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ABSTRACT
This contribution is the first to discover exploitable struc-
tural features within circuit optimization problems (COP)
and discuss how it is indicative of a general structure and
possibly a ‘measure of hardness’ in real-world multi-objective
optimization problems. We then present a methodology to
exploit this structure in a multi-objective evolutionary algo-
rithm by designing a novel Correlation Sensitive Mutation
Operator, COSMO. COSMO is, at the least, universally ap-
plicable in the domain of circuits and we discuss how it can
be easily extended to other domains. We discuss the ratio-
nale behind COSMO and interpret it in context of dimen-
sional locality. We compare COSMO’s performance with
the traditional operators used for multi-objective optimiza-
tion. For two instances of circuits, we show that COSMO
gives significantly faster and better optimization than con-
ventional operators. The paper also takes the first steps in
thinking and interpreting how operators for MO-EAs should
be designed.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization-Global Opti-
mization, Nonlinear programming; I.2.8 [Artificial Intelli-
gence]: Problem Solving, Control Methods, and Search

General Terms
Algorithms, Human factor, theory

Keywords
Evolutionary, multi-objective optimization, operators, fit-
ness landscape, circuits, monotonic functions

1. INTRODUCTION
GAs are deployed successfully with only deft problem trans-

fer and conventional operators and representation because
the problem has structure that well matches them.
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Members of the genetic algorithm (GA) community per-
petually face the need to understand structure in the specific
domain of their problem and design a GA that exploits it.
By understanding the nature of the structure, an appropri-
ate genotype representation and variation operator 1 can be
designed and the adaptive search process can be set up to
converge to better solutions more efficiently. At present, for
multi-objective optimization Evolutionary Algorithms (MO-
EAs) with real-valued variables, a well rationalized theory
of how to design variation operators is lacking.

There has been considerable interest in multi-objective
(MO) optimization of analog circuits (discussed in Section
3) in recent times. As demonstrated by the marginal ade-
quacy of current state of art MO-EAs,circuit sizing is not
a needle in a haystack problem. We asked the question,
whether there is any structure in the circuit search space
which can be exploited by MO-EA operators for efficient
operators. This question also begs the need of a theory for
how operators should be designed for MO-EAs.

This contribution is the first to discover exploitable struc-
tural features within a circuit optimization problem (COP)
and translate this to effective, novel MO-EA operator, which
we call COSMO (Correlation Sensitive Mutation Operator).
We show through experiments that optimization is much
more accurate as a result of using these operators without
incurring any additional computational cost (fitness evalua-
tions). We compare with the traditionally used SBX (simu-
lated binary crossover) and polynomial mutation [7].

Apart from designing efficient operators for multi-objective
optimization of circuits, we make the following general con-
tributions. We make a claim on the kind of structure multi-
objective optimization may in general possess. This can be
instructive towards design of efficient MO-EAs. We develop
a hypothesis for how COSMO works which leads to a gen-
eral suggestion on a methodology to design operators for
MO-EAs. We believe that these are the first steps in think-
ing about operators for MO-EAs and the methodology will
transfer to MO problems in other domains. We provide our
rational for predicting this in the paper.

In Section 2, we consider the different rationales behind
the current array of variation operators employed in ge-
netic algorithms, evolutionary strategies, particle swarm op-
timization and Estimation of Distribution algorithms (EDAs).
Extensions of these rationales for MO-EAs are lacking among
the various algorithms. In Section 3, we discuss the COP

1Representation and variation operator have no independent
meaning. Their meaning is interdependent. For future dis-
cussion, we use the term variation operators to imply both.
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and identify exploitable structure in it. We argue why this
structure may generalize to MO problems in other domains.
In Section 4, we describe COSMO which exploits the identi-
fied structure for efficient optimization. We give an intuitive
rationale for COSMO followed by a perspective on it from
the view-point of variation operators in EAs. In Section 5,
we present results of implementing COSMO into NSGA-II
which show that, without incurring any additional computa-
tional cost, circuit optimization is more accurate as a result
of using COSMO. Finally, we conclude the paper in Sec-
tion 6.

2. VARIATION OPERATORS
In this section, we present a perspective of how variation

operators are understood and interpreted in the EA commu-
nity with respect to addressing problems with real valued or
discrete variables.

Discrete problems: Genetic algorithms with discrete
encodings have enjoyed considerable success in solving dis-
crete problems. Two variation operators: crossover and mu-
tation, are used. The understood role of a variation opera-
tor is based on the building block hypothesis. The crossover
operator’s purpose is to combine the good parts (building
blocks) of the parent chromosomes to form fitter offspring.
The mutation operator plays a role that investigates small
variations around possible building blocks. The initially
popular crossover operators were one-point and two-point
crossovers. The crux of the variation issue is how the algo-
rithm can identify and promote the building blocks in the
chromosome. In case of one-point or two-point crossover,
building block are not preserved when correlated variables
are not spatially aligned or may have multiple interactions.
Estimation of variable correlation statically and tailoring
variation operators to exploit them has been done to solve
artificially constructed problems to validate the building-
block hypothesis [11]. Since this tactic assumes often un-
available information, approaches that dynamically learn
some structure (or equivalently building blocks) from the
selected fitter solutions have been developed. Here offspring
are created to partially preserve an observed (i.e. learned)
structure that is characteristic of the fitter solutions. Esti-
mation of Distribution Algorithms (EDA) or Probabilistic
Model Building Genetic Algorithms (PMGA) [19] are such
examples. In fact EDAs do not employ conventional varia-
tion operators. In lieu of directly varying a parent (or two
parents) to generate a variant, they learn a model of struc-
ture and sample this model to create offspring that vary
along the identified structure. In some cases, this structure
could be expressed in terms of learning crossover bound-
aries connecting back to the GA theory. EDAs can solve
many difficult problems that an EA with standard variation
operators cannot, but they incur a heavy expense for the ef-
fort to accurately construct a model of variable correlation.
Nonetheless they illustrate how critical the variation step
(or knowledge of structure) is for the success of an EA.

Real-valued problems: For real valued optimization,
genetic algorithms, evolutionary strategies (ES) and evolu-
tionary programming (EP) each offer an approach to vari-
ation[2]. Many GAs encode a real-valued variable with a
discrete encoding such as binary, BCD, or gray coding. Vari-
ation operators are blindly applied on the discrete encoding.
The blind nature of the variation is intentional. The moti-
vation arises from evidence in nature that genetic variation

is often random. Later, Deb devised a simulated binary
crossover, SBX [9], which numerically simulates the effect of
bitwise crossover on a pair of binary encoded real values, but
which does not require encoding a real number in binary.

One might argue that, while these kinds of GA honor nat-
ural genetic variation, they forfeit an opportunity to exploit
any structure the given problem may have. This counter-
rationale and the traditional optimization method perspec-
tive that considers search trajectory are observable in ES
and EP [2]. In these approaches, covariance or standard de-
viation of the mutation operator are co-evolved during the
run. Also, crossover can create the average of the parents’
variables. These same rationales extend to particle swarm
optimization (PSO) [16] and Covariance Matrix Adaptation
Evolutionary Strategies (CMA-ES) [12]. PSO simulates lo-
cal trajectory guidance mixed with global influence, while
CMA-ES tries to align the search trajectory to an approx-
imated Newton direction (by learning it from selected in-
dividuals). CMA-ES works very well on a number of hard
optimization problems. When EDAs address real-valued op-
timization, they attempt to learn the structure of real-valued
promising solutions with a probability distributions but re-
liably, good models are, to date, generally elusive (see [3]).
The real-valued EDAs that have demonstrated good perfor-
mance are similar to CMA-ES, and indicate a convergence
in approaches.

Real-valued Multi-objective Optimization: For real-
valued MO optimization algorithms, primarily SBX crossover
and polynomial mutation have been used (in NSGA-II [8]
and SPEA2 [21]). Pareto-archived Evolutionary Strategies
(PAES) [17] use random mutation and do not co-evolve mu-
tation variances as an ES does. The rationale for these blind
variation methods might be purposeful. On the other hand,
it might be the result of simple, direct transfer.

An extension of a multi-objective optimization to incor-
porate any existing variation strategy is straightforward to
design and evaluate. The variation step of a MO-EA can be
mechanically replaced with the variation step of any desired
algorithm, while retaining the Pareto selection step. Real-
valued EDAs [19] and CMA-ES [14] have been extended for
multi-objective optimization in similar ways. However, it
must be considered that the re-used variation operators are
designed for optimizing a single objective (leading to a sin-
gle optima in most cases), while a MO problem has multiple
objectives and a set of pareto-optimal points as the solution.
A MO-EA shall need multiple trajectories as opposed to a
single one as in case of single-objective optimization (also
noted in [14]). This makes such mechanical transfers short
of a strong rationale or theory. For instance, CMA-ES vari-
ation trajectory directs the search in the Newton’s direction
towards of a single point and not a multiplicity of Pareto-
optimal solutions. Some works [15] show that in presence of
“connectedness and regularity”, the search can be done in
two phase, first directed towards a single point and in the
second phase, an exploration in the vicinity of the point.

It becomes apparent that despite the importance and value
of identifying and exploiting structure, real-valued MO-EAs
have, to date, not focused on it. Current variation operators
are mostly rote transfers from single objective approaches.
It remains open to question if we can understand more about
variation in MO-EA from the point of view of multiple op-
timal solutions, multiple objectives and their interaction.

We now turn to circuit sizing where current EA and MO-
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EA approaches still fall tantalizingly short of offering a clearly
superior solution. In the domain of circuits, might knowl-
edge of structure be helpful to an MO-EA? Because the
nature of the structure in circuits seems to be quite gen-
eral, it begs the question of whether there are generalizable
heuristics for real-valued MO-EA variation operators for ap-
plication domains with similar, such general structure?

3. STRUCTURE OF COP

3.1 Circuit Optimization Problem
An analog circuit has 10 to 200 real-valued parameters

that must be set in order to meet its specifications (between
2 to 20 in number). The process of setting these parameters
is called circuit sizing. Automatic analog circuit sizing is
a problem of major importance to the Electronic Design
Automation and System-On-Chip design industry [13].

Historically, circuit sizing has been done manually by hu-
man designers. More recently, a variety of of approaches
for automatic analog circuit sizing have emerged. Circuit
sizing using MO-EAs including NSGA-II [5], SPEA-II [10],
a hybrid of genetic algorithm and simulated annealing (SA)
[20], and a parallel SA [13] are employed both by academics
and industry engineers. In the evolutionary algorithm (EA)
based approach to sizing, circuit specifications are expressed
as objectives and constraints. Each fitness evaluation is a
circuit simulation in SPICE and is computationally very ex-
pensive. Because of computational expense, the efficiency
and scalability of the algorithm are vital. A typical per-
spective on convergence performance measures how much
a circuit is accurate to specifications for a specified budget
of computational resources. Circuit designers begrudgingly
acknowledge the worth of an EA because for larger circuits
each algorithm inevitably fails: computational resources are
in a constant arms race with circuit scale. This has led to
widespread implementation of these algorithms on parallel
clusters [13].

3.2 Identification of structure
To identify structure in COP, we asked the question as to

how does a human designer size a circuit. Designers start
by decomposition. Consulting the topology they derive a set
of parameterized approximate non-linear expressions for the
circuit’s specifications. These equations are not invertible
and cannot be solved for the variables given specification
values. Instead, the designer must set some of the variables
according to common practice to meet some specifications
and approximately solve for the remaining variables. They
are still far from done because these expressions are first
order approximations of the circuit behavior, the solution
is approximate and useful more for intuition than being ac-
curate. The closest (and strongly reliable) estimation of
the real behavior of circuit is simulation with SPICE which
models the circuit more accurately and use numerical meth-
ods for solutions. Therefore, the next step is to check the
behavior of the circuit with simulation. Generally the cir-
cuit doesn’t meet all specifications. This leads to choosing
a new set of (hopefully improved) parameter values to meet
the specifications. Design toward specifications continues
with the iterative process of “set, observe,analyze, refine” as
the designer progressively intuits the opaque, complex rela-
tionship between the component sizes, topology and circuit
behavior.

Complex as the problem is, human designers manage to
solve it reasonably well. They use an approach used in other
complex domains where parameters influence many specifi-
cations: Circuit designers typically vary variables to meet
one specification, which leads another specification to fall
out. They then vary another set of variables to meet the
unmet specification and iterate. The question is why and
how this search process converges. The success of the pro-
cess indicated that there must be some “weak” structure in
the search space. An examination of the designers’ approx-
imate circuit equations (that express the specifications as a
function of the parameters) revealed the following structure:

1. Each design specification is influenced by (correlated
to) a small number of design variables according to
first-order approximations.

2. Each design specification is monotonic, i.e. non-increasing
or non-decreasing with regard to the influencing design
variables to first order approximation.

These observation answered why the designer’s iterative
process converged. Had all (or majority of) variable been
correlated to multiple specifications, just changing one vari-
able at a time would have derailed progress on multiple other
specifications. However, since each specification is corre-
lated with a few design variables, the designer can make
progress on one specification without disturbing others. Due
to the monotonic relationship between variables and spec-
ifications, the designer knows which direction to move the
variables to improve the specification. Had this not been the
case, the designers would need to re-calculate the sensitivity
direction of specification with variables at each iteration.

Opamp Example: To elaborate, an example is help-
ful (full details are in [1]). We consider a simple two-stage
opamp shown in Figure 1. The chosen design variables are
L1, L3, L5, L8, V 1, V 2, V 3, Iref , I1, I2, Rc and Cc. For
matching, L1 = L2, L3 = L4 and L6 = L7 = L8. Let us
consider one specification of opamp, i.e. gain for illustration.
Gain is expressed as follows:

M2

Inp1

V1

M5

(Vcm)

V2

V3

Inp2

M8

I2I1

Cc

Iref

M1

M6

VDD

M3

Output

M7

Rc

M4

Figure 1: Simple 2-stage Opamp

gain =
1

(V gs1 − |V tp|)(V gs3 − V tn)( 1
L1

+ 1
L4

+ 1
L5

+ 1
L8

)
(1)

Equation 1 clearly shows that gain is non-increasing with
V sg1 and V gs3 and non-decreasing with L1, L4, L5 and L8.
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It is not correlated with the other variables. All other vari-
able correlations and their directional sensitivity with each
variable have been derived from similar approximate circuit
equations and are presented in Table 1. The columns of the
table represent design variables and rows refer to specifica-
tions. For each specification, the first row indicates correla-
tion, 1: Design variable is correlated, 0: Design variable is
not correlated, 2: Design variable is weakly correlated. The
second row indicates whether specification is monotonically
increasing (1) or monotonically decreasing (-1) with the de-
sign variable. A 1 in the first row and a 0 in the second
row indicates that the variable is correlated to the specifi-
cation, but the specification is not monotonic with it. For
this topology each specification is on average correlated to
3.6 variables (out of 12) and all but one specifications are
monotonic with all variables. This verifies our hypothesis.

3.3 General structure in MO-EA problems
We believe that the first structural property, i.e. each de-

sign specification is strongly influenced by a small number of
design variables shall apply to a wide class of real-world MO
problems. The rationale is henceforth. Goldberg suggests
the need of some decomposability for being able to solve a
single-objective optimization problem [11]. If all variables
are epistatically linked, humans or an optimization algo-
rithm doesn’t stand a chance in finding a solution by an
iterative process. In terms of MO problems, if all variables
influence all objectives, a human iterative process cannot
solve it, since the progress made in one step with respect to
one specification will be overridden in the very next when a
different specification is considered. Similarly a single varia-
tion step of a MO-EA will disturb all objectives. This leads
us to believe that any problem where humans have met with
some success need to have the aforesaid structure, i.e. sparse
and partially non-overlapping influence of variables on ob-
jectives.2 This gives a new notion of building-blocks for
MO-EAs, where building-blocks could be considered as set
of variables correlated with each specification. Variations in
each of these building block would influence most a single
objective, with some overlap with others. If the hypothe-
sis here indeed holds, a new notion of ‘hardness’ of MO-EA
problems can be based on the amount of epistasis between
objectives. A direct measure of this epistasis is the number
of correlated variables in two objectives which overlap. We
can construct our MO-EAs test suites to reflect this struc-
ture and control ’hardness’ on basis of number of variables
influencing an objective and the overlap in their influence.
This research can take a similar trajectory to that of GAs,
i.e. to construct harder and harder problems and design
efficient MO-EAs to solve them.

The second property, i.e. monotonicity of objectives with
design variables comes as a bonus in COP. Not only do we
know the variables correlated with each objective, we know
the direction to vary them to improve the objective. Given
this property, the designer doesn’t require to do math after
each iteration to find out which direction to move the vari-
ables. Will this property transfer to other problems? We
don’t know the answer to this yet. We know all linear prob-
lems have this property. Also, polynomials with all positive

2If the problem is not decomposable in this manner, the
human needs to position themselves in a part of search space,
where this structure holds to make any headway towards a
solution.

terms has this property. In [4], it is shown that many differ-
ent real-world optimization problems yield such a structure.
Also, on observation of test-suites traditionally used in MO-
EAs, we found some of the sets have this property. These
observations give us hope that some real-world problem do
have this property. Even if they not, this can be incorpo-
rated as a ‘measure of hardness’ of the problem and efficient
algorithms can be designed to tackle them.

4. COSMO

4.1 Description of COSMO
In the previous section we identified the set of variables

correlated with each objective, which we loosely termed as
’building blocks’ for the objective. We also derived the di-
rection of variation for these variables for improving the ob-
jective.

We use this information to design a variation operator:
COSMO which is implemented in the following simple way.
For a given individual, randomly choose one of the objec-
tives. Vary the point to greedily optimize the chosen ob-
jective in the local neighborhood. This is done by varying
the variables correlated to the objective by a small amount
in the direction to improve the objective. This greedy op-
timization is not done deterministically. The probability of
variation of the correlated variables is increased in compar-
ison to uncorrelated variables rather than effectively set to
1.0. This maintains the stochastic nature of the operator
and respects the fact that the structural information (e.g.
in Table 1), only describes first order effects.

COSMO optimizes (locally) an individual for one objec-
tive in one iteration, then for a different randomly-chosen
objective in the next. This is probably at the expense of the
prior objective in trade-off leading to interesting dynamics.
This can be summarized as follows. COSMO pushes the
points in direction of different objectives greedily (but lo-
cally) with dominated points getting periodically weeded out
(by selection) leading to enumeration of the Pareto-optimal
front. Stated another way, the algorithm can be summarized
as greedy-walk across the search space of objectives coupled
with periodic filtering to Pareto-optimal points through the
selection phase.

COSMO’s dynamics is similar to human-design process
and we validate its effficiency from experiments. In the next
section we provide a perspective on COSMO from the point
of view of variation operators in EAs that explains why it
could plausibly work.

4.2 A perspective on COSMO
To interpret COSMO, we begin by evaluating the kind of

structure different operators exploit. As described in Section
2, operators use some structure in the selected solutions to
create new solutions which are fitter. For instance, CMA-
ES, which mimics the descent in Newton direction uses a
quadratic assumption on the structure. EDAs on the other
hand try to discover this structure online (constrained by
expressibility of the chosen probability model). The bare
minimum structural assumption an EA makes is that of
locality: that fitter solutions lie in the spatial vicinity of
already discovered fit solutions. In absence of this assump-
tion, any search algorithm reduces to being a monte-carlo
search. The assumption of locality is exploited in all EAs
by controlling step size or equivalently the variance of the
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Spec Iref Ir1 Ir2 V1 V2 V3 Rc Cc L1 L7 L3 L5 No. of Var.
gain Corr 0 0 0 1 1 0 0 0 1 1 1 1 6

Dir 0 0 0 -1 -1 0 0 0 1 1 1 1

wu Corr 0 1 0 0 1 0 0 1 2 2 2 2 2
Dir 0 1 0 0 -1 0 0 -1 -1 -1 -1 -1

PM Corr 0 1 1 1 1 0 0 1 0 0 0 0 5
Dir 0 -1 1 -1 1 0 0 1 0 0 0 0

Power Corr 1 1 1 0 0 0 0 0 0 0 0 0 3
Dir 1 1 1 0 0 0 0 0 0 0 0 0

Area Corr 2 2 1 1 2 2 2 1 2 2 2 2 3
Dir 1 1 -1 1 -1 1 0 1 1 1 1 1

SR Corr 0 1 1 0 0 0 0 1 0 0 0 0 3
Dir 0 1 1 0 0 0 0 -1 0 0 0 0

Table 1: Summary of structural Information. No. of var. refers to the number of strongly correlated variables

sampling model. In Particle Swarm optimization, the use of
locality is more obvious, where the new solutions explore in
vicinity to the global and local best.

In low dimensional spaces, the simplest way to exploit
locality is to modify all variables by a small amount. As
the solution dimensions increase, however, a much smaller
variation step (scaled by the square root of the number of
dimensions) is required to maintain locality. Also, if the ob-
jective function is misbehaved with respect to even one of
the dimensions, varying all dimensions isn’t a good idea. A
way to resolve this is by exploiting what we term as dimen-
sional locality. Only vary variables on a small number of
dimensions at each variation step. The structural assump-
tion here is that within the hypervolume that is defined by
fixing a few dimensions of a fit point there exists higher
fitness points. This structural assumption is fairly general
and a wide set of real-world problems have it. Additionally,
a schedule can be used as to how many variables should be
kept fixed, leading the search from being explorative initially
to exploitative towards the end.

We can now interpret the SBX in light of dimensional
locality. SBX implements binary crossover with each vari-
able it acts upon. Deb recommends to use the crossover for
half of the variables. If we assume, for a first order analy-
sis, that SBX-crossover is effectively randomly mutating the
variables it acts upon, SBX can be interpreted as exploit-
ing dimensional locality for its success. In [9], it is shown
that SBX inherently implements a self-adaptive schedule for
controlling variance of the mutated variables.

To effectively exploit dimensional locality in an EA, there
are potential roadblocks. First, in a high dimensional prob-
lem, only a few variables would be strongly correlated with
the objective function (depending on the position of the in-
dividual). How can the appropriate small set of correlated
variables be identified? Second, even if correlated variables
are determined, the direction in which to vary them may
not be known. The two above effects combined shall lead to
small improvement in a single mutation step and thus make
the search slower. Due to dimensional locality of the search,
this can also lead to premature (local) convergence if the
selection pressure is high.

These roadblocks do not necessarily require explicit struc-
tural information from the domain knowledge. Potentially,
the correlation and sensitivity information could be gener-
ally observed and estimated by recording fitness changes

before and after variations as long as a weak assumption
of invariance with respect to other correlations is observed.
In the case of circuits, the explicit correlation information
for each objective is available from the first order circuit
equations. As a bonus, the equations also signal the global
direction of variation for each variable.

COSMO essentially exploits dimensional locality. It uses
the available correlation and sensitivity information to ad-
dress the roadblocks associated with exploitation of dimen-
sional locality. This makes the search faster and more effi-
cient as compared to a null operator exploiting dimensional
locality. This has been tested in the experiments where we
compare COSMO with both SBX and a NULL operator.

Note that one application of variation via COSMO does
not generate a ‘fitter offspring’ in the sense of Pareto-optimality
or in terms of dominating the parent. But successive appli-
cation of COSMO will lead faster to Pareto optimal solu-
tions. The elegance of COSMO lies in its simplicity (of con-
cept and implementation) and the huge pay-back it gives.
It is not the only way the structure identified in MO-EA
problems can be exploited, but is one of the simplest way.

4.3 COSMO: Simple Extensions
COSMO can be applied to other MO-EA problems other

than circuits as well. If equations for the fitness function are
available, the correlation and sensitivity information can be
derived in a similar way as done for circuits. In the case that
the objectives are not monotonic with variables, a modified
version of COSMO would vary the variables correlated to the
chosen objective by a small amount in a randomly chosen
direction.

If the equations are not available, this information can be
extracted from a domain expert. Another way could be to
do a sensitivity analysis on the objectives prior to execution
of the algorithm. As mentioned in the previous section, the
information extraction could also be done during the exe-
cution of the algorithm by recording fitness changes before
and after variations. It will be interesting to see whether
COSMO can improve the efficiency of optimization in other
problem domains as well.

5. EXPERIMENTS

5.1 COSMO in NSGA II
We modify NSGA-II to include COSMO. NSGA-II uses

745



SBX. Let the fraction of design variables varied in a solution
by SBX is λ (prescribed λ = 0.5 in [9]). For implementing
COSMO, we replace this variation strategy by structural
variation whose pseudo-code is given below.

foreach individual
if violates constraint

Find worst constraint violation spec (specc)
Apply COSMO for improving specc

else
Choose any objective
Apply COSMO for improving objective

end

If the solution violates a constraint, it is varied to improve
the specification of maximum violation (rather than being
optimized for any objective).

For COSMO, the number of design variables varied is on
average α1 = λ∗n, where n is the number of design variables.
We define α2 as the average number of correlated variables
that are varied, which implies (α1 −α2) is the average num-
ber of uncorrelated variables that are varied. All correlated
variables have equal probability of variation and same is true
for all uncorrelated variables. For a variable with no direc-
tional information, a gaussian random number, N(0, β) is
added to it. If the variable has directional information, the
information is consulted to add a one-sided gaussian random
number in the appropriate direction. Weakly correlated and
uncorrelated variables are treated in the same way.

To create a null hypothesis for COSMO, we devise a NULL
operator. The NULL operator varies the same average num-
ber of design variables, α1, however chooses the variables to
vary and their direction randomly without any structural in-
formation. This operator exploits dimensional locality, but
uses no additional knowledge.

Linear Constraint Management: We use a DC point for-
mulation for circuit design variables [18]. The design vari-
ables are constrained to lie in a polyhedron (given by equa-
tions) for circuit operatability (above-threshold and satu-
ration constraint). Any circuit with design variables lying
outside the polyhedron is unacceptable and its fitness is 0.
Therefore we constrain the circuit design variables to remain
inside the polyhedron. This results in a dynamic range for
any variable depending on value of other variables. To tackle
this, the range of all variables is determined according to the
current value of other variables, every time variation to any
variable is applied. If any variables falls out of a calculated
range on variation, it is set to the min/max accordingly.
We do not apply dynamic constraints to simple opamp, but
apply them to FC-CS opamp, in which case they are critical.

This results in three algorithms: NSGA-SBX (SBX with
crossover probability pc and polynomial mutation), NSGA-
NULL and NSGA-COSMO.

Genetic Algorithm Parameters: Four different algo-
rithms were implemented as listed in Table 2. The popu-
lation size is 100, tournament size is 2, maximum genera-
tions was set to 1000 and 10 runs were done for each algo-
rithm. The variance, β was set a one-fourth of the range
of the design variable. For fair comparison, NSGA-SBXa
replicates NSGA-II parameter values [8], while NSGA −
SBXb matches the variation probability of NSGA-NULL
and NSGA − COSMO.

The value of tournament size and crossover probability
were set as prescribed in [8]. The value of αi was informed
by the average number of correlated variables (3.6). They

were set intuitively without too much experimentation and
there is probably scope for improvement. Similarly the value
of β was set intuitively and performance could be improved
by implementing a fixed schedule to vary the variance or by
using self-adaptation.

Alg-Name Parameters
NSGA-SBXa λ = 0.5 , pc = 0.9
NSGA-SBXb λ = 0.25, pc = 0.9
NSGA-NULL α1 = 3

NSGA-COSMO α1 = 3, α2 = 2.5

Table 2: GA parameters used in the experiments.

5.2 Problem Description
Experiments were conducted for the simple opamp of Fig-

ure 1 and also an FC-CS opamp. The operating voltage was
set to 1.8V and Silicon technology is TSMC 0.18u. The
simple opamp is a 12 dimensional optimization problem,
while the fully-cascoded opamp is a 20 variable optimiza-
tion problem. The four objectives of optimization consid-
ered were gain, fu (unity-gain frequency), power and area.
Constraints were enforced on gain (> 1000), phase margin
(> 40) and fu (> 5MHz).

5.3 Results
The true Pareto-front is not known for COP. We do pair-

wise comparison between algorithms using the metric of
coverage statistics(CS) [6]. For clarity, we report DS =
(1 − CS). For any two given set of Pareto-optimal points,
Set a and b, DSab (Dominated Statistics) is equal to the
fraction of points in Set a dominated by (inferior to) points
in Set b and DSba implies exactly the opposite. 3.

We take pairs of algorithms and calculate DS for the
Pareto-optimal sets generated every 50 generations (See Fig-
ure 2). Each plot shows the median of the DS of 100 ordered
pairs resulting from 10 runs of each of the two algorithms
We also illustrate the standard deviation in the Figure.

Figure 2a shows the median value of DS for NSGA-SBXa
and NSGA − SBXb. NSGA-SBXa shows slightly better
performance initially and we use it for further comparisons.
Figure 2b shows the comparison of NSGA-SBXa with NSGA-
NULL. Around 5% of solutions are dominated for NSGA-
NULL, while more than 40% points for NSGA-SBXa are
dominated. Clearly, NSGA-NULL outperforms NSGA-SBXa.

We then compare NSGA-NULL and NSGA-COSMO (Fig-
ure 2c). Less than 5% of points for NSGA-COSMO are
dominated, while more than 30% points for NSGA-NULL
are dominated. If one compares the algorithms at 200 gen-
erations, the gain for NSGA−COSMO is even higher, DS
being 38% for NSGA-NULL and 5% for NSGA-COSMO. In
Figure 2d we also show the comparison of NSGA-SBXa and
NSGA-COSMO. This establishes the superiority of COSMO
to SBX and NULL operator.

To study the speed of convergence of NSGA-COSMO,
we compared NSGA-NULL’s Pareto-set at each generation
with NSGA-COSMO’s Pareto-set created at 100th genera-
tion. We found that even at 1000 generations NULL does
not perform as well as COSMO at the 100th generation.

3DSab and DSba do not add to 1 since some points in both
sets will be Pareto-optimal and are not counted in either
statistic
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Figure 2: Pairwise domination comparison of the Pareto-optimal sets of the 4 test algorithms. A lower
fraction of individuals dominates implies superiority. See text for details of the DS coverage metric. NSGA-
SBXa is �, NSGA-SBXb is + ,NSGA-NULL is o and NSGA-COSMO is �. Results are compiled for 10 runs.
Solid line with symbol is median, dashed lines are range of standard deviation. Plot a compares NSGA-SBXa
and NSGA-SBXb, plot b: NSGA-SBXa and NSGA-NULL, plot c: NSGA-NULL and NSGA-NULL and plot
d: NSGA-SBXa and NSGA-COSMO.

At any time more than 25% solutions for NSGA-NULL are
dominated, while not more than 12% of solutions for NSGA-
COSMO at 100th generation are dominated. This clearly
shows that SMO gives faster and more efficient optimiza-
tion.

DS statistics doesn’t show how much better the solu-
tions are numerically between NSGA-COSMO and NSGA-
NULL. On studying some of the results manually we found
that NSGA-COSMO’s non-dominated solutions were signif-
icantly better as compared to that of NSGA-NULL, while
NSGA-NULL’s non-dominating solutions were only slightly
better. For instance, one of the solution for NSGA-COSMO
at 1000th generation had slightly better gain, double unity
gain frequency, half the area and one-third the power of the
dominated solution of NSGA-NULL. From the view point
of an analog designer, this is a large improvement.
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Figure 3: Comparison of NSGA-NULL and NSGA-
COSMO for FC-CS opamp

We also gathered preliminary results for an FC-CS opamp.
The comparison between NSGA-NULL and NSGA-COSMO
is shown in Figure 3. At the 100th (200th) generation, only
8.5% (8.5%) solutions on average are dominated for NSGA-
COSMO, while 46% (38.25%) of solutions of NSGA-NULL
are dominated. The performance at a lower number of gen-
erations is important to study, since for larger designs the
longer time to simulate leads to less generations being exe-
cutable in a realistic time-frame. At the 800th generation,
NSGA-COSMO has 29% solutions dominated, while NSGA-
COSMO has only 11.5% solutions dominated.

Discussion: We find that the NULL operator performs
better than SBX. The only difference in the two operators
is the way they handle the variance of the mutated variables
[9]. This could be studied further to explain this difference.4

This indicates that the complex process of mutation of SBX
is of no value for the given problem and straightforward ex-
ploitation of dimensional locality is sufficient. The higher
accuracy of optimization by COSMO as compared to NULL
operator is evidence to the premature convergence of opera-
tors exploiting dimensional locality. The faster convergence
of NSGA-COSMO is also valuable, specially for domains like
that of circuits, which have a high fitness evaluation time.

6. CONCLUSIONS
We identify the structure in circuit problems and discuss

how it is indicative of general structure and measure of hard-
ness in MO-EA problems. We then present a methodology

4In Section 4, we conjectured that SBX crossover on a vari-
able can be considered mutation by first order analysis
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to exploit this structure in a MO-EA by designing a novel
correlation sensitive operator, COSMO. COSMO is, at the
least, universally applicable in the domain of circuits and
can be extended to other domains. We finally compare
COSMO’s performance with that of the traditional SBX
(with polynomial mutation) and a NULL operator. For two
instances of circuits, we show that COSMO gives faster and
better optimization than both these operators. The paper
also makes contribution toward interpretation of operators
used for MO-EAs.

7. FUTURE WORK
There are a few different directions for future work, which

have been expressed in different sections of the paper. Here,
we summarize a few meta-themes.

1. Structural analysis of real-world MO optimization prob-
lems in different domains to observe if they have the
structure exhibited by COP. If they do, COSMO can
be used for their efficient optimization.

2. Artificial construction of problem exhibiting the hy-
pothesized structure of MO-EA problems and design
of efficient algorithms to solve the problems.

3. In context of COSMO, further improvements and re-
finements could be made. A self-adaptive or fixed
schedule of variance could be implemented. Also, stud-
ies needs to be conducted on how many variables to
vary for efficient optimization and if this should be
adaptive.

4. COSMO is just one way of exploiting the structural
information. An extension could be greedily optimize
for more than one objective in a variation step and de-
sign operators to this end. The holy-grail remains to
design operators which will produce an offspring that
dominates the parent. For designing such operators,
one needs not only the sensitivity direction, but also
its value. This sensitivity value can be made avail-
able from equations in COP. It is a promising research
direction to incorporate this information to design op-
erators which produce dominating offsprings.
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