D. In Schwefel all DELS methods per-
formed best with NP = 3D until D ≤ 8 and after that NP = 9D.
DEGS used the NP = 2.4D1.5 or NP = 9D when D ≤ 12 and NP =
20D with D = 14. For Whitley, the best population size for DEGS
was mostly NP = 9D, except for the NP = 2.4D1.5 with D = 6 and
NP = 20D with D = 18. DELS methods used NP = 3D for small
dimensions and NP = 9D for larger. Dither swapped at D = 6, jit-
ter at D = 8 and ajitter at D = 12. In Rana, DEGS performed best
with NP = 40D while DELS methods used NP = 3D for D = 2,
NP = 20D, for D = 3 (except jitter, which performed best with
NP = 9D) and NP = 40D with higher dimensions.

6. DISCUSSION
When comparing the results, DELS was able to outperform DEGS

in all but the Whitley’s function. It seems that the Whitley’s com-
bination of very steep overall slope and highly multi-modal area
around the optimum favor the greedier global selection.

In Rosenbrock’s function, all DELS versions performed almost
equally and were able to clearly outperform DEGS. This clearly
demonstrates the usefulness of the global mutation operation in
DELS, especially when the results are compared to the ones pre-
sented in [7] for the same function, where DELS without global
mutation was clearly slower in terms of Sp than DEGS and was
unable to solve the problem in higher dimensions.

It can be observed from the results of Rastrigin that none of the
tested algorithms were sensitive to the miss-scaling or moving the
optimum away from the center of the search space. Also the re-
sults for Rastrigin and Schwefel functions show that rotation had
only a small effect on the performance of DEGS, dither and ajitter,
which support the claim that these methods are rotationally invari-
ant. Jitter, on the other hand, performs clearly better in the unro-
tated cases, which confirms that it exploits the separability of the
functions. It is notable, however, that while being able to clearly
outperform the dither and ajitter in unrotated versions, jitter is still
able to achieve comparable performance in the rotated versions. Of
course the used σ values in this paper were rather small and it is
possible that optimum values for at least some problems are larger.
Since the degree of rotational variance (how strongly the search is
biased along the coordinate axis directions) of jitter increases as σ
increases, it can be expected that the comparative performance of
jitter, will be worse in non-separable problems, if larger σ is used.

From the DELS versions, jitter performed the best overall in
terms of Sp. When the separable cases are left out, the differences
in performance between the algorithms are quite small. Ajitter had
some problems with Schwefel and Rana, but performed well in
Rastrigin. Dither on the other hand had problems with Rastrigin,
but worked well in Schwefel.

6.1 Analysis of Control Parameters
The poor performance, when using PX = 0, was to be expected,

because the local mutation alone cannot escape local optima effi-
ciently enough. Disabling the local mutation (using PX = 1), per-
formed well in some functions, especially in Rana. Still, in most
tested cases smaller PX value seemed to find the optimum more
reliably, especially when the dimensionality was increased. The lo-
cal mutation was able to most clearly improve the performance of
DELS in Rosenbrock’s function. This is well in line with the sup-
posed role of local mutation operation: to improve the algorithm’s
performance in uni-modal cases and speed up the local search of
the niches. It is logical that the benefits were most clearly visible
in Rosenbrock, which has only one local optimum in higher di-
mensions. Because the local mutation seemed to be useful in most
problems, while not clearly harmful in any of them, using PX = 1 is
not recommended for initial guess when using the proposed algo-
rithms. When the extremes were left out, the value of PX parameter
did not seem to be of critical importance to the performance of the
algorithm. For this reason, a safe initial guess for the value would
likely be around 0.5.

The results clearly demonstrated that using σ > 0 was beneficial
in multi-modal problems. In most cases the value σ = 0.1 offered
better robustness than smaller values and thus it would probably
make a decent initial guess. Still, additional research is required to
learn more about the effect of the σ parameter. Generally dither
seemed to prefer a bit larger σ values than jitter and ajitter. A
possible explanation for this is the fact that dither is able to produce
more limited variety of different trials, and needs a bit larger σ
value to compensate the loss. The few performed experiments with
σ = 0.5, suggest that especially with dither, larger values than σ =
0.1 could be useful.

The used population sizes were likely close to optimum for the
Rosenbrock, since the NP values for DEGS were the optimum val-
ues identified in [7]. Also for DELS the used NP = 3D seemed to
work nicely and none of the runs performed better with larger pop-
ulation sizes. However, the harder multi-modal problems did not
scale similarly, and as dimensionality was increased, often the best
performance was achieved with the highest tested population size.
For DELS often at the beginning values of NP = 3D performed
well, but as the dimensionality increased, NP = 9D was required.
This suggests that the optimum population size does not increase
linearly with dimension anymore, like in uni-modal problems, but
also for DELS the optimum population size will grow faster than
that in multi-modal problems. For this reason it is possible that the
usage of larger population sizes for the higher dimensional cases
would increase the percentage of successes and the success perfor-
mance. The optimum population size seems to be rather problem
dependent and more information is required to give accurate rec-
ommendations of the best values for DELS methods.

7. CONCLUSIONS
Since only a limited amount of different parameter combinations

were studied for each method, it can not be exclusively claimed that
some of the tested methods outperform others even inside the se-
lected function testbed, because with different parameter setup the
results may change. Especially, enabling the crossover for the un-
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rotated Rastrigin and Schwefel, would definitely increase the per-
formance of DEGS, because it could exploit the separability of the
functions. The goal of this paper was, however, to demonstrate
that with a suitable migration operator, the concept of local selec-
tion based Differential Evolution [7] can be efficiently applied to
general multi-modal problems, and that goal was achieved. The
performance obtained with DELS using global mutation compared
favorably with the performance of DEGS.

The performance differences between different DELS versions
were generally smaller than differences between DELS and DEGS.
Even though jitter performed overally best in the chosen test setup,
the lack of rotation invariance remains a risk in non-separable func-
tions. Since the performance differences between different global
mutation methods seem to be small, it will probably not make a sig-
nificant difference in practice which one is used. Still, using any of
the proposed methods seems to increase the performance compared
to case without any gaussian mutation.

From the theoretical point of view ajitter is the most interesting,
because it is a rotationally invariant process and, along with jitter,
able to potentially reach any point on the search space with positive
probability as long as the differential is not zero. This means that an
algorithm using jitter or ajitter satisfy the conditions for provably
convergent algorithm in [9] as long as the whole population has not
converged in one spot causing all possible differentials to become
zero.

8. FUTURE WORK
The global mutation was shown to be a promising way of gen-

eralizing the DELS concept to multi-modal problems. We believe
that DELS can be a potential optimization tool especially in prob-
lems where the ability to maintain the diversity of population is
important. Especially problems with multiple optima which should
all be found simultaneously or problems where the optima is chang-
ing with time could benefit from DELS. DELS might also be useful
in multi-objective problems, since it could prevent the population
from converging into a one part of the Pareto frontier giving a better
distribution of solutions. On the other hand it is possible that the al-
gorithm is not greedy enough to find a dense distribution of points
along the Pareto frontier fast enough, because some of the dom-
inated solutions will live longer, and because the typically larger
population sizes used in multi-objective optimization, may favor
greedier methods. Also more experimental data is needed both in
the performance of DELS in different problems and in the effect
of the control parameter’s values on the performance of the algo-
rithm. It would be interesting to compare the performance of DELS
to other evolutionary methods which rely on Gaussian distribution
in generating solutions, like covariance matrix adaptation evolu-
tion strategy (CMA-ES) [2] or real coded genetic algorithm using
a parent-centric recombination (PCX) [1].

The reason for the inferior performance of DELS in Whitley’s
function should be examined more closely to determine which of
the function’s features made it hard for DELS. One possibility to
improve the performance of DELS and ease the parameter selec-
tion would be to make the parameters σ and PX adaptive. It seems
rational to assume that larger values for both parameters would be
better at the start of the search, while smaller would probably speed
up the final convergence. Also a hybrid between DELS and DEGS
could be possibly beneficial, where DELS would provide the ex-
ploration capabilities at the beginning and DEGS would be used
later to speed up the convergence, for example in multi-objective
problems.
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