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ABSTRACT 
A novel optimisation accelerator deploying neural network 
predictions and objective space direct manipulation strategies is 
presented. The concept of directing the search through the use of 
‘mirage’ solutions is introduced and investigated. The accelerator 
is meant to be a portable component that can be plugged into any 
stochastic optimisation algorithm, such as genetic algorithms. The 
purpose of the new component termed as the Informed 
Convergence Accelerator (ICA) is to enhance the search 
capability, convergence extent and most especially the speed of 
convergence of the hosting stochastic global optimisation 
technique. ICA was hybridized with the Non-Dominated Sorting 
Genetic Algorithm (NSGA-II). Enhanced results were achieved 
demonstrating the utility of the introduced component. 

Categories and Subject Descriptors 
I.2.8 Computing Methodologies: Artificial Intelligence -Problem 
Solving, Control Methods and Search.  

General Terms 
Algorithms, Performance, Experimentation,  

Keywords 
Evolutionary Multiobjective Optimisation, Convergence 
Acceleration 

1. INTRODUCTION 
Differently from single objective optimisation which aims to 
maximize, minimize or achieve a certain goal value for a single 
objective, multiobjective optimisation consists of multiple criteria, 
more often competing, that need to be optimised simultaneously. 
Automotive and aerospace applications provide illustrations of 
some typical design challenges and demonstrate that these 
problems often involve a large number of objectives. Solving a 
Multiobjective Optimisation Problem (MOP) consist of finding a 
well distributed set of optimal solutions or tradeoffs which cannot 
be improved furthermore in terms of any single objective without 

introducing a consequential deterioration in terms of one or more 
other competing objectives. This set of optimal solutions is called 
the Pareto optimal set. Without any loss of generality, an 
optimisation problem can be formulated as a minimization of a 
certain function Z(X), where Z(X) = {Z1(X)...Zn(X)} is a vector 
of objective functions, n is the number of objectives to be 
optimised and X is a vector of decision variables. In Figure 1 an 
optimisation problem where 3 decision variables are optimised 
with respect to two competing objectives is illustrated. A 
multiobjective optimiser tackling a MOP should ideally provide 
the decision maker (DM) with a diverse set of tradeoff solutions 
close to or preferably lying on the true Pareto front. In optimal 
scenarios, the set of solutions for a MOP, also called 
approximation set [1], is achieved within an acceptable amount of 
time and an affordable budget of computational effort.   

 

Figure 1. The Multiobjective Problem Domain. 
Evolutionary Algorithms (EAs) are well tuned for solving MOPs 
due to their ability to explore vast solution spaces and search from 
a family of candidate solutions. Traditional evolutionary 
computation (EC) techniques usually consist of an explorative set 
of procedures in the decision variable space represented by 
recombination and mutation. Despite their utility for solving 
MOPs, EAs repeated search in the decision variable space 
imposes an extensive number of objective function calculations 
and therefore makes these approximation techniques 
computationally expensive especially when dealing with objective 
functions which are expensive to evaluate in themselves.  

The use of surrogate models using Neural Networks (NN), or 
other metamodelling techniques such as Kriging-based 
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approximations or response surface models [2], [3] is a well 
established strategy that replaces the computation of actual 
objective functions and reduces the computational burdens of EAs 
caused by the calculation of expensive objective functions. 

In this work a new add-on operator that accelerates the cycle of 
multiobjective optimisers is introduced. The operator termed as 
the Informed Convergence Accelerator (ICA) is based on an 
underlying machine learning strategy that deploys neural networks 
to learn and capture the function that maps from the objective 
space to the decision variable space of a MOP. Although it makes 
use of metamodelling techniques in an unconventional way, ICA 
is not designed as a metamodel which substitutes the use of the 
real objective functions. The ICA is a portable component that can 
be plugged into any stochastic optimisation algorithm, such as 
EAs. Its main purpose is to enhance the search capability of the 
hosting EA by increasing the speed of convergence of the handled 
solutions towards the Pareto front. The convergence acceleration 
resulting from the ICA does not interfere with the active 
diversification mechanisms of the hosting search strategies and 
requires reduced budgets of objective function evaluations. 

EAs have traditionally emphasized decision space exploitation 
and decision space to objective space mapping and have failed to 
make direct exploitation of the objective space. Differently from 
traditional EAs, ICA makes use of the predictive capabilities of 
neural networks and an innovative direct search in the objective 
space. Performing local search in the objective space was 
previously introduced in [4], and briefly suggested in [5] and [6] 
and was demonstrated to be beneficial. The ICA suggests 
deterministically improved solutions in the objective space 
together with their decision variables which are predicted by the 
trained NN. This composes the machine learning component of 
ICA. The suggested solutions expose enhanced regions in the 
objective and the decision space and guide the optimiser’s search 
towards good regions of solutions at a much faster rate. These 
introduced solutions might be either unfeasible or lacking 
accuracy in the decision variable space, but uncover very 
promising and desirable regions in the objective and the decision 
space. Indeed, studies [7] [8] showed that keeping dominated and 
infeasible solutions in the population helps enhancing the 
explorative capacities of the optimiser. 

In the context of this work ICA is hybridized with the Non-
Dominated Sorting Genetic Algorithm (NSGA-II) [9] (Figure 5), 
a well-established multiobjective optimiser in the Evolutionary 
Multiobjective Optimisation (EMO) community. 

In the following sections of the paper, a brief introduction of 
neural networks and the needed concepts for this paper will be 
presented. The suggested ICA will then be introduced and 
described in details. Last but not least, the experimental results 
will be shown and future work directions will be stated. 

2. NEURAL NETWORK 
Neural Networks are a powerful approach for modeling stochastic 
and noisy patterns of data in order to produce predicted values for 
unknown systems. The NN needs to be trained in order to achieve 
desirable predictions and model complex functions accurately. 
The process of training a NN consists of feeding it with samples 
of data and manipulating weighting variables by adjusting their 
values and minimizing prediction errors. When training a NN, it is 
vital to ensure well-spread and problem defining data. Multilayer 

perceptrons (MLPs) [10] (Figure 2) are feedforward neural 
networks usually trained with the standard backpropagation 
algorithm [10, 11]. They are supervised networks that require 
training with exact collected data. MLPs are widely used in the 
field of pattern classification and recognition. Hybridizing NN 
with an EA is very useful for approximating expensive objective 
functions.  

 

Figure 2. Multi Layer Perceptron 

3. THE INFORMED CONVERGENCE 
ACCELERATOR 
3.1 Motivation 
In many application domains, it might be required to rerun a 
MOEA, as such stochastic optimisation techniques has no 
guarantee for finding optimal solutions within a single run. The 
need for re-executing a MOEA is especially required when facing 
a multiobjective optimisation scenario, where decision maker’s 
preferences might progressively change over time. Initializing a 
MOEA with a population of previously stored good solutions 
does not necessarily satisfy the DM’s interests and meet the 
desired scenarios. Indeed, it might be required to converge to a 
new region of interest (ROI) ignoring or constraining certain 
objectives or dimensions. Unless certain progressive preference 
articulation techniques are incorporated in the search process and 
are manipulating the fitness assignment procedure, restarting a 
new run of a MOEA from a certain front in the objective space 
might not converge to the new articulated ROI. This scenario 
especially occurs if the new preference articulations aim at 
stressing regions of the space previously considered as sub 
optimal during the previous runs.  

3.2 Training The Neural Network 
In this work, a NN was deployed to capture the function which 
maps a certain objective vector back to its corresponding vector of 
decision variables. This is achieved by training a NN with the 
objective vectors as inputs and their corresponding decision 
variables as outputs. The training data is the exact data resulting 
from the entitled executions of the objective function within the 
cycle of a single run of a MOEA. Moreover, the training of the 
neural network takes place offline during an entire previous 
execution of a certain MOEA. The offline training of the NN 
allows it to establish a ‘good knowledge’ about the global 
landscape of the objective and decision space of a certain 
optimisation problem. The NN is then used -when and if required- 
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at a following execution of the same MOEA or an alternative 
MOEA attempting to solve the same optimisation problem. More 
specifically, a multilayer perceptron was deployed for training a 
NN with the exact data resulting from 20000 executions of the 
objective functions used in this work within 200 generations of 
NSGA-II. The architecture of the NN was designed based on a 
trial-and-error set of experimentations. The standard 
backpropagation algorithm was used for training the NN. 

3.3 Mining the Objective Space 
The ICA consists of a local improvement procedure in the 
objective space followed by a mapping process to the decision 
space. The local improvement will be responsible for enhancing 
the quality of the current front handled by a MOEA, especially 
when the search gets stagnated at certain areas of the space after 
certain number of generations.  

Because of the stochastic nature of MOEAs’ search, it is 
noteworthy that in many scenarios the manipulated solutions only 
become interesting after a considerable number of generations, 
especially when the MOEA is initialised with a random 
population of solutions. The introduced ICA speeds up the 
optimiser and guides the search towards ROIs in the objective 
space upon the DM/Operator’s command. Executing ICA early in 
the optimisation process is particularly efficient as this accelerates 
the process of exploring and reaching superior areas of the 
hyperspace which otherwise would be reached at much later 
phases of the process. In this way the optimiser efficiently spends 
the significant amount of generations exploiting ROIs and near 
optimal regions of the hyperspace. Figure 3 illustrates the actions 
of the hybridised MOEA which includes the ICA. Trajectories 2 
and 3 describe the specific actions of the ICA. 

Trajectory 1: the mapping between a decision variables vector 
realised by a MOEA and its corresponding computed objective 
values vector.  

Trajectory 2: the resulting objective vector – a member of the 
approximation set at generation ‘n’ - is improved in the objective 
space. 

Trajectory 3: a prediction of the decision variables vector 
corresponding to the improved objective vector is made using the 
neural network previously trained with the exact data resulting 
from an earlier execution of an MOEA.       

Once executed, the ICA starts by creating a ‘mirage’ new set of 
solutions in the objective space. The new solutions are a 

deterministically improved version –in terms of Pareto optimality 
or DM preferences- of the current front of solutions (in the 
objective space) handled by the optimiser. The introduced 
solutions -objective vectors and their estimated decision vectors- 
predicted by the previously trained NN, can be thought of as baits 
thrown at desired and specific locations in the objective space. 
These solutions are termed as ‘mirage’ because they can map to 
inaccurate decision variables in the vicinities of the real decision 
variables. Nevertheless, these solutions attract the MOEA and 
force it to reconsider the content of the active archive. Basically, 
the devised solutions signal to the optimiser that a more attractive 
area of the space is exposed. The optimiser abandons the sub 
optimal solutions it is dealing with, filters out the inferior points, 
and converges towards the highlighted regions of the objective 
and the decision variable space.  

When close enough to the Pareto front, careful and delicate step 
sizes should be taken when introducing the new solutions in the 
objective space to avoid leaping into the infeasible regions of the 
objective and/or the decision space. In the context of this work, 
the objective space improvement process was based on simple 
transitions and linear interpolation similar to the local search 
applied in [4] and [6] (Figure 4).  

The step size of the objective space improvement is an application 
dependent parameter, and should be influenced by the landscape 
of the objective space, which is proper to a certain problem. In the 
context of this set of experimentations, and after investigating 
different step sizes (in the range 1% to 20%), the step size (X in 
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Figure 4) of the objective space improvement was set to an 
average of 10% progression of the objective values towards the 
next best values achieved at the time of the local improvement. 
Future work will be dedicated for experimenting the use of 
progressively articulated objective space improvement step sizes 
towards goal values and ROI. 

-Initialize Population 
-Generate random population P0– size Nind 
-Evaluate objective values  

For i=1 to Gen 
-Assign rank to Pi-1  
-Calculate Crowding measure of solutions in Pi-1  
-Generate offspring population Q – size Nind 

           -Binary tournament selection 
           -Recombination and Mutation 
           -Evaluate objective values for the offspring population Q 

          -Combine parent population Pi-1 and offspring Population 

           Q – size: 2*Nind 
-Assign rank to the combined Population 
-Determine crowding distance for the combined Population 

-Select Nind solutions to form Pi and propagate to the next 
generation  

 
 

 

 
 
End loop 

Figure 5. NSGA-II Hybridized with ICA 
After improving the objective vector in objective space, a more or 
less accurate prediction of the corresponding decision variable 
vectors are predicted using the previously trained NN. The ICA 
does not look for adjusting any decision variables inaccuracy, and 
therefore does not require any additional objective function 
evaluations. However, this is achieved on the expense of a 
constrained usage mode. Using the ICA, any accompanied 
inaccuracy introduced by the NN will be observed for a certain 
number of generations. It is therefore suggested that the ICA 
should be executed in an interruptible way and upon the DM 
request. The MOEA should also be executed on its own for a few 
generations, after stopping the ICA process, in order to allow for 
self-readjustment, or ‘cooling down’, of any decision variables’ 
imprecision introduced by the NN predictions (step 4 in Figure 3). 
The self-readjustment of any results’ imprecision will be achieved 
by the exploitation/exploration processes (which include the 
evaluation of the exact objective function) of the MOEA in the 
highlighted areas of the decision variable space. 

4. TEST FUNCTIONS 
In this work the test functions used to test the effect of the 
introduced ICA are the convex bi-objective test function ZDT1 
and the discontinuous test function ZDT3. These test functions 

belongs to a set of test functions introduced in [12] and are widely 
used in the EMO community to test multiobjective optimisers due 
to their well defined true Pareto fronts and the different challenges 
they introduce. NSGA-II together with its ICA-hybridized version 
were attempting to solve (minimize) the above mentioned test 
functions and had the following configuration: 

Table 1. Optimisers Configuration 

Size of Population 100 

Crossover operator Simulated Binary Crossover (SBX) [13] 
Probability: 0.8 

Mutation Operator 
Naïve Gaussian Mutation with 

Probability: 1/(number of Decision 
Variables) 

Number of 
generations 50 

Number of Runs 10 

Starting Population Same Random Population (different at 
each run) 

 

In order to analyze the performance of the multiobjective 
optimiser and its ICA-hybridized version, visualizing the Pareto 
fronts achieved for the bi-objective test functions was noted 
sufficient to judge the efficiency of the ICA, especially because 
the ZDT test functions possessed well defined true Pareto fronts. 

5. RESULTS 
At 3 different stages of the optimisation process, 3 different 
snapshots illustrating the fronts achieved in the objective space by 
NSGA-II and its ICA hybridized version -NSGA-II/ICA- are 
presented in Figure 6 (a, b, c). The fronts handled by NSGA-II 
and NSGA-II/ICA are represented by the signs: (*) and (+) 
respectively. In Figure 6 (a, b, c), NSGA-II was optimising the 
discontinuous test function, ZDT3. NSGA-II is a well-established 
optimiser which usually gets to the true Pareto front of that test 
function within an average of 200 generations. In the carried 
experimentations NSGA-II was only executed for 50 generations. 
The ICA with its previously trained NN was plugged into NSGA-
II and launched at the 30th generation for 6 successive 
generations. The ‘+’ in Figure 6 (a, b, c) present the new solutions 
introduced by the ICA in the objective space. The true Pareto 
front of the ZDT3 test function is illustrated by the small circles in 
Figure 6 (a, b, c). Figure 6 (d) shows the accuracy (decision 
variables) of the results achieved by NSGA-II/ICA at the end of 
the optimisation process. The dots ‘.’ in Figure 6 (d) correspond 
to the real values of the 2 objectives (column 1�objective 1, 
column 2�objective 2), while the stars ‘*’ correspond to the 
values of the 2 objectives achieved by the NSGA-II/ICA. The real 
values (‘.’) are the objectives values calculated using the exact 
objective function for the decision variables produced at the end 
of NSGA-II/ICA process. The magnitude of the bars joining ‘.’ 
and ‘*’ in the NN accuracy plots illustrate the results accuracy and 
the difference between the expected objective vector and the 
actual results. Executing the ICA at the 30th generation of NSGA-
II has introduced a new front (+) in the objective space.  

The corresponding decision variables for the introduced front 
were predicted by the previously trained NN and lacked accuracy 
in the decision space. 

If ICA executed by the DM 
      Apply ICA on Pi   

(New Objective vectors are mapped to their decision 
vectors using a previously trained NN) 

End 

737



In order to investigate the impact of the ICA on the optimisation 
process, executing the ICA at the 30th generation has resulted the 
introduction of the NSGA-II/ICA optimiser which will control 
and manipulate independently the new set of solutions (+) until 
the end of the optimisation process. On the other hand, NSGA-II 
will carry on its operations on the original front of solutions (*). 

Splitting the optimisation process at the 30th generation into 2 
optimisers running concurrently and operating on two separate 
populations of solutions was aimed at contrasting the final results 
that would be achieved by NSGA-II boosted by the ICA and the 
results achieved by the standalone NSGA-II within 50 
generations.  
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(a) ZDT3: 30th generation (b) ZDT3: 35th generation 
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Figure 6. NSGA-II and NSGA-II/ICA Optimising ZDT3  
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Despite introducing some inaccuracy in the decision variable 
space, the ICA made the optimiser leap into more interesting areas 
of the objective space and much promising regions in the decision 
variable space. Reducing the transitory inaccuracy in the decision 
variable space can be dealt with by ameliorating the predictive 
capacities of the NN and deploying sophisticated training 
algorithms and will constitute a future work. Having most of the 
handled solutions already very close to the true Pareto front ((+) 
in Figure 6b), the ICA was halted at the 35th generation in the 
NSGA-II/ICA framework. This is done in order to allow the 
adjustment of any decision variable inaccuracy (introduced by the 

ICA). Within few more generations it was observed that the 
optimiser starts exploiting the highlighted and promising decision 
variable regions which are supposed to give the enhanced 
objectives values ‘+’ in Figure 6. At the same generations (30th � 
Figure 6a and 35th � Figure 6b), the standalone NSGA-II 
optimiser was running and exploring much further regions in the 
decision variable and objective space (‘*’ in Figures 6 (a, b, c)). 
The results in Figure 6c illustrate the final fronts achieved at the 
50th and last generation of the optimisation by NSGA-II (‘*’) and 
NSGA-II/ICA (‘+’) with the ICA operating from the 30th until the 
35th generation. The NSGA-II/ICA with the ICA active for 6 
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(a) ZDT1: 30th generation 
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generations has achieved the true Pareto front for the ZDT3 
discontinuous test function within 50 generations. The exactitude 
of the resulting results was precise and accurate (just some minor 
bars in Figure 6d) because of the correction period after turning 
off the ICA which has allowed the optimiser to readjust the 
mapping accuracy between the decision variables and their 
corresponding objective values. On the other hand, it was clear 
that the standalone NSGA-II has achieved a much further and sub 
optimal front, which is a standard result usually achieved within 
50 generations. Similar to the experimental scenario presented in 
Figure 6, Figure 7 (a, b, c) shows the fronts achieved by NSGA-II 
and NSGA-II/ICA for the convex test function ZDT1. The NSGA-
II/ICA was consistently, over 10 runs of the optimisers, achieving 
the true Pareto fronts of the two test functions deployed in this 
study within 50 generation. The standard NSGA-II on the other 
hand was achieving much lower quality fronts within the same 
amount of time. The final prediction error in the ZDT1 
optimisation framework is shown in Figure 7 (d) and illustrates a 
very good level of accuracy. 

Additional experiments were carried to investigate the advantages 
of the ICA when hybridized with a different MOEA solving the 
same multiobjective optimisation problems. The ICA operator 
was hybridized with the Strength Pareto Evolutionary Algorithm 
(SPEA2) [14], and the scenarios presented in Figure 6 and Figure 
7 were executed contrasting the performance of the standalone 
SPEA2 and the SPEA2/ICA. Compliant results illustrating the 
enhanced performance of the SPEA2 optimiser hybridized with an 
active ICA (SPEA2/ICA) running for 6 generations and 
optimising the same test functions were observed.  

In the previously described scenarios, the utility of the informed 
convergence accelerator was demonstrated. It did not make any 
significant difference whether the ICA was plugged and executed 
within the cycle of SPEA2 or NSGA-II. The only difference that 
could be inferred from the underlying MOEA is the extent and 
utility of the diversification mechanisms, which are proper to a 
certain MOEA. 

6. CONCLUSIONS 
Plugging the ICA into a state of the art MOEA such as NSGA-II 
or SPEA2 has presented enhanced results outperforming the 
results achieved by these standalone optimisers for a set of test 
functions deployed in this work. The concept of introducing 
‘mirage’ solutions to guide the search towards promising areas of 
the space of interest (most commonly the objective space) was 
introduced and shown beneficial. The use of NN as a trained 
operator storing useful information between runs of a stochastic 
optimisation algorithm, such as evolutionary algorithms, is 
beneficial and has showed great use for enhancing the 
convergence speed of MOEAs. The ICA can be particularly 
convenient for optimisation problems under uncertainty, where 
noise and uncertainty are tolerable within certain relaxation 
intervals. Future work will focus on ameliorating the predictive 
capabilities of the deployed NN, and devising learning strategies 
for modeling multimodal objective functions. Future work will 
also include validating the advantageous effect of the ICA on real 
world applications and problems dealing with higher number of 
objectives.  
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