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ABSTRACT
The Second Harmonic Generation (SHG), a process that
turns out to be a good test case in the physics lab, can also
be considered as a fairly simple theoretical test function for
global optimization. Despite its symmetry properties, that
will be derived here analytically, it seems to capture the
complexity of the Fourier transform between the decision
space to the evaluation space, and by that to challenge opti-
mization routines. And indeed, counter-intuitively to some
extent, locating its global maximum seems to be not an easy
task for Evolutionary Algorithms (EAs).
Although this research originates from the real-world ap-
plications domain, it aims to introduce a theoretical test
case to Evolution Strategies (ES), being a possible theoret-
ical gateway to the real-world physics regime of quantum
control problems. After presenting some theoretical results,
this paper introduces the study of the scalability of the de-
cision space subject to optimization by specific variants of
Derandomized Evolution Strategies. We show that the Evo-
lution Strategy in use requires a quasi-quadratic increase of
function evaluations for locating the global maximum as the
dimensionality increases.
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1. INTRODUCTION
Evolutionary Algorithms (EAs) are a set of general pur-

pose probabilistic search methods, which are based upon the
theory of natural evolution. EAs have three main streams
[1]: Genetic Algorithms (GAs), developed by J. Holland in
the U.S., Evolution Strategies (ES), developed in Germany
by I. Rechenberg and H.P. Schwefel, and Evolutionary Pro-
gramming (EP), developed by L.J. Fogel et al. in the U.S.
. Evolution Strategies are a canonical EA for continuous
function optimization, due to their straightforward contin-
uous encoding, their specific variation operators, as well as
to their high performance in this domain in comparison to
other methods on benchmark problems. The higher the di-
mensionality of the search space, the more suitable a task
becomes for an ES (see, e.g. [1]).
This particular study originates in the application of ES
to the optimization of numerical Quantum Control physics
problems, where the so-called Second Harmonic Generation
(SHG) was suggested as a theoretical test-case for the al-
gorithms in use, as a “warming-up” before the primary op-
timization task, which was time-consuming. It was shown
experimentally that the performance of Evolution Strate-
gies on the two problems was highly correlated, and thus
provided with motivation to investigate the SHG.

Although this function has some mathematical properties
that could suggest an easy search for its global maximum,
it is yet a difficult task for a global optimizer in general,
and for an EA in particular. Some of its difficulty seems to
lie within the complexity of the Fourier transform between
the decision space to the evaluation space. We consider the
SHG as an interesting theoretical test problem, with a strong
link to real-world physics problems, that introduces a type of
complexity which has not been studied before in the context
of ES.

Here we present formally the Second Harmonic Genera-
tion optimization problem, and use it as a case-study for
investigating the scalability of Evolution Strategies, i.e. the
performance of the optimization routine as a function of the
problem’s dimensionality. The reader should note that in
the SHG context, the scalability is applied to the decision
space, but does not affect the objective landscape - as will
be described here. Hence, this scalability study is not equiv-
alent to a general dimensionality scan of a test-problem.

We would like to mention that a study of the control of
multiphoton transitions by means of shaped laser pulses was
presented recently [4], where SHG-like processed were dis-
cussed, and evolutionary optimization approach (GA-based)
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was applied for learning phase profiles. This paper of ours
may suggest an extension, to some limited degree, of that
study.

The remainder of the paper is organized as follows.
Section 2 provides the reader with the motivation for this
study, the Quantum Control field. Section 3 presents the
Second Harmonic Generation and its mathematical proper-
ties. In section 4 we introduce the evolutionary algorithms
in use - the family of Derandomized Evolution Strategies.
This is followed in section 5 by the description of the ex-
perimental setup, a preliminary test and the numerical final
results. In section 6 we draw conclusions, summarize our
study, and propose future directions in the domain of our
study.

2. THE MOTIVATION:
QUANTUM CONTROL PROBLEMS

The advent of modern laser pulse shaping techniques in
the femtosecond regime has made it possible to control the
motion of nuclei and even electrons by a judicious choice
of the pulse shapes. The application to dynamic molecular
alignment [7] is of considerable interest in this context be-
cause of its many practical consequences. There is currently
a great interest in the atomic and molecular physics commu-
nity to align molecules with laser pulses, since dealing with
an aligned sample of molecules simplifies the interpretation
of experimental data: a multitude of chemical and physical
processes ranging from bimolecular reactions to high har-
monic generation are influenced by the angular distribution
of the molecular sample. Furthermore, in many fundamental
molecular dissociation or ionization experiments, the inter-
pretation of the collected data becomes much easier when
the molecules are known to be aligned with respect to a
certain axis. Hence, techniques to generate molecular align-
ment are much needed.
The goal of this research field is thus to optimize the align-
ment of an ensemble of molecules after the interaction with
a shaped laser pulse. By applying a self-learning loop us-
ing an evolutionary mechanism, the interaction between the
system under study and the laser field can be steered, and
optimal pulse shapes for a given optimization target can be
found. So far, the role of the experimental feedback in the
self-learning loop has been mainly played by a numerical
simulation.

Dynamic Molecular Alignment
To calculate the time-dependent alignment, the Schrödin-
ger’s equation for the angular degrees of freedom of a model
diatomic molecule under the influence of the shaped laser
field is solved. Explicitly, the time-dependent profile of the
pulse, which completely determines the dynamics after the
transition to the rotating frame has been performed, is de-
scribed by:

E(t) =

Z ∞

−∞
A(ω) exp(iφ(ω)) exp(iωt) dω, (1)

where A(ω) is a Gaussian window function describing the
contribution of different frequencies to the pulse and φ(ω),
the phase function, equips these frequencies, which are equally
distributed across the spectrum of the pulse, with different
complex phases. Hence, by changing φ(ω), the temporal
structure of E(t) can be altered.

The careful reader should note that E(t) cannot be writ-
ten in a closed-form, in most of the cases, since the ana-
lytical solution of a Fourier-transformed arbitrary complex
function is usually impossible to obtain.

In a real life pulse shaping experiment, A(ω) is fixed and
φ(ω) is used to control the shape of the pulses. The same
approach in usually used in numerical simulations, i.e. the
search space is in the frequency domain while the
function evaluation is performed in the time do-
main. φ(ω) is interpolated at n frequencies {ωi}n

i=1; the
n values {φ(ωi)}n

i=1 are the decision parameters to be opti-
mized. After the evaluation of the field-molecule interaction,
the alignment’s quantity is defined as the expectation value
of the cosine-squared of the angle of the molecular axis with
respect to the laser polarization axis. However, the descrip-
tion of the molecule as a rigid rotator is strictly valid only
for low field intensities, and the higher the applied intensity,
the more important other competing channels like dissocia-
tion and ionization will become. Therefore, one would like
to achieve good alignment while keeping the peak laser in-
tensity as low as possible.

This quantum control problem has been tackled at sev-
eral levels. A recent study presented a survey of modern
evolutionary approaches to the problem, and showed that it
payed off to use more elaborated optimization schemes, and
in particular Derandomized Evolution Strategies, for such a
high-dimensional optimization task [6].

3. SECOND HARMONIC GENERATION
A measure of field intensity is given by the Second Har-

monic Generation, as will described here. A laser pulse go-
ing through certain crystals produces light at the octave of
its frequency spectrum. The total energy of the radiated
light is proportional to the integrated squared-intensity of
the primary pulse. The time-dependent profile of the laser
field is exactly as given in Eq. 1.
The Second Harmonic Generation signal is then defined by:

SHG =

Z ∞

0

|E(t)|4 dt (2)

i.e., an integration over time of the intensity. Since E(t) is
usually cannot be given in a closed-form, this integral has
to be calculated numerically. Second Harmonic Generation
(SHG) is a process that turns out to be a good test case
in the physics lab, and its investigation contributes to the
understanding of the alignment problem. This is due to the
fact that the SHG is a measure of the spikiness of a pulse,
and this property is useful for the definition of a punish-
ment function for the dynamic molecular objective function,
due to the sole validity of low field intensities. Moreover, a
multi-criteria approach has been applied to the alignment
problem, where the SHG is playing a key role as one of the
criteria. The cosine-squared alignment is the primary objec-
tive, subject to maximization, and the minimization of the
SHG was set as the secondary objective, for the fulfillment of
the rigid-rotor physics approximation. Preliminary results
of that study reveal the nature of the trade-off between the
angular alignment and the intensity, which was expressed
through the second harmonic generation, and it seems that
the importance of the intensity criterion is likely to govern
the decision of the expert on the trade-off surface, which
is to look for solutions with relatively good cosine-squared
alignment values in the region of fair trade-offs.
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From the theoretical point of view, the SHG is a simple
function, with some interesting properties that will be shown
here, but yet not an easy optimization task for global opti-
mizers.

3.1 Mathematical Properties
The following section is mainly based on Bracewell [2].

In order to show some properties of this function, it is con-
venient to work in the frequency space.

Definition 1. Given the spectral amplitude equipped with
the complex phases, E(ω) = A(ω) exp(iφ(ω)), consider its

autocorrelation (convolution) function Ẽ(ω):

Ẽ(ω) = E(ω) ∗ E∗(ω) =

=

Z ∞

−∞
E∗(Ω) · E(Ω + ω)dΩ =

Z ∞

−∞
E(Ω) · E∗(Ω − ω)dΩ

where E∗(ω) denotes the complex conjugate.

We would like to show how this autocorrelation function in
the frequency domain is linked to the time domain:

Theorem 1. The autocorrelation function of the spectral
amplitude, Ẽ(ω), is equal to the Fourier transform of the
time-dependent intensity function, i.e.:

Ẽ(ω) =

Z ∞

−∞
|E(t)|2 exp (−iωt) dt (3)

Proof.

Ẽ(ω) =

Z ∞

−∞
E∗(Ω) · E(Ω + ω)dΩ =

=

Z ∞

−∞

»Z ∞

−∞
E∗(t) exp (iΩt) dt

–
·»Z ∞

−∞
E(τ ) exp (−i(ω + Ω)τ ) dτ

–
dΩ =

=

Z ∞

−∞

Z ∞

−∞

Z ∞

−∞
E∗(t)E(τ ) exp (−iΩ(t − τ )) ·
exp (−iωτ )dΩ dt dτ

=

Z ∞

−∞

Z ∞

−∞
E∗(t)E(τ )δ(τ − t) exp (−iωτ ) dt dτ =

=

Z ∞

−∞
E∗(t)E(t) exp (−iωt) dt =

Z ∞

−∞
|E(t)|2 exp (−iωt) dt

where δ(x − x̃) is the Dirac delta function.

Theorem 2. (Plancherel’s Theorem) Given f(x), which
has the Fourier transform F (s), the integral over the squared
modulus of f(x) is equal to the integral over the squared mod-
ulus of its spectrum F (s):Z ∞

−∞
|f(x)|2dx =

Z ∞

−∞
|F (s)|2ds

See Bracewell [2] for the proof.

Thus, we can conclude from theorems 1 and 2 thatZ ∞

−∞
|Ẽ(ω)|2dω =

Z ∞

−∞
|E(t)|4dt = SHG (4)

Global Maximum
Theorem 3. The SHG is maximized by a zero phase func-

tion:

argmaxφ(ω) {SHG(φ (ω))} ≡ 0

Proof. It is convenient to show this in the frequency
domain. Using the result obtained at Eq. 4, we may write

SHG =

Z ∞

−∞
|Ẽ(ω)|2dω =

=

Z ∞

−∞

˛̨̨
˛
Z ∞

−∞
E(Ω) · E∗(Ω − ω)dΩ

˛̨̨
˛
2

dω =

Apply a change of variables ω̃ = Ω− ω
2
, and consider only

the integrand:˛̨̨
˛
Z ∞

−∞
E
“
ω̃ +

ω

2

”
· E∗

“
ω̃ − ω

2

”
dω̃

˛̨̨
˛
2

=

=

˛̨̨
˛
Z ∞

−∞
A
“
ω̃ +

ω

2

”
· A
“
ω̃ − ω

2

”
·

exp
n

i
h
φ
“
ω̃ +

ω

2

”
− φ

“
ω̃ − ω

2

”io
dω̃
˛̨̨2

(5)

and the integral is now split into real functions of the spec-
trum, A (ω), and the appropriate complex phases. From el-
ementary theory of complex numbers, we know that a sum
over complex numbers can only be maximized if all its ele-
ments share the same phase, otherwise a disruptive superpo-
sition effect would occur. Here, due to the symmetric nature
of the phase term in the integrand,

ˆ
φ
`
ω̃ + ω

2

´− φ
`
ω̃ − ω

2

´˜
,

which has to occur for every ω, it is obvious that only a con-
stant term could generate equal phases, i.e.

∀ω φ
“
ω̃ +

ω

2

”
= φ

“
ω̃ − ω

2

”
and thus only a constant (flat) phase can maximize the in-
tegral. Among all the constant functions, the zero phase
function is the global maximum of the SHG, due to an inte-
gration constant.

Symmetry
Theorem 4. Mirror-image symmetry with respect to ev-

ery axis is required by the phase function to enhance the
SHG, i.e., given a phase function, an increase in the SHG
value can be achieved only if each phase point is equal to its
mirror-image-point with respect to every mirror-axis.

Proof. Rewriting Eq. 5 in terms of ”left” (L) and ”right”
(R) elements in the integrand (with respect to ω

2
), one ob-

tains:

SHG =Z ∞

−∞

˛̨̨
˛
Z ∞

−∞
A (R) · A (L) · exp {i [φ (R) − φ (L)]} dω̃

˛̨̨
˛
2

dω

Using the same argumentation given in the previous proof,
it is clear that only mirror-image symmetry with respect to
ω
2
, for every value of ω, could enhance the SHG value,

and thus the theorem holds.

Theorem 4 originates from the convolution nature of the
construction process. Figure 1 provides the reader with an
illustration for the so-called mirror-image effect - the contri-
bution of two phase points around the central frequency ω0
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Figure 1: Construction of Ẽ (ω) out of E (ω).

at E (ω), φ (ω0 + ω1) and φ (ω0 + ω2), to the construction

of Ẽ (ω) with φ (2 · ω0 + ω1 + ω2). Notice the shift in the
central frequency, and the scaling of the Gaussian.

3.2 The SHG Optimization Problem
We hereby formally present the SHG test problem. Intro-

duce the unnormalized discrete form of the SHG,

fSHG(�ϕ) =

n−1X
k=0

|Ek|4 =

n−1X
k=0

˛̨̨
˛̨n−1X

l=0

Al · exp {iϕl} exp

j
2πi

n
kl

ff˛̨̨˛̨
4

(6)
and consider its maximization:

fSHG(�ϕ) → max

Maximizing fSHG is equivalent to finding a vector �ϕ∗ ∈ R
n

which satisfies

∀�ϕ ∈ R
n : fSHG(�ϕ) ≤ fSHG(�ϕ∗) ≡ f∗

SHG

Based on the theorems given in the previous section, we
know that the SHG maximization problem can be solved by
locating a flat (zero) phase function.

Intuitively, this seems to be an easy optimization task,
maybe even a continuous equivalent problem to the count-
ing ones (zeros) problem for GAs [1], with a trivial global
maximum. On top of that, the symmetry property looks
as if it could assist the optimizer to find the global maxi-
mum in a fairly easy way. On the other hand, the search
space is in the frequency domain while the fitness evalua-
tion is performed in the time domain (or after convolution,

respectively), and this transformation seems to capture the
difficulty for an optimizer.

One can draw an analogy between the frequency-time trans-
formation and the genotype-phenotype mapping of the tra-
ditional GA [1]. In essence, the decision parameters to be
optimized, the analogue to the genotype, parameterize the
phase function in the frequency domain. The Fourier trans-
form then maps the phase function onto the time-dependent
electric field. The latter undergoes an evaluation of its fit-
ness, integration in our case, and thus plays the analogue
role of the phenotype.

As for the numerical details, to this end φ(ω) has been in-
terpolated at n frequencies {ωi}n

i=1; the n values {φ(ωi)}n
i=1

are our decision parameters to be optimized.
The global maximum is normalized to 1:

max {fSHG} = fSHG

“
�0
”

= 1 (7)

Yet, it had been already shown experimentally that it was
not an easy task at all for an evolutionary algorithm to find
the global maximum of the SHG when parameterizing the
phase function with at least n = 80 function values to be
interpolated.

A survey of EAs, which was applied to the dynamic molec-
ular alignment optimization task, considered the SHG max-
imization as a preliminary task for the algorithms in use
[6]. Most of the techniques, ranging from the traditional
GA and the standard ES to sophisticated derandomized ES
variants, failed to find a good solution to the SHG max-
imization problem after 10000 function evaluations. Note
that for the binary-coded GA that was applied for this task,
this problem is defined as the maximization of the counting
zeros problem - and yet it performed poorly.

Only two derandomized ES variants performed well and
were clearly superior with respect to the other techniques.
Moreover, that study showed a consistency between the
performance per algorithm on the SHG versus the
alignment problem, which provides us with further
motivation to investigate the SHG.

3.3 Problem Difficulty: Numerical Assessment
In order to assess the complexity of the SHG maximization

problem, and as a numerical validation for the theoretical
results presented in the previous section regarding the sym-
metry property of the function, we conducted the following
simple statistical test. We consider a phase function with
n = 100 function values, which are randomly initialized in
the interval [0, 2π], and three different routines to maximize
the SHG: (1) setting function values to zero when consis-
tently indexing from right to left, (2) consistent indexing
from left to right, and (3) random permutation of indices,
with no repetition, setting values to zero. These routines
were run 100 times, while the SHG values were recorded
at each time-step per routine. Figure 2 presents the mean
values and standard deviations per time-step for the three
routines. It is clear from this plot that around 45% of the
function values must be set to 0 in the consistent indexing
in order to enhance the SHG value, no matter what was the
direction of the scan. This is expected from theory - due
to the shape of the Gaussian, there is only a negligible con-
tribution to the SHG value from points which are far from
the central peak, and only around that frequency the value
dramatically increases, subject to the “mirror-image” condi-
tion (theorem 4). The random permutation routine can set
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Figure 2: Setting function values to 0: numerical
results over 100 runs.

two mirror-image phase points to zero at every time-step,
even in the area of the central frequency, and hence it has
a different profile of mean values and their standard devia-
tion respectively. Still, on average, its SHG value does not
“take-off” until approximately 1

3
of the function values are

set to 0. It is interesting to observe how close the profile
of the SHG of the consistent indexing (routines (1) and (2),
direct as well as reverse) is to the positive half of a scaled
error function,

erf(x) =
2√
π

Z x

0

e−t2dt

This also suggests how slow the descent from the SHG global
maximum value towards sub-optimal solutions is.

4. ALGORITHMS
Based on previous experience with quantum control prob-

lems, and due to experimental results that showed that
certain variants of Derandomized Evolution Strategies are
superior with respect to other Evolutionary Algorithms on
those problems, we restrict our study to these algorithms.
Here, we provide a short background of the specific variants
in use.

4.1 Derandomized Evolution Strategies
Mutative step-size control tends to work well for the adap-

tation of a global step-size, but tends to fail when it comes to
the individual step-size. This is due to several disruptive ef-
fects [3] as well as to the fact that the selection of the strategy
parameters setting is indirect, i.e. not the vector of a suc-
cessful mutation is used to adapt the step-size parameters,
but the parameters of the distribution that led to this muta-
tion vector. The so-called derandomized mutative step-size
control aims to tackle those disruptive effects. The first ver-
sions of derandomized ES algorithms introduced a controlled
global step-size in order to monitor the individual step-sizes
by decreasing the stochastic effects of a probabilistic sam-
pling. The selection disturbance was completely removed
with later versions by omitting the adaptation of strategy
parameters by means of probabilistic sampling. This was
combined with individual information from the last gener-

ation (the successful mutations, i.e., of selected offspring),
and then adjusted to correlated mutations. Later on, the
concept of adaptation by accumulated information was in-
troduced, aiming to use wisely the past information for the
purpose of step-size adaptation: instead of using the infor-
mation from the last generation only, it was successfully
generalized to a weighted average of the previous genera-
tions.
It is important to note that the different variants of deran-
domized ES hold different numbers of strategy parameters
to be adapted, and this is a factor in the learning speed of
the optimization routine: it is either a linear or quadratic
order in terms of the dimensionality of the search problem
n, and there seems to be a trade-off between the number
of strategy parameters and the time needed for the adapta-
tion/learning process of the step-sizes.
An explicit description follows.

The (1, λ)-DR2 Algorithm
The DR2 Algorithm [5] is considered to be the second gen-
eration of the derandomized Evolution Strategies. This vari-
ant uses a linear number in n of strategy parameters, and
it aims to accumulate information about the correlation or
anti-correlation of past mutation vectors in order to adapt
the step-size:

�xg+1 = �xg + δg�δg
scal

�Zk �Zk = �N (0, 1) (8)

�Zg = c�Zsel + (1 − c) �Zg−1 (9)

δg+1 = δg ·
0
@exp

0
@

˛̨̨
�Zg
˛̨̨

√
n
q

c
2−c

− 1 +
1

5n

1
A
1
A

β

(10)

�δg+1
scal = �δg

scal ·
0
@
˛̨̨
�Zg
˛̨̨

q
c

2−c

+ 0.35

1
A

βscal

(11)

where �ξscal = �N (0, 1)+, �Z ∈ {−1, +1}n, and β, βscal, b and
ξk are constants.

The (μW , λ) Covariance Matrix Adaptation ES
The (μW , λ)-CMA-ES algorithm [3] is known as the state-
of-the-art among of the derandomized ES variants (could
also be considered as DR4). It has been successful for treat-
ing correlations among object variables, where it applies
principal component analysis (PCA) to the selected muta-
tions during the evolution, also referred to as “the evolution
path”, for the adaptation of the covariance matrix of the
distribution. The concept of weighted recombination is in-
troduced: applying intermediate multi-recombination on the
best μ out of λ with given weights {wi}μ

i=1. The result is

denoted with 〈�x〉W . Furthermore, �p
(g)
c ∈ R

n is the so-called
evolution path, the crucial component for the adaptation of

the covariance matrix, and �p
(g)
σ ∈ R

n is the conjugate evo-
lution path, which is responsible for the step-size control.
C(g) ∈ R

n×n, the covariance matrix of the mutation distri-

bution (C(g) = B(g)D(g)
“
B(g)D(g)

”T

):

�xg+1 = 〈�x〉W + σgB
gDg�zg+1

k (12)

�pg+1
c = (1 − cc) · �pg

c + cu
c · cW BgDg 〈�z〉g+1

W (13)
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Cg+1 = (1 − ccov) · Cg + ccov · �pg+1
c

`
�pg+1

c

´T
(14)

�pg+1
σ = (1 − cσ) · �pg

σ + cu
σ · cW Bg 〈�z〉g+1

W (15)

σg+1 = σg · exp

 
1

dσ
·
‚‚�pg+1

σ − χ̂n

‚‚
χ̂n

!
(16)

where χ̂n is the expected length of �pσ.
cc, ccov, cσ and dσ are learning/adaptation rates, {wi}μ

i=1

are the recombination weights, and cu
c :=

p
cc(2 − cc), cW :=

P
wi

µ
i=1√P

w2
i

µ
i=1

and cu
σ :=

p
cσ(2 − cσ) are derived respectively.

All weighting variables and learning rates were applied as
suggested in the given citations, and particular in [3].
For more details regarding the family of derandomized ES
we refer the reader to [3].

5. SCALABILITY: NUMERICAL RESULTS
We hereby present our experimental framework for study-

ing the scalability of Evolution Strategies with respect to the
Second Harmonic Generation problem, i.e., the performance
of the optimization routine as a function of the problem’s
dimensionality n.

We begin by testing the natural quality of the various
parameterizations. This is followed by the crucial element
of this study - selecting the strategy - and then we apply it to
the optimization of the function in an increasing dimensions
of the problem.

All numerical experiments were executed with Matlab
7.0 under Suse-Linux.

5.1 Preliminary: Initial States Density Test
The following preliminary experiment is meant to com-

pare the natural initial quality of the different parameteri-
zations. We applied a so-called initial states density test, a
statistical fitness measurement of the initialized phase func-
tions in the different parameterizations. For each parame-
terization in use, n = 80...2000, we initialized 1000 phase
functions and calculated the mean fitness and the standard
deviation respectively.

Figure 3 presents the statistical results for this test. The
scale of initial values is one order of magnitude: [0.005, 0.055].
As n increases, the initial fitness mean value dramatically
drops, in particular for n > 200. At some point, the initial
value stabilizes on f init

SHG ≈ 0.005 with a very low standard
deviation.

5.2 Preliminary: Selecting a Strategy
It had been shown in [6] that only two derandomized Evo-

lution Strategies performed well on the SHG maximization
task - the DR2 and the CMA-ES algorithms. Due to the
low number of experiments (5 runs per algorithm) on which
that conclusion was based upon, we conducted a prelimi-
nary set of runs in order to select our strategy. The reader
should keep in mind that there are dramatic practical con-
sequences for the choice of strategy for this study - the DR2
holds a linear number of strategy parameters in n, whereas
the CMA-ES holds a quadratic number of strategy param-
eters - and since the goal of this research is to study the
dimensionality, the CMA-ES is expected to face numerical
difficulties far earlier than the DR2.
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Figure 3: Initial states density test for the various
parameterizations, n = 80...2000: mean and standard
deviation over 1000 random initializations in the in-
terval [0, 2π].

Table 1: Maximizing the SHG over 100 runs with
n = 100 function values: 104 function evaluations per
run.

SHG (1, 10)-DR2 (1, 10)-CMA (8, 17)-CMA

Mean 0.9984 0.9880 0.9629
Std 0.0043 0.0006 0.0822

We considered 100 runs of 104 function evaluations of the
two strategies in the following settings: (1, 10)-DR2, (1, 10)-
CMA-ES and (8, 17)-CMA-ES (the latter is the default pop-
ulation size for the given problem by Hansen et al.). The
numerical results of that run are given in table 1. It is clear
that the DR2 algorithm outperforms the CMA-ES on this
particular problem, and hence it is selected as our strategy
for this study.

From the practical point of view this result is positive,
for the reason mentioned earlier, and it would allow the
investigation of scalability more easily from the numerical-
technical perspective.

5.3 Scan over Dimensions
We apply the DR2 algorithm to the SHG maximization

problem, with an increasing number of function values. We
consider n0 = 80 as the basic parameterization of the phase
function, and we go up to nup = 2000 function values - with
steps of Δn = 10. We consider two different experiments:

1. Obtaining the maximal SHG value with 104 function
evaluations; 20 runs per parameterization.

2. Evaluating the required number of function evalua-
tions for reaching the global maximum, with an upper
bound of 106 evaluations; 10 runs per parameteriza-
tion.

The result obtained for the first routine is plotted as Figure
4. As can been observed in the plots, the performance in
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Figure 4: SHG value obtained with DR2 given
104 function evaluations; mean and standard devi-
ation over 10 runs per dimension. Top: full scan
(n = 80..2000); bottom: zoom-in (n = 80..400).
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Figure 5: Log number of evaluations required for
the DR2 to reach the SHG global maximum, given
up to 106 function evaluations; mean over 10 runs
per dimension, with the curve-fit to the data.
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Figure 6: Sensitivity of the global maximum as a
function of σ for n = 100, 500, 1000, 2000: mean over
100 evaluations per point. Top: full scan (σ ∈ [0, 2]);
bottom: zoom-in (σ ∈ [0, 0.2]).

this test-case is dramatically compromised as the dimension-
ality n increases. For values around n = 200 the final result
for 104 function evaluations is already pretty low, and this
trend becomes a complete disaster for n > 500. We con-
clude that the number of function evaluations is a crucial
element already for low dimensions. Figure 5 presents
the result of the second scanning routine. The number of
function evaluations required for the location of the global
maximum seems to be a polynomial function of the 3rd de-
gree in the dimensionality n. Explicitly, the curve fitting
routine suggested the following function as the curve-fit:

Fcurve−fit = −0.00063 · n3 + 0.58 · n2 + 120 · n + 4800

With relatively small coefficient for the 3rd term, one can
consider this function as a quasi-quadratic function in the
specified domain. This is not an intuitive result, given the
first scan-experiment, presented earlier. We can conclude
that even though the optimization routine fails to accom-
plish a successful global maximum location with 104 function
evaluations as the dimension increases, it requires only a
quasi-quadratic increase of function evaluations for
this task.
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Figure 7: log-sensitivity of the global minimum
of the sphere function as a function of σ for n =
100, 500, 1000, 2000: mean over 100 evaluations per
point. Dramatic differences between the dimensions
are observed.

5.4 Sensitivity Analysis
Given the numerical results of the previous section, we

would like to test the sensitivity of the global maximum in
the different parameterizations, i.e., the various scalability
dimensions n. We apply the following numerical sensitiv-
ity analysis routine: given the global maximum, �x∗ = �0 of
dimension n, normally-distributed variations are applied to
it with zero-mean and an increasing variance. We then de-
fine the sensitivity of the global maximum in dimension n
to standard deviation σ as:

Δ (n, σ) = max {fSHG} − fSHG

“
�x∗ + σ · �N (0, I)

”
=

= 1 − fSHG

“
σ · �N (0, I)

”
(17)

This routine is applied throughout a scan of σ, whereas
Δ (n, σ) is evaluated 100 times per σ and averaged. We
applied this test for 4 different parameterizations:
n = 100, 500, 1000, 2000. The outcome of this test is
plotted as Figure 6. This test reveals a logistic profile of the
sensitivity of the global maximum: an exponentially increas-
ing sensitivity for low values of σ (order of σ = 0.1), with
saturation of 1 for high values (order of σ = 1). Surpris-
ingly, the cases n = 500, 1000, 2000 share the same profile,
whereas n = 100 seems to have a slightly lower sensitivity
for the high values of σ.
We may conclude that the global maximum is robust in the
context of our search, in all dimensions, since the order of
magnitude of the step-size reaches the regime of σ ≈ 0.1
fairly fast. For comparison, we applied an equivalent sen-
sitivity test to the sphere function; see Figure 7. Clearly,
the various dimensions have different sensitivities (note the
log-scale), but share a parabolic profile.

6. CONCLUSIONS AND OUTLOOK
We have introduced the Second Harmonic Generation as

a theoretical test function for global optimization and pro-
vided the reader with the motivation for its investigation.

We have derived analytically its mathematical properties,
that could have suggested an easy global optimization, but
later on showed experimentally that this was not an easy
task for the advanced Evolution Strategies. We conclude
that the SHG captures the complexity of the Fourier trans-
form between the decision space to the evaluation space, and
by that it challenges the optimization routines. We sug-
gested an analogy between the genotype-phenotype map-
ping and the Fourier transform which acts on the phase
function to construct the time-dependent electric field. The
Fourier transform is an elementary transformation in physics
problems, and in particular in quantum control calibration
tasks, as was discussed here. It seems that no existing rou-
tine among the Evolutionary Algorithms, except for a spe-
cific variant of derandomized ES, the so-called DR2, could
tackle the SHG problem in a satisfying manner.

Given that, we have performed a scalability test of this
ES variant, with respect to the SHG problem, and con-
cluded that even though the optimization routine fails to
accomplish a successful global maximum location with 104

function evaluations as the dimension increases, it requires
only a quasi-quadratic increase of evaluations for the sake
of the global maximum location. Later on we performed
an experimental sensitivity analysis of the global maximum,
and concluded that it is a robust optimum.

We would like to post a message and encourage the EC
community to consider this SHG function as a theoretical
test case in future work. Moreover, as our future work
we plan to further investigate the scalability of Evolution
Strategies with respect to other case-studies. Additionally,
we would like to consider the design of a complex-number
Evolution Strategy, that could be applied directly to the
electric field parameters in physics problems.
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Vrakking. Evolutionary algorithms in the optimization
of dynamic molecular alignment. Optics
Communications, 264:511–518, Aug. 2006.

[7] H. Stapelfeldt. Rev. Mod. Phys., 75(543), 2003.

720



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


