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ABSTRACT
A survey of niching algorithms, based on 5 variants of de-
randomized Evolution Strategies (ES), is introduced. This
set of niching algorithms, ranging from the very first de-
randomized approach to self-adaptation of ES to the sophis-
ticated (1 +, λ) Covariance Matrix Adaptation (CMA), is
applied to multimodal continuous theoretical test functions,
of different levels of difficulty and various dimensions, and
compared with the MPR performance analysis tool. While
characterizing the performance of the different derandom-
ized variants in the context of niching, some conclusions
concerning the niching formation process of the different
mechanisms are drawn, and the hypothesis of a tradeoff be-
tween learning time and niching acceleration is numerically
confirmed. Niching with (1 + λ)-CMA core mechanism is
shown to experimentally outperform all the other variants.
Some theoretical arguments supporting the advantage of a
plus-strategy for niching are discussed.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: ARTIFICIAL INTEL-
LIGENCE—Problem Solving, Control Methods, and Search

General Terms
Algorithms, Experimentation, Performance

Keywords
Niching, Derandomized Evolution Strategies, MPR Analysis

1. INTRODUCTION
Evolutionary Algorithms (EAs), popular population-based

stochastic search-methods, have the tendency to lose di-
versity within their population of feasible solutions and to
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converge into a single solution [11, 2, 3]. Niching methods,
the extension of EAs to multi-modal optimization, address
this issue by maintaining the diversity of certain proper-
ties within the population - and this way they allow paral-
lel convergence into multiple good solutions in multimodal
domains. The study of niching is challenging both from
the theoretical point of view and from the practical point
of view. The theoretical challenge is two-fold - maintaining
the diversity within a population-based stochastic algorithm
from the computational perspective, but also having an in-
sight into speciation theory from the biological perspective.
The practical aspect provides a real-world motivation for
this problem - there is an increasing interest of the applica-
tions’ community in providing the decision maker with mul-
tiple solutions with different conceptual designs, for single-
criterion or multi-criteria search spaces (see, e.g., [1]).

Niching techniques are often subject to criticism due to
the so-called niche radius problem, as will be explained. The
majority of the niching methods hold an assumption con-
cerning the fitness landscape, stating that the optima are
far enough from one another with respect to some threshold
distance, called the niche radius, which is estimated for the
given problem and remains fixed during the course of evolu-
tion. Obviously, there are landscapes for which this assump-
tion isn’t applicable, and where this approach is most likely
to fail. Generally speaking, the task of defining a generic
basin of attraction seems to be one of the most difficult
problems in the field of global optimization, and there were
only few attempts to tackle it theoretically [20]. De facto,
the niche-radius problem has been addressed at several di-
rections, and a recent study offered a successful self-adaptive
approach for an individual niche-radius [17].

Evolution Strategies (ES) [4] are a canonical EA for con-
tinuous function optimization, due to their straightforward
encoding, their specific variation operators, the self-adaptat-
ion of their mutation distribution as well as to their high
performance in this domain in comparison with other meth-
ods on benchmark problems. Even for large dimensions,
an ES is a suitable method, and was shown to outperform
other competing methods [3]. However, the standard ES
approaches are exposed to several disruptive effects, espe-
cially concerning the individual mutative step-size control.
The family of derandomized Evolution Strategies [6] offers
an improved mutative ES mechanism, and are considered as
the state of the art strategies.

Several ES niching methods have been proposed (see, e.g.,
[16]), and upon their successful application to high-dimensio-
nal theoretical functions, they were also successfully applied
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to a real-world physics challenging problem [18]. In that
application, the niching technique was shown to be clearly
qualitatively superior with respect to multiple restart runs
with a single population, for locating highly-fit unique op-
tima which had not been obtained otherwise, and repre-
sented different conceptual designs. The distance metric and
the niche radius were tailored especially to that application,
subject to theoretical justification.

This paper presents a survey of ES niching techniques,
based on 5 variants of derandomized Evolution Strategies,
applied to a set of continuous theoretical test functions of
different levels of difficulty. As far as we know this is the first
comparison of these ES variants, in particular in the context
of niching. The performance of the algorithms is evaluated
based on the so-called MPR analysis tool [16], which allows
to characterize to some degree the learning behavior, the
niching formation process and the saturation profile of the
different mechanisms. Niching with (1+λ)-CMA core mech-
anism is shown to experimentally outperform all the other
variants. The numerical results are consistent, and support
our experimental conclusions. Some theoretical arguments
supporting the advantage of a plus-strategy for niching are
discussed.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the various evolutionary core mechanisms in
use for this survey - the so-called family of derandomized
algorithms. In section 3 we introduce the ES niching frame-
work, and its MPR performance analysis. This is followed
in section 4 by the description of the experimental setup,
the numerical results and a discussion. In section 5 we draw
conclusions, summarize our study, and propose future direc-
tions in the domain of our research.

2. THE FAMILY OF DERANDOMIZED
EVOLUTION STRATEGIES

In standard Evolution Strategies, mutative step-size con-
trol tends to work well for the adaptation of a global step-
size, but tends to fail when it comes to the individual step-
size. This is due to several disruptive effects [6] as well as
to the fact that the selection of the strategy parameters set-
ting is indirect, i.e. not the vector of a successful mutation
is used to adapt the step-size parameters, but the param-
eters of the distribution that led to this mutation vector.
The so-called derandomized mutative step-size control aims
to tackle those disruptive effects.

The first versions of derandomized ES algorithms intro-
duced a controlled global step-size in order to monitor the
individual step-sizes by decreasing the stochastic effects of a
probabilistic sampling. The selection disturbance was com-
pletely removed with later versions by omitting the adapta-
tion of strategy parameters by means of probabilistic sam-
pling. This was combined with individual information from
the last generation (the successful mutations, i.e. of selected
offspring), and then adjusted to correlated mutations. Later
on, the concept of adaptation by accumulated information
was introduced, aiming to use wisely the past information
for the purpose of step-size adaptation: instead of using
the information from the last generation only, it was suc-
cessfully generalized to a weighted average of the previous
generations.

Note that the different variants of derandomized-ES hold
different numbers of strategy parameters to be adapted, and

this is a factor in the learning speed of the optimization rou-
tine. The different algorithms hold a number of strategy
parameters in either a linear or quadratic order in terms
of the dimensionality of the search problem n, and there
seems to be a trade-off between the number of strategy pa-
rameters and the time needed for the adaptation/learning
process of the step-sizes. We hereby present briefly different
derandomized-ES algorithms that are used in our niching
framework.

DR1

The first derandomized attempt [13] couples the successful
mutations to the selection of decision parameters, and learns
the mutation step-size directly from the difference vectors
between parents and selected offspring:

�xg+1 = �xg + ξkδg�ξk
scal

�δg
scal

�Zk (1)

δg+1 = (ξsel)
β · δg �δg+1

scal =
“
�ξsel
scal + b

”βscal · �δg
scal (2)

where �ξscal = �N (0, 1)+, �Z ∈ {−1, +1}n, and β, βscal, b and
ξk are constants.

DR2

This variant [14] aims to accumulate information about the
correlation or anti-correlation of past mutation vectors in
order to adapt the step-size:

�xg+1 = �xg + δg�δg
scal

�Zk �Zk = �N (0, 1) (3)
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DR3

This third generation [7] achieved invariance w.r.t. the scal-
ing of variables and the rotation of the coordinate system:

�xg+1 = �xg + δgξk�yk, �yk = cmB · �zk (7)

B =
“
�b1, ...,�bm

”
, δg+1 = δg

“
ξk
”β

(8)

�bg+1
1 = (1 − c) ·�bg

1 + c ·
“
cuξk�yk

”
, �bg+1

i+1 = �bg
i (9)

where �z = �N (0, 1), B ∈ R
m×n and m is between n2 and

2n2.

(1, λ)-CMA-ES

We consider the Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) [6] (rank-one update with cumulation).
This advanced method applies principal component analysis
(PCA) to the selected mutations during the evolution, also
referred to as “the evolution path”, for the adaptation of the
covariance matrix of the distribution.
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�p
(g)
c ∈ R

n is the so-called evolution path, the crucial com-
ponent for the adaptation of the covariance matrix, and

�p
(g)
σ ∈ R

n is the conjugate evolution path, which is responsi-
ble for the step-size control. C(g) ∈ R

n×n, is the covariance

matrix

„
C(g) = B(g)D(g)

“
B(g)D(g)

”T
«

:
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0 otherwise
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c

`
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c

´T
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�pg+1
σ = (1 − cσ) · �pg
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p
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·
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σ

‚‚
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!!
(15)

where cc, ccov, cσ and dσ are learning/adaptation rates, and

Hthresh =
“
1.5 + 1

n−0.5

”
E (‖N (0, I)‖).

(1 + λ)-CMA-ES

This elitist version [8] [9] of the original CMA-ES algorithm
combines the classical (1 + λ) ES strategy [15] [3] [4] with
the Covariance Matrix Adaptation concept. The so-called
success rule based step-size control replaces the path length
control of the CMA-Comma strategy:

�xg+1 = �xg + σgB
gDg�zg+1

k (16)

After the evaluation of the new generation, the success rate

is updated psucc = λ
(g+1)
succ /λ, followed by:

p̄succ = (1 − cp) · p̄succ + cp · psucc (17)

σg+1 = σg · exp

„
1

d
·
„

p̄succ − ptarget
succ

1 − ptarget
succ

(1 − p̄succ)

««
(18)

The covariance matrix is updated only if the selected off-
spring is better than the parent. Then,

�pc =

(
(1 − cc) �pc +

p
cc (2 − cc) · �x

g+1
sel

−�xg

σ
g
parent

if p̄succ < pΘ

(1 − cc) �pc otherwise
(19)

Cg+1 =

8>>>><
>>>>:

(1 − ccov) · Cg + ccov · �pc�p
T
c

if p̄succ < pΘ

(1 − ccov) · Cg + ccov · `�pc�p
T
c + cc (2 − cc)C

g
´

otherwise
(20)

Here, all weighting variables and learning rates are as sug-
gested in the given citations, and especially in [6] and in [8].

3. ES DYNAMIC NICHING
The advent of modern Evolution Strategies allows suc-

cessful global optimization with minimal settings, mostly

Algorithm 1 Dynamic Peak Identification

input: Pop, q, ρ

1: Sort Pop in decreasing fitness order
2: i := 1
3: NumPeaks := 0
4: DPS := ∅
5: while NumPeaks �= q and i ≤ popSize do
6: if Pop[i] is not within ρ of peak in DPS then
7: DPS := DPS ∪ {Pop[i]}
8: NumPeaks := NumPeaks + 1
9: end if

10: i := i + 1
11: end while

output: DPS

without recombination, and with a low number of function
evaluations. In particular, consider the (1 +, λ) derandom-
ized ES variants presented in the previous section. In the
context of niching, this generation of modern ES variants
allows the construction of fairly simple and elegant niching
algorithms. We provide the reader with some details con-
cerning our niching framework.
For the sake of simplicity of the comparison between the
different core mechanisms, we limit this study to a niching
approach based on a fixed niche radius, and without recom-
bination.

3.1 The Niching Routine
We consider a niching technique with individual search

points, which independently and simultaneously perform a
derandomized (1, λ) or (1 + λ) search in different locations
of the space. The speciation interaction occurs every gener-
ation when all the offspring are considered together to be-
come the niches’ representatives for the next iteration, or
simply the next search points, based on the rank of their fit-
ness and their spatial location with respect to higher-ranked
individuals.

Explicitly, given q, the estimated/expected number of pea-
ks, q + p “D-sets” are initialized, where a D-set is defined
as the collection of all the dynamic variables of the deran-
domized algorithm which uniquely define the search at a
given point of time. Such dynamic variables are the cur-
rent search point, the mutation vector / covariance matrix,
the step-size, as well as other auxiliary parameters. At ev-
ery point in time the algorithm stores exactly q + p D-sets,
which are associated with q+p search points: q for the peaks
and p for the “non-peaks domain”. The (q + 1)th...(q + p)th

D-sets are individuals which are randomly re-generated in
every cycle of generations (denoted κ) as potential candi-
dates for niche formation. This is basically a quasi-restart
mechanism, which allows new niches to form dynamically.
It should be noted that the total number of function eval-
uations allocated for a run is proportionate to q, so setting
the value of p reflects a dilemma between applying a wide
restart approach for exploring further the search space and
exploiting computational resources for the existing niches.
In any case, due to the curse of dimensionality, p loses its
significance as the dimension of the problem gets higher.

Until stopping criteria are met, the following procedure
takes place. Each search point samples λ offspring, based
on its evolving D-set. After the fitness evaluation of the
new λ · (q + p) individuals, the classification into niches of
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Algorithm 2 Dynamic ES Niching: A Single Generation

1: for i = 1...(q + p) search points do
2: Generate λ samples based on the D-set of i
3: end for
4: Evaluate fitness of the population
5: Compute the Dynamic Peak Set with Algo. 1
6: for all elements of DPS do
7: Set peak as a search point
8: Inherit the D-set and update it respectively
9: end for

10: if NDPS=size of DPS < q then
11: Generate q − Ndps new search points, reset D-sets
12: end if
13: if mod(gen, kappa) = 0 then
14: Reset the (q + 1)th...(q + p)th search points
15: end if

the entire population is done using the DPI routine [12] (see
Algorithm 1) - based on the fixed niche radius ρ - and the
peaks then become the new search points. Their D-sets are
inherited from their parents and updated respectively.

A pseudo-code for the niching routine is presented as Al-
gorithm 2.

3.2 MPR Analysis
Our research focuses on the ability to identify global as

well as local optima, and to converge in these directions
through time, with no particular interest in the distribution
of the population. Thus, as has been done in earlier studies
of GA niching [12], we adopt the performance metric called
the maximum peak ratio statistic. This metric measures the
quality as well as the number of optima given as a final
result by the evolutionary algorithm. Explicitly, given the

fitness of the niches in the final population
n

f̃i

oq

i=1
, and the

real optima of the objective function
n
F̂i

oq

i=1
, the maximum

peak ratio is defined for a minimization problem as follows:

MPR =

Pq
i=1 F̂iPq
i=1 f̃i

∈ [0, 1] (21)

i.e., MPR = 1 represents a perfect niching process, where
the real optima of the objective function were all located
and are within the population. Also, given a maximization
problem, the MPR is defined as the obtained fitness of the
niches divided by the real optima. The real optima of the
objective function cannot always be obtained analytically,
particularly in complex problems. Hence, some optima are
computed numerically when necessary.

Although this metric was originally introduced to be an-
alyzed by means of the saturation MPR value, a new per-
spective was introduced in [16]. That recent study investi-
gated the MPR as a function of time, focusing on the early
stages of the run. It was shown experimentally that the
time-dependent MPR data fits a theoretical function: the
logistic curve.

The Logistic Equation
A simple modeling of the human population growth is often
described by the following differential equation:

dy

dt
= cy

“
1 − y

a

”
, (22)

with the solution

y(t) =
a

1 + exp {c (t − T )} (23)

where a is the saturation value of the curve, T is its time
shift, and c (in this context always negative) determines the
shape of the exponential rise.

This equation, known as the logistic equation, describes
many processes in nature. All those processes share the same
pattern of behavior - growth with acceleration, followed by
deceleration and then a saturation phase.

In the context of evolutionary niching methods, it was
argued in [16] that the logistic parameters should be inter-
preted in the following way - T as the learning period of the
algorithm, and the absolute value of c as its niching forma-
tion acceleration.

3.3 Previous Results
In [16] this MPR time-dependent analysis was applied to

two ES-based niching techniques: the Standard-ES Schwefel-
approach niching, and the CMA-ES niching. Here, some of
the conclusions of that study are outlined:

1. The niching formation acceleration, expressed as
the absolute value of c, had larger values for the CMA-
ES mechanism for all the test-cases. That implied
stronger niching acceleration and faster convergence.

2. A trend concerning the absolute value of c as a func-
tion of the dimensionality was observed: the higher
the dimensionality, the lower the absolute value of c.

3. The learning period, expressed as the value of T in
the curve fitting, got negative as well as positive val-
ues. Negative values mean that the niches formation
process, expressed as the exponential rise of the MPR,
started immediately from generation zero.

4. The averaged saturation value a was larger in all of
the test-cases for the CMA-ES mechanism. This result
also supported the claim that the CMA-ES had a faster
convergence, as it got better fitness values earlier.

The study concluded with the claim that there was
a clear trade-off : either a long learning period fol-
lowed by a high niching acceleration (CMA-ES) or
a short learning period followed by a low niching
acceleration (Standard-ES).

4. EXPERIMENTAL PROCEDURE
In the following section we shall describe an experimen-

tal setup for comparing the 5 derandomized variants with
respect to the MPR analysis, and present the numerical re-
sults. We emphasize again the fact that our set of core
mechanisms is composed of two classes:

• Mechanisms with a linear number of strategy param-
eters in n: DR1, DR2.

• Mechanisms with a quadratic number of strategy pa-
rameters in n, which aim to achieve invariance with
respect to translation and rotation operations: DR3,
CMA, CMA+.

Thus, the CPU time profile differs, respectively, among the
different variants. We, in any case, are interested in the con-
vergence behavior subject to the same number of function
evaluations and population settings.
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4.1 Test Functions
We consider the following multimodal test functions:

• M: a basic hyper-grid multimodal function with uni-
formly distributed minima of equal function value of
−1. It is meant to test the stability of a particularly
large number of niches: in the interval [0, 1]n it has 5n

minima.

• A: the well known Ackley function has one global
minimum, regardless of its dimension n, which is sur-
rounded isotropically by 2n local minima in the first
hypersphere, followed by an exponentially increasing
number of minima in the up-going hyper-spheres . Ack-
ley’s function has been widely investigated in the con-
text of evolutionary computation [3].

• L: also known as F2, as had been originally introduced
in [5], is a sinusoid trapped in an exponent envelope.
The parameter k determines the sharpness of the peaks
in the function landscape (we set k = 6). L has one
global minimum, regardless of n and k. It has been a
popular test function for GA niching methods.

• R: the Rastrigin function [20] has one global mini-
mum, surrounded by a large number of local minima
arranged in a lattice configuration.
We also consider its shifted-rotated variant [19].

• G: the Griewank function [20] has its global minimum
(f∗ = 0) at the origin, with several thousand global
minima in the area of interest. There are 4 sub-optimal
minima f ≈ 0.0074 with �x∗ ≈ `±π,±π

√
2, 0, 0, 0, ...0

´
.

We also consider its shifted-rotated variant [19].

• F : the function after Fletcher and Powell [3] is a
non-separable non-linear parameter estimation prob-
lem, which has a non-uniform distribution of 2n min-
ima.

Table 1 summarizes the unconstrained multimodal
test functions as well as their initialization intervals.

4.2 Modus Operandi
The 5 niching algorithms are tested on the specified func-

tions for various dimensions1. Each test case includes 100
runs per algorithm. All runs are performed with a core
mechanism of a (1 +, 10)-strategy per niche and initial points
are sampled uniformly within the initialization intervals.
Initial step-sizes are set to 1

4
of the intervals. The parame-

ter q is set based on a-priori knowledge when available, or
arbitrarily otherwise.
Function evaluations: the idea is to allocate a fixed num-
ber of evaluations per peak

`
n · 104

´
, and thus each run is

stopped after q · n · 104 function evaluations.
As mentioned earlier, setting the parameter p reflects the

trade-off between further sampling the search-space, on the
expense of exploiting the function evaluations at the existing
niches. Here, we set p = 1.

A curve fitting routine is applied to each run in order to
retrieve the characteristic parameters of its logistic curve.
This routine uses the least-squared-error method, and runs
an optimization procedure to minimize it.

1Matlab source-code of the 5 routines is available at
http://www.liacs.nl/home/oshir/NichingES/

Table 4: Global minimum reached in 100 runs.

Test-Case DR1 DR2 DR3 CMA CMA+

A : n = 3 100% 100% 100% 100% 100%
A : n = 10 90% 91% 90% 92% 95%
L : n = 3 93% 74% 92% 97% 100%
L : n = 10 9% 2% 0% 17% 13%
R : n = 3 20% 19% 13% 16% 48%
R : n = 10 0% 0% 0% 0% 0%
G : n = 3 13% 21% 32% 13% 88%
G : n = 10 8% 16% 4% 16% 2%

F : n = 3 100% 100% 100% 100% 100%
F : n = 10 14% 12% 15% 23% 15%
RRS : n = 3 45% 40% 39% 54% 72%
RRS : n = 10 0% 0% 0% 0% 0%
GRS : n = 3 4% 2% 4% 12% 8%
GRS : n = 10 6% 1% 3% 14% 0%

4.3 Numerical Results
The numerical results are presented at several levels:

Niching Acceleration
Table 2 presents the mean and the standard deviations for
the parameter c over the 100 runs, as obtained by the curve
fitting routine. There is a clear trend in the given numeri-
cal results - in the vast majority of the test cases, the DR2
algorithm has the highest absolute values of c, whereas the
CMA+ has the lowest absolute values. This trend corre-
sponds to having the highest niching acceleration and the
lowest niching acceleration, respectively. Moreover, the 4
comma strategies have c values in the same order of magni-
tude, where the CMA usually has the lowest absolute value
among them.

MPR Saturation
This scalar value represents, to some degree, the quality
of the obtained minima, and thus the final result of the
niching process. Table 3 presents the mean and the standard
deviation of the saturation MPR values for the different test
cases. As can be seen in this table, the CMA-

`
+,
´

algorithms
achieve the highest MPR values, and as far as the niching
process is concerned - together they outperform the other
methods. However, for the given test cases, there is no clear
winner for the MPR value.

Global Minimum
Table 4 contains the percentage of runs in which the global
minimum was located. M is discarded from the table, as
its global minimum was always found, by all algorithms,
for every dimension n under investigation. Generally speak-
ing, the CMA-

`
+,
´

routines, and in particular the CMA+
strategy, is superior with respect to the other derandomized
variants.

One can also observe a strong correlation between tables 3
and 4: routines that obtain a high MPR saturation value, i.e.
locate the high-quality peaks, usually perform well globally
and locate the global minimum in high percentage of the
runs.
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Table 1: Test functions to be minimized, initialization domains and number of desired peaks. For some of the
non-separable functions, we apply translation and rotation: �y = O (�x − �r) where O is an orthogonal rotation
matrix, and �r is a shifting vector.

Separable:
Name Function Init Niches
M M (�x) = − 1

n

Pn
i=1 sinα (5πxi) [0, 1]n 100

Ackley
A(�x) = −c1 · exp

“
−c2

q
1
n

Pn
i=1 x2

i

”
− exp

`
1
n

Pn
i=1 cos(c3xi)

´
+ c1 + e

[−10, 10]n 2 · n + 1

L L(�x) = −Qn
i=1 sink (l1πxi + l2) · exp

„
−l3

“
xi−l4

l5

”2
«

[0, 1]n n + 1

Rastrigin R(�x) = 10n +
Pn

i=1

`
x2

i − 10 cos (2πxi)
´

[−1, 5]n n + 1

Griewank G (�x) = 1 +
Pn

i=1

x2
i

4000
−Qn

i=1 cos
“

xi√
i

”
[−10, 10]n 5

Non-separable:
Name Function Init Niches

Fletcher-Powell

F(�x) =
Pn

i=1 (Ai − Bi)
2

Ai =
Pn

j=1 (aij · sin(αj) + bij · cos(αj))
Bi =

Pn
j=1 (aij · sin(xj) + bij · cos(xj))

aij , bij ∈ [−100, 100] ; �α ∈ [−π, π]n

[−π, π]n 10

Shifted Rotated Rastrigin RRS(�x) = 10n +
Pn

i=1

`
y2

i − 10 cos (2πyi)
´

[−5, 5]n n + 1

Shifted Rotated Griewank GRS (�x) = 1 +
Pn

i=1

y2
i

4000
−Qn

i=1 cos
“

yi√
i

”
[0, 600]n 5

Table 2: The parameter c obtained from the curve fitting: mean and standard deviation over 100 runs.

Test-Case DR1 DR2 DR3 CMA CMA+

M : n = 3 −0.1067 ± 0.0059 −0.1379 ± 0.0087 −0.1059 ± 0.0096 −0.0694 ± 0.0046 −0.0537 ± 0.0026
M : n = 10 −0.0592 ± 0.0017 −0.0723 ± 0.0023 −0.0713 ± 0.0031 −0.0402 ± 0.0014 −0.0153 ± 0.0004
M : n = 40 −0.0272 ± 0.0006 −0.0327 ± 0.0010 −0.0239 ± 0.0007 −0.0129 ± 0.0005 −0.0031 ± 0.0002
A : n = 3 −0.1530 ± 0.0380 −0.2264 ± 0.0577 −0.1667 ± 0.0056 −0.1353 ± 0.0332 −0.0475 ± 0.0063
A : n = 10 −0.0631 ± 0.0088 −0.0794 ± 0.0127 −0.0712 ± 0.0110 −0.0547 ± 0.0105 −0.0172 ± 0.0010
L : n = 3 −0.1637 ± 0.0703 −0.1942 ± 0.1235 −0.1510 ± 0.0637 −0.1479 ± 0.0470 −0.0631 ± 0.0301
L : n = 10 −0.1503 ± 0.0145 −0.1856 ± 0.0236 −0.1433 ± 0.0572 −0.1466 ± 0.0160 −0.0397 ± 0.0025
R : n = 3 −0.0218 ± 0.0323 −0.0346 ± 0.0420 −0.0086 ± 0.0119 −0.0298 ± 0.0235 −0.0099 ± 0.0105
R : n = 10 −0.0462 ± 0.0073 −0.0492 ± 0.0097 −0.0389 ± 0.0172 −0.0222 ± 0.0070 −0.0160 ± 0.0019
G : n = 3 −0.0121 ± 0.0137 −0.0245 ± 0.0169 −0.0121 ± 0.0032 −0.0234 ± 0.0403 −0.0056 ± 0.0118
G : n = 10 −0.0312 ± 0.0267 −0.1019 ± 0.0197 −0.0308 ± 0.0301 −0.0227 ± 0.0031 −0.0191 ± 0.0153

F : n = 3 −0.0219 ± 0.0228 −0.0419 ± 0.0172 −0.0243 ± 0.0238 −0.0227 ± 0.0247 −0.0151 ± 0.0123
F : n = 10 −0.0540 ± 0.0928 −0.0873 ± 0.1052 −0.0775 ± 0.1230 −0.0438 ± 0.0825 −0.0216 ± 0.0205
RRS : n = 3 −0.1569 ± 0.0360 −0.2537 ± 0.0529 −0.1779 ± 0.0473 −0.2003 ± 0.0409 −0.0546 ± 0.0083
RRS : n = 10 −0.0715 ± 0.0261 −0.0948 ± 0.0186 −0.0825 ± 0.0249 −0.0724 ± 0.0274 −0.0204 ± 0.0016
GRS : n = 3 −0.1081 ± 0.0665 −0.1258 ± 0.0743 −0.1182 ± 0.0638 −0.1133 ± 0.0693 −0.0503 ± 0.0067
GRS : n = 10 −0.0564 ± 0.0153 −0.0722 ± 0.0146 −0.0850 ± 0.0196 −0.0900 ± 0.0123 −0.0202 ± 0.0041
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Table 3: The saturation MPR value: mean and standard deviation over 100 runs.

Test-Case DR1 DR2 DR3 CMA CMA+

M : n = 3 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0
M : n = 10 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0
M : n = 40 0.9967 ± 0.0018 1 ± 0 0.9879 ± 0.0030 1 ± 0 1 ± 0
A : n = 3 0.9711 ± 0.0285 0.9662 ± 0.0275 0.9595 ± 0.0301 0.9768 ± 0.0238 0.9924 ± 0.0167
A : n = 10 0.9013 ± 0.0239 0.9049 ± 0.0254 0.9013 ± 0.0250 0.9195 ± 0.0232 0.9417 ± 0.0225
L : n = 3 0.9625 ± 0.0283 0.9448 ± 0.0383 0.9527 ± 0.0290 0.9621 ± 0.0267 0.9957 ± 0.0059
L : n = 10 0.5054 ± 0.1625 0.3791 ± 0.1526 0.1665 ± 0.1287 0.5960 ± 0.1480 0.5619 ± 0.1089
R : n = 3 0.2631 ± 0.3140 0.2452 ± 0.0361 0.2334 ± 0.0416 0.1428 ± 0.0458 0.4806 ± 0.1237
R : n = 10 0.0515 ± 0.0072 0.0629 ± 0.0068 0.0546 ± 0.0053 0.0567 ± 0.0089 0.0526 ± 0.0054
G : n = 3 0.1145 ± 0.1682 0.5257 ± 0.4696 0.3664 ± 0.0502 0.2231 ± 0.2883 0.7609 ± 0.0981
G : n = 10 0.0243 ± 0.0421 0.0261 ± 0.0473 0.0664 ± 0.0179 0.0145 ± 0.0171 0.0788 ± 0.0289

F : n = 3 0.0022 ± 0.0024 0.0018 ± 0.0018 0.0019 ± 0.0015 0.0028 ± 0.0040 0.0016 ± 0.0004
F : n = 10 0.0002 ± 0.0004 0.0003 ± 0.0006 0.0001 ± 0.0003 0.0005 ± 0.0013 0.0003 ± 0.0004
RRS : n = 3 0.4088 ± 0.1114 0.4627 ± 0.0669 0.4225 ± 0.1171 0.4692 ± 0.1026 0.5628 ± 0.0981
RRS : n = 10 0.0847 ± 0.0153 0.0991 ± 0.0192 0.0781 ± 0.0146 0.1075 ± 0.0166 0.0713 ± 0.0138
GRS : n = 3 0.0720 ± 0.0430 0.0779 ± 0.0435 0.0846 ± 0.0475 0.0815 ± 0.0361 0.1076 ± 0.0406
GRS : n = 10 0.1336 ± 0.0376 0.1441 ± 0.0365 0.1220 ± 0.0348 0.1610 ± 0.0337 0.0447 ± 0.0126

4.4 The c − T Tradeoff Hypothesis
We would like to numerically assess the hypothesis claim-

ing the existence of a tradeoff between the learning period
T and the niching acceleration c [16], with respect to the 5
algorithms under investigation.

We consider two test functions of the suite, one per class:
the separable M and the non-separable GRS (the Shifted
Rotated Griewank). For each we run the algorithms for an
increasing dimensionality of n = 3, 4, ..., 30, and obtain the
MPR parameters for 100 runs - in order to plot c as a func-
tion of T .

Figures 1 and 2 present the c− T curves for M and GRS ,
respectively. The curves reflect a clear trade-off between
c and T over the dimensions for the algorithms for both
cases (an exception - the DR3 over M). We consider this
a numerical assessment for the hypothesis - the longer the
learning period, the lower the niching acceleration.

5. DISCUSSION AND OUTLOOK
We have presented a survey of advanced derandomized

Evolution Strategies variants to a suite of theoretical test
problems.

Generally speaking, the CMA-
`
+,
´

routines, and in par-
ticular the CMA+ strategy, were found to be superior with
respect to the other derandomized variants.

The low niching acceleration of the plus-strategy seems to
be the key for the successful niching, allowing it to obtain
the best location of the global minimum, and to reach the
highest MPR saturation values. The niching acceleration
seems to originate, to our best understanding, in the adap-
tation profile of the step-size, and apparently the CMA+
mechanism offers a profile which suits niching very well.

In addition, we suggest an explanation for the advantage
of a plus strategy for niching. The niching problem can be
considered as an optimization task with constraints, i.e., the
formation of niches that restricts competing niches and their
optimization routine of exploring the search space freely. It
has been suggested in previous studies (see, e.g., [10]) that
ES self-adaptation in constrained problems will tend to fail
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Figure 1: The c − T curve for M: clear trade-off for
the different algorithms, except for DR3, which has
a flat curve.

with a comma-strategy, and thus a plus-strategy is prefer-
able for such problems. We might link this argumentation
to the observation of our numerical results here, and suggest
that a plus-strategy is preferable for niching.

Moreover, the hypothesis claiming that there exists a trade-
off between the learning period and the niching acceleration
has been numerically assessed in this study.

In the future we will recommend the application of the
proposed niching variants to multimodal real-world prob-
lems, as well as the construction of self-adaptive niche radius
routines with the derandomized-ES algorithms which were
studied in this paper.
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Figure 2: The c−T curve for GRS: clear trade-off for
the 5 different algorithms.
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