
An Evolutionary Multiobjective Approach to
Design Highly Non-linear Boolean Functions

Hernán Aguirre Hiroyuki Okazaki Yasushi Fuwa

ahernan@shinshu-u.ac.jp okazaki@cs.shinshu-u.ac.jp fuwa@cs.shinshu-u.ac.jp

Graduate School of Science and Technology, Shinshu University
4-17-1 Wakasato, Nagano, 380-8553 JAPAN

ABSTRACT

The proliferation of all kinds of devices with different se-
curity requirements and constraints, and the arms-race na-
ture of the security problem are increasingly demanding the
development of tools to help on the automatic design of
Boolean functions with security application. Nowadays, the
design of strong cryptographic Boolean functions is a multi-
objective problem. However, so far evolutionary multiobjec-
tive algorithms have been largely overlooked and not much is
known about this problem from a multiobjective optimiza-
tion perspective. In this work we focus on non-linearity
related criteria and explore a multiobjective evolutionary
approach aiming to find several balanced functions of simi-
lar characteristics satisfying multiple criteria. We show that
the multiobjective approach is an efficient alternative to sin-
gle objective optimization approaches presented so far. We
also argue that it is a better framework for automatic design
of cryptographic Boolean functions.

Categories and Subject Descriptors

I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search; G.1.6 [Numerical Analysis]: Opti-
mization

General Terms

Algorithms, Design, Performance, Security

Keywords

Evolutionary Multiobjective Optimization, Non-linear Boolean
Functions, Information Security, Cryptography

1. INTRODUCTION
Boolean functions are used as fundamental components

in several different types of cryptographic applications, in-
cluding block ciphers, stream ciphers, and hash functions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

Multiple desirable criteria for cryptographic Boolean func-
tions have been identified in the past, among them balance,
maximum distance to linear functions, maximum distance
to linear structures, high algebraic degree, correlation im-
munity of high order, and so on. All these criteria have
proved important to reduce the effects of advanced modern
cryptanalytic attacks, such as correlation attacks [1], alge-
braic approximations, linear cryptanalysis [2, 4], and differ-
ential cryptanalysis [3, 4]. Recently, the tradeoffs between
some of these criteria have received a lot of attention in
the Boolean function literature, see for example [5] and ref-
erences therein. A clear tradeoff has been shown for cor-
relation immunity and algebraic degree. That is, a cryp-
tosystem high resistant to correlation attacks will be less
resistant to linear complexity attacks. Also, it is well known
that a function cannot at the same time be balanced and
have maximum algebraic degree, maximum distance to lin-
ear functions, and maximum distance to linear structures.
On the other hand, less is known about the tradeoffs among
non-linearity criteria, such as distance to linear functions,
distance to linear structures, and algebraic degree.

The proliferation of all kinds of devices with different se-
curity requirements and constraints, and the arms-race na-
ture of the security problem (weaknesses in the functions
we currently use are frequently being reported) are increas-
ingly demanding the development of tools to help on the
automatic design of Boolean functions with security appli-
cation. Traditionally, algebraic approaches have been used
to design suitable functions with specific properties. How-
ever, generating cryptographic functions purely by construc-
tive algebraic methods becomes increasingly difficult as the
number of criteria to be satisfied augment. Recently, some
works have sought to combine algebraic construction with
deterministic computer search methods [5, 6, 7] and some
authors have attempted using search heuristics such as ge-
netic algorithms, hill climbers, and simulated annealing to
generate Boolean functions [8, 9, 10, 11]. These are impor-
tant steps towards automatic generation of cryptographic
functions. However, these works have mostly focused on
generating strong functions under a specific criterion rather
than satisfying simultaneously several criteria.

As mentioned above, the design of strong cryptographic
Boolean functions is a multiobjective problem constrained
by devices and applications. Using multiobjective evolution-
ary approaches [12, 13] would seem a better option to tackle
this problem aiming to develop more flexible, scalable, effi-
cient, and probably more effective methods to generate ap-

749

propriate functions. However, evolutionary multiobjective
algorithms have been largely overlooked for the design of
cryptographic functions, and not much is known about this
problem from a multiobjective optimization perspective.

In this work we focus on non-linearity related criteria and
use an evolutionary multiobjective algorithm aiming to find
various balanced functions of similar characteristics satis-
fying multiple criteria. That is, we are interested in func-
tions with similar high fitness but diverse in variable space.
This is important because in most applications the security
system is composed of several different primitive Boolean
functions, where the security of the whole system is given
by the weaker primitive function. Since not much is known
about the tradeoffs among non-linearity criteria, we enu-
merate small spaces of balanced functions to gain some un-
derstanding about the multiobjective problem at hand. In
larger spaces, we incrementally add non-linearity criteria to
observe the effectiveness of the multiobjective approach. We
show that the multiobjective approach is an efficient alter-
native to single objective optimization approaches presented
so far. We also argue that it is a better framework for au-
tomatic design of cryptographic Boolean functions.

2. DEFINITIONS
Boolean Function. A Boolean function f : Zn

2 → Z2

is a mapping from n binary inputs variables to one binary
output. Basic representations of a Boolean function are the
binary truth table and the polarity truth table. Other im-
portant and useful representations are the Walsh-Hadamard
Transform and the Algebraic Normal Form.

Balance. A function is said to be balanced if the number
of combinations mapping to 0 is the same as the number of
combinations mapping to 1.

Binary Truth Table. The binary truth table lists the
output bits for each of the 2n possible inputs to the Boolean
function. The binary truth table uses the set {0, 1} for the

output. Note that for n variables there could be totally 22n

different Boolean functions.
Polarity Truth Table. The polarity truth table repre-

sents a Boolean function with output symbols in the set
{1,−1}. The polarity truth table is useful in calculations
and can be easily obtained from the binary truth table by

f̂(x) = (−1)f(x) = 1 − 2f(x). (1)

It should be noted that the group {0, 1,⊕} is isomorphic
to {1,−1, ∗}, where XOR operation ⊕ is bitwise modulo 2
addition, and ∗ denotes multiplication on integers.

Hamming Distance. The Hamming distance between
two functions f and g is defined as the number of truth
table positions in which the functions disagree, i.e.

hd(f, g) =
˛

˛

˛
{x | f(x) 6= g(x)}

˛

˛

˛
. (2)

Functions Similarity. The similarity between two func-
tions f and g can be defined as the number of truth table po-

sitions in which the functions agree, i.e.
˛

˛

˛
{x | f(x) = g(x)}

˛

˛

˛
.

It can be expressed in terms of Hamming distance by

s(f, g) = 2n − hd(f, g). (3)

Cross Correlation. The cross correlation between two
functions f and g is defined as

ca(f, g) = s(f, g) − hd(f, g), (4)

which can be calculated from the polarity truth table by

ca(f, g) =
X

x∈Zn

2

f̂(x)ĝ(x). (5)

The normalized cross correlation is expressed by

cn(f, g) =
ca(f, g)

2n
. (6)

Linear Boolean Function. A linear Boolean function
is defined as a linear combination of a subset of the input
variables and can be expressed by

Lw(x) = w1x1 ⊕ w2x2 ⊕ · · · ⊕ wnxn, (7)

where x ∈ Zn
2 is the set of variables, w ∈ Zn

2 is a mask that
determines which input variables are considered by setting
wi = 1 or wi = 0, wixi denotes the bitwise AND of the wi

bit mask and xi variable, and ⊕ denotes bitwise XOR.
Affine Boolean Functions. The set of Affine func-

tions is the set of linear functions and their complements
Aw,c(x) = Lw(x) ⊕ c, where c ∈ Z2.

Walsh-Hadamard Transform. The Walsh-Hadamard
Transform (WHT) provides another means of representing
Boolean functions. The WHT expresses a Boolean function
in terms of its cross correlation to all linear functions. Thus,
for a given linear function Lw specified by w ∈ Zn

2 , the WHT
of function f denoted as F is equivalent to

F (w) = ca(f, Lw) (8)

The relationship between the WHT and the polarity truth
table of a Boolean function can be expressed as

F = Hn · f̂ (9)

where Hn is a ±1 matrix of size 2n × 2n which is defined re-
cursively using the Kronecker product of matrices as follows

Hn =

»

1 1
1 −1

–

⊗ Hn−1, Ho = [1]. (10)

Linear Structure. For a linear (or Affine) Boolean func-
tion f the value f(x + s) and f(x), for every fixed s, are
either always equal or always different. However many func-
tions have this property without being linear or Affine. This
property is called the linear structure.

Autocorrelation. The autocorrelation function gives an
indication of the imbalance of all first order derivatives of a
Boolean function and provides a measure of self-similarity
for Boolean functions. The derivative of a Boolean function
f(x), taken with respect to a vector s, where x and s ∈ Zn

2 ,
is defined as f(x) ⊕ f(x ⊕ s). Similarly, the derivative of

the polarity form of a Boolean function f̂(x) is defined as

f̂(x)f̂(x ⊕ s). Thus, the autocorrelation function rf̂ (s) of a
Boolean function f is defined by the polarity truth table to
be

rf̂ (s) =
X

x

f̂(x)f̂(x ⊕ s) (11)

Low values are considered good, whereas maximal values are
a serious weakness related to linear structures.

Algebraic Normal Form. The Algebraic Normal Form
(ANF) [14] is a representation that describes a Boolean func-
tion as the sum of all products of the variables, i.e. an XOR
sum of logical AND products of sub-sets of inputs variables.

750

The ANF can be expressed by

f(x1, x2, · · · , xn) = ao ⊕
X

1≤i≤n

aixi ⊕
X

1≤i<j≤n

aijxixj

⊕ · · · ⊕ a12···nx1x2 · · ·xn. (12)

3. NONLINEARITY CRITERIA
The method of confusion and diffusion is used as a funda-

mental technique to achieve security in cryptographic sys-
tems. Confusion is reflected in the non-linearity of certain
Boolean functions describing the cryptographic transforma-
tions. Non-linearity is crucial since most linear systems are
easily breakable. In this context, there are several criteria
which can serve as measures for non-linearity. Here, we ex-
plain non-linearity criteria related to the multiple objectives
we want to optimize.

Two important non-linearity criteria are expressed in terms
of a distance to appropriate sets of cryptologically weak
Boolean functions. One is expressed in terms of the distance
to the set of Affine functions. The other one is expressed
in terms of the distance to the set of functions with linear
structures. Perfect non-linear functions have been shown to
be optimum with respect to both the set of Affine functions
and the set of functions with linear structures. However, a
perfect linear function is never balanced.

A third non-linearity criterion is the algebraic order of the
function.

3.1 Nonlinearity Respect to Affine Functions
The nonlinearity Nl of a Boolean function f with respect

to Affine functions is defined as the minimum Hamming dis-
tance of f to all members of the set of Affine functions. Since
the Walsh-Hadamard Transform expresses a Boolean func-
tion in terms of its correlation to all linear functions, Nl can
be calculated directly from this transform by

Nl =
1

2
(2n − Fmax). (13)

where Fmax is the largest absolute cross correlation value
occurring in F (w) for all w ∈ Zn

2 , i.e.

Fmax = max
w∈Zn

2

|F (w)| (14)

The maximization of Nl, or equivalently the minimization
of the largest absolute correlation to linear functions |Fmax|,
assures a suitable resistance to linear cryptanalysis. Perfect
non-linear (not balanced) functions are known to have min-

imum correlation ±2n/2 to all Affine functions.

3.2 Nonlinearity Respect to Linear Structures
The nonlinearity Sl of a Boolean function f with respect

to the set of functions with linear structures is defined as
the minimum Hamming distance of f to all members of the
set of functions with linear structures. This non-linearity Sl
can be calculated by observing the largest absolute value in
the autocorrelation spectra of a function f denoted by

Ac = max
s∈Zn

2
,s6=0

|r̂f (s)| (15)

The maximization of Sl, or equivalently the minimization of
Ac, is the basis for protecting against differential cryptanal-
ysis [15, 16]. It should be mentioned that a function f has
optimum Sl if for every nonzero vector s ∈ Zn

2 the values
f(x+s) and f(x) are equal for exactly half of the arguments

x ∈ Zn
2 . In previous works, Ac has been minimized instead

of trying to maximize Sl. For comparison purposes in this
work we also seek to minimize Ac.

3.3 Algebraic Order
The algebraic order Or of a Boolean function f is given by

the number of variables in the largest product term (mono-
mial) that exists in the ANF. Affine Boolean functions are
thus the functions with algebraic order < 2. The algebraic
order of the functions should be maximized to resist simple
algebraic approximations.

4. RELATED WORK
Previous works aiming to generate highly non-linear bal-

anced functions by search heuristics have used single objec-
tive optimization approaches, targeting directly either the
non-linearity Nl respect to the set of affine functions (equiv-
alently Fmax) or the non-linearity respect to the set of Boolean
functions with linear structures (equivalently Ac) [8, 9, 10].
We call these methods direct-single objective approaches.

Recently, Clark et al. have proposed a two-stage optimiza-
tion approach [11]. In the first stage, an annealing-based
method is used to evolve functions restricting the spread of
Walsh values using a function of the type

CRX =
X

w

˛

˛

˛|F (w)| − X
˛

˛

˛

R

, (16)

where X and R are parameters. In the second stage, hill
climbing respect to Nl orAc is applied to the best function
obtained in the first stage. This method also focuses on sin-
gle objective optimization, although at the end of the run
other properties of the function are also measured. Best re-
sults in terms of the individual objectives have been achieved
by the two-stage optimization approach than by the direct-
single objective methods.

The two-stage approach is an important improvement to-
wards the automatic generation of highly non-linear Boolean
functions with cryptographic application. However, it suf-
fers from some drawbacks and limitations. First, the ob-
jective function used during the first stage introduce two
parameters and needs to be fine tuned in order to produce
good results. Second, the method offers very limited func-
tion diversity (functions with same non-linearity character-
istics but different at the genotype), especially for large n
(n = 8). Third, the method is not scalable in the sense that
it does not support the addition of criteria that could be
related to non-linearity or to other cryptographic character-
istics we might want an evolved function to have.

5. MULTIOBJECTIVE APPROACH

5.1 Evaluation criteria
Here, we describe the evaluation criteria used in this work

to evolve functions. The first evaluation criterion used is the
non-linearity Nl, i.e.

f1 = Nf =
1

2
(2n − Fmax). (17)

The second criterion is Ac, the largest absolute value in the
autocorrelation spectra, i.e.

f2 = Ac = max
s∈Zn

2
,s6=0

|r̂f (s)| (18)

751

Step 1 Initialize the single parent p with a random balanced string of length N, assuring
that the number of 1s equal the number of 0s (balanced function), evaluate p, add p
to Archive, add p to Population, set the total number of evaluations T, and set the
number of evaluations counter to t = 1

Step 2 While (t < T)

Step 2.1 Create a random permutation ı=(π1, π2, . . . , πN) of the N string positions, set the
permutation index to i = 1, and set stagnation to yes

Step 2.2 While (i < N and t < T)

- Determine a random position j among the bits with complementary value to the bit
at position πi.

- Clone the parent p and swap bits between positions πi and j to create child c.
The child c is a two bits neighbor of p, and remains balanced similar to p.

- Evaluate c

- If c dominates p, replace p with c and set stagnation to no

- If c is not dominated by p, update Archive and Population with c

- Increment t and i, t = t + 1 and i = i + 1

Step 2.3 If stagnation is yes, restart the search by replacing p with an individual of the
Population. If Population is empty, p is initialized anew with a random balanced
string and added to Population. Increment t, t = t + 1

Step 3 Return Archive.

Figure 1: The flow of multiobjective random bit climber moRBC(ρ : 1 + 1) to search for
balanced functions

These two criteria have been used in direct-single objective
approaches to try to find appropriate functions satisfying a
particular criterion.

In addition, we use a third criterion that measures the
correlation deviation of a Boolean function f from a per-
fect non-linear function, taking into account the correlation
spectra to all Affine functions. This correlation deviation is
given by

f3 = σc =

s

X

w

(|Fw(x)| − 2n/2)2 (19)

Recall that perfect non-linear (not balanced) functions have

minimum correlation ±2n/2 to all Affine functions. The
above criterion gives a measure of how far f is being from
being a perfect non-linear function. Thus by minimizing σc

we can expect to focus the search around functions with
good Nl and Ac.

In our study we use the above described evaluation crite-
ria to search for Boolean functions using one, two, or three
objectives. In all cases we report the characteristics of the
functions on terms of (Nl,Ac,Or), whether Nl and Ac are
used or not as evaluation criteria. Note that in this work
Or is only measured but never used as one of the evaluation
criteria. In addition, we search on the space of balanced
functions, so the initialization procedure and the genetic
operators are implemented to guarantee that all generated
trial solutions are balanced. That is, always the number of
1s and 0s remains equal.

5.2 Multiobjective Optimizer
In this work we use a multiobjective random bit climber

(moRBC) that uses elitism and bias selection by Pareto
dominance to search on the space of balanced Boolean func-
tions. The algorithm we use is a version of moRBC(ρ : 1+1)
[17] that preserve bits balance.

moRBC(ρ : 1 + 1) uses only one parent individual from
which it creates one child by swapping two complementary
bit values. The position πi of the first bit to be swapped is
given by a random permutation. The position of the second
bit to be swapped is randomly determined among the bits
with complementary value to the bit at position πi. Since
the initial parent is balanced (same number of 0s and 1s) the
child is also balanced and a two-bit neighbor of the parent.
Due to the random permutation, children of the same parent
created in subsequent iterations are different.

The parent for the next iteration is decided between par-
ent and child based on their Pareto dominance relation. If
the child dominates the parent then it replaces the parent.
Otherwise, the parent remains. moRBC(ρ : 1 + 1) keeps
the individuals non-dominated by the parent in a Population

of maximum size ρ in order to sustain its search. Climb-
ing continues until no improvement has been detected, i.e.
there has not been parent replacement after all bits indicated
by the random permutation have been tested in subsequent
iterations. In that case, the algorithm opts for a restart.
If the Population is not empty, the algorithm restarts the
search from one of the collected individuals. Otherwise, it
restarts the search from a balanced randomly created in-
dividual. moRBC(ρ : 1 + 1) also uses an Archive of lim-
ited capacity where it keeps the set of non-dominated solu-
tions found by the algorithm. Fig. 1 illustrates the flow of
moRBC(ρ : 1 + 1).

It should be noted that the procedure that updates the
Population first tries to delete solutions that have been al-
ready climbed in order to make room for a new member
when the Population has reached its maximum size ρ. If no
local optimum solutions are in the Population then it deletes
the most crowded non-dominated solution using NSGA-II’s
diversity preserving mechanism in objective space [12](p.236).
On the other hand, the procedure that updates the Archive

only checks for crowding distance in order to make room for

752

a new member when the Archive has reached its maximum
size. In addition, in both procedures we do not allow clones,
i.e. same genotype individuals are forbidden.

moRBC(ρ : 1 + 1) using a one-bit climbing strategy has
shown robust and better performance than other state of the
art multiobjective algorithms on sub-classes of non-linear
epistatic binary problems [17, 18]. For additional details
about moRBC(ρ : 1 + 1) and the effectiveness of population
climbing the reader is referred to [17].

(In this work, moRBC(ρ : 1 + 1) is also used for sin-
gle objective climbing. In this case the Population of non-
dominated individuals consists only of individuals with fit-
ness equal to the parent individual. Since in our algorithm
we do not allow clones, the same fitness individuals are all
different at the genotype level.)

6. RESULTS BY ENUMERATION ON SMALL

SPACES OF BALANCED-FUNCTIONS
The characteristics of the multiobjective landscapes de-

fined by the criteria used to evaluate cryptographic Boolean
functions are not known. In this section, in order to have
some insight into the multiobjective landscape induced by
Nl, Ac and Or, we present results by enumerating all bal-
anced functions with n = 4 and n = 5 input variables.
Enumeration for n ≥ 6 is not possible within a reason-
able time. The size of the search space of balanced func-

tions is given by the combination
“

2n

2n−1

”

, where n is the

number of the input variables in the function. Thus, there
are totally Bn = 12, 870 balanced functions for n = 4 and
Bn = 601, 080, 390 for n = 5.

Table 1 (a) and (b) show for n = 4 and n = 5, respec-
tively, the number of balanced functions |f | with characteris-
tics Nl, Ac and Or, and the percentage |f | represents respect
to the total number of balanced functions, % = 100×|f |/Bn .
Also, it separates fronts with a horizontal line and includes
the non-dominated front the functions belong to. Recall
that we seek functions with high Nl, low Ac, and high Or.

From Table 1 the following observations are important.
First, it can be seen that for n = 4 there are only 4 different
points in objective space (4 different characteristics of func-
tions) grouped in 3 fronts, whereas for n = 5 there are only
20 different points in objective space grouped in 10 fronts.

Second, for a given combination of characteristics (for
each point in the objective space) there are many different
functions in variable space.

Third, the fraction of solutions in the first front for n = 4
represents about 78.32% of the search space, whereas for n =
5 the first front represents only about 6.49% of the whole
search space of balanced functions. Conform n increases we
expect the fraction of solutions in the first front to reduce
drastically respect to the whole search space. Also, although
the number of fronts would increase, as well as the number
of points in objective space within each front, we would still
have many points in variable space mapping to the same
point in objective space.

Fourth, a clear tradeoff between characteristics Nl, Ac,
and Or is observed for n = 5 in the first front as well as in
other fronts. In n = 4 there is no tradeoff in the first front
(there is only one point in objective space) but a tradeoff
can be seen in the second front. This is important because it
suggests tradeoffs among non-linearity criteria on functions
with larger n. Tradeoffs between algebraic order and corre-

Table 1: Number of balanced Boolean functions |f |
with characteristics (Nl, Ac, Or) found by enumera-
tion, n = 4 and n = 5.

Nl Ac Or |f | % Front
4 8 3 10,080 78.32 1
4 16 2 840 6.53 2
2 16 3 1,920 14.92
0 16 1 30 0.23 3

(a) n = 4

Nl Ac Or |f | % Front
12 8 3 5,332,992 0.89 1
12 16 4 1,666,560 0.28
10 8 4 31,997,952 5.32
12 16 3 1,666,560 0.28 2
10 16 4 306,647,040 51.02
12 32 2 27,776 4.6E-3 3
10 24 4 36,664,320 6.10
10 32 4 444,416 0.07 4
8 16 4 103,326,720 17.19
8 16 3 10,554,880 1.76 5
8 24 4 81,244,800 13.52
8 32 3 1,145,760 0.19 6
6 16 4 8,888,320 1.48
8 32 2 8,680 1.4E-3 7
6 24 4 9,999,360 1.66
6 32 4 555,520 0.09 8
4 24 4 833,280 0.14
4 32 3 59,520 9.9E-3 9
2 32 4 15,872 2.6E-3
0 32 1 62 1.0E-5 10

(b) n = 5

lation immunity have been shown, but not much discussion
exists about the tradeoffs among non-linearity criteria.

Fifth, it has been suggested that Or is maximized by max-
imizing Nl or alternatively by minimizing Ac. Table 1
shows that indeed high values of Or are achieved by maxi-
mizing Nl. However, by looking the characteristics of solu-
tions in the first front, it should be noticed that not always
maximum Or corresponds to maximum Nl, nor maximum
Or always corresponds to minimum Ac.

7. RESULTS BY THE MULTIOBJECTIVE

APPROACH AND DISCUSSION
An important objective of this work is to learn whether

a multiobjective optimization approach could be effective
to find functions with high non-linearity. In this section
we discuss the characteristics of the evolved functions using
single and multiple criteria to evaluate solutions by focusing
on functions with n = 8 variables. The characteristics of
the functions are expressed in terms of their non-linearity
respect to Affine functions Nl, the largest value in the au-
tocorrelation spectra Ac, and algebraic order Or, i.e. (Nl,
Ac, Or). We also analyze the number of different alter-
native functions (genotype diversity) evolved for the same
combination of (Nl, Ac, Or) because we are interesting in
finding not one but many functions with similar character-

753

istics. This is important because in most applications the
security system is composed of several different primitive
Boolean functions, where the security of the whole system
is given by the weaker primitive function. Results presented
below show all evolved functions kept in the Archive by the
multiobjective random bit climber, collected from 50 differ-
ent runs of the algorithm. In each run the multiobjective
random bit climber expended T = 50.000 evaluations, set-
ting the maximum size of its Population and Archive to
250.

7.1 Results by single and two objective
optimization using Nl and Ac

First, we show results by using only one evaluation cri-
terion at the time. Table 2 shows the number of different
functions for each obtained combination of (Nl, Ac, Or) by
using Nl as the sole evaluation criterion. From Table 2,
we can see that mostly functions with Nl = 112 and some
with Nl = 114 can be found by focusing exclusively on Nl.
In this case, where Ac is not targeted directly, autocorrela-
tion of the obtained functions is in the range [80, 40] (best
achieved autocorrelation Ac = 40). Functions with bet-
ter characteristics can be found by the two-stage approach.
From Table 9 note that the two-stage approach could find
8 functions with Nl = 116 and Ac = 24. Regarding alge-
braic degree, we can see that functions with very high order
Or = 6 and Or = 7 can be obtained. Note that since we are
evolving balanced functions, the maximum achievable order
is 7 (n − 1).

Similarly, Table 3 shows results by using Ac as the sole
evaluation criterion. In this case, we can see that functions
with better autocorrelation can be found, i.e. Ac = 32,
but no function with Ac = 24 is found. However, since Nl
is not targeted directly, the number of functions achieving
Nl = 114 reduce substantially and many functions with val-
ues of Nl < 112 are found. Overall, these results are in
accordance with previous works reporting that it is not ef-
fective to find functions with simultaneously very high Nl
and low Ac by using direct-single objective optimization on
these objectives.

Second, Table 4 shows results by using simultaneously
Nl and Ac as the two evaluation criteria in a multiobjec-
tive optimization fashion. From the table, we can see that
by including both criteria the obtained functions cluster in
objective space around Nl = {112, 114} and Ac = 32. This
suggests that the multiobjective algorithm is more reliable
than the single objective approach to find simultaneously
better solutions in terms of Nl and Ac. However, by target-
ing directly and simultaneously Nl and Ac still no function
with Nl = 116 or Ac = 24 could be found. This is because
by using directly Nl and Ac there are still too many func-
tions mapping to the same point in objective space, in which
case selection becomes ineffective since it cannot discrimi-
nate among solutions with same fitness.

7.2 Results by two and three objective
optimization using σc with Nl and Ac

Next, we include σc as one of the evaluation criteria and
observe its effects when is used in conjunction with Nl and
Ac. Remember that σc gives a measure of the distance of the
Boolean function f to a perfect non-linear function. Thus
by minimizing σc we can expect to focus the search around
functions with good Nl and Ac. In addition, σc helps to

Table 2: Number of Boolean functions with charac-
teristics (Nl, Ac, Or) found by using Nl as the sole
evaluation criterion, n = 8.

Ac Nl Nl

112 112 114

40 11 978 14
48 119 5560 76
56 86 3563 20
64 17 797 1
72 3 103
80 1 12

Or = 6 Or = 7

Table 3: Number of Boolean functions with charac-
teristics (Nl, Ac, Or) found by using Ac as the sole
evaluation criterion, n = 8.

Ac Nl Nl

108 112 104 106 108 110 112 114

32 6 9 22 698 3882 1460 2
40 14 5 51 467 2034 1621 58

Or = 6 Or = 7

Table 4: Number of Boolean functions with charac-
teristics (Nl, Ac, Or) found by using simultaneously
Nl and Ac as the two evaluation criteria, n = 8.

Ac Nl Nl

112 112 114

32 18 2628 1007
40 22

Or = 6 Or = 7

discriminate among solutions having the same value of Nl
and Ac.

First, we use simultaneously Nl and σc as the two evalua-
tion criteria. Results are shown in Table 5. From this table
we can see that by including σc, functions with better Nl
and Ac characteristics could be found. Note that in this case
the algorithm was able to find 3 functions with Nl = 116
and Ac = 24, which was not possible by targeting only Nl
or Ac as shown in Table 2 and Table 3, respectively, or
by targeting both Nl and Ac in a multiobjective fashion as
shown in Table 4.

Second, we try simultaneously Ac and σc as the two eval-
uation criteria. Results are shown in Table 6. From this
table, we can see that the inclusion of σc helps finding func-
tions with better Ac = 24, which was not possible by tar-
geting Ac alone or Ac in conjunction with Nl as shown in
Table 3 and Table 4, respectively. Also, note that many
more functions with Ac = 24 are found by focusing on Ac
and σc than by focusing on Nl and σc. However, quality
respect to Nl reduces substantially. Note that no function
with Nl = 116 was found; actually, only one function with
Nl = 114 was found.

Third, Table 7 shows results by using simultaneously Nl,
Ac, and σc as the three evaluation criteria. From this table

754

Table 5: Number of Boolean functions with charac-
teristics (Nl, Ac, Or) found by using simultaneously
Nl and σc as the two evaluation criteria, n = 8.

Ac Nl Nl

112 116 108 110 112 114 116

24 4 1 16 297 77 3
32 15 20 1 641 2707 1274 5
40 1 13 2 254 691 467
48 15 28 34
56 1

Or = 6 Or = 7

Table 6: Number of Boolean functions with charac-
teristics (Nl, Ac, Or) found by using simultaneously
Ac and σc as the two evaluation criteria, n = 8.

Ac Nl Nl

112 116 108 110 112 114 116

24 8 1 29 1027 1
32 33 15
40 3

Or = 6 Or = 7

Table 7: Number of Boolean functions with charac-
teristics (Nl, Ac, Or) found by using simultaneously
Nl, Ac, and σc as the three evaluation criteria, n = 8.

Ac Nl Nl

112 116 108 110 112 114 116

24 20 1 1 18 1332 171 249
32 16 1 36 185 184 1
40 6 1 1
48 1

Or = 6 Or = 7

we can see that evaluating solutions with these three objec-
tives increases the chances of finding functions with high Nl
and low Ac. Note that in this case the algorithm was able to
find 249 functions with characteristics Nl = 116, Ac = 24,
and Or = 7. Recall that the two-stage optimization ap-
proach was able to find only 8 functions with similar char-
acteristics. This larger number of found functions with high
Nl and low Ac is significant because in most applications
where Boolean functions are used we need several different
functions (different genotype) with high non-linearity. For
example, an S-Box, with n inputs and m outputs, will re-
quire m Boolean functions for its implementation (typically,
n = 8 and m = 8). Remember that a block cipher uses
several S-Boxes. Also, many approaches to Hash functions
are based on S-Boxes.

Summarizing, Nl and Ac used within a multiobjective
approach seem to complement each other to focus the search
around promising regions of the search space. In addition
σc is required to discriminate better among solutions with
same values of Nl and Ac in order to find functions with
high non-linearity.

Table 8: Summary of results by the multiobjective
approach using simultaneously Nl, Ac, and σc as the
three evaluation criteria, n = {5, 6, 7, 8}.

f
n Nl Ac Or |f |
5 12 8 3 100
5 12 16 4 12350
5 10 8 4 50
6 26 16 5 12500
7 56 16 5 7
7 54 16 6 100
8 116 24 7 249

Table 9: Summary of results by the two-stage op-
timization approach. NLT and ACT show results
when the second stage focuses on Nl and Ac, respec-
tively. NA indicates data non available

f NLT ACT

n Nl Ac Or X-Best |f | X-Best |f |
5 12 8 3 -4 80 -4 74
5 12 16 4 [−2, 10] 100 [−2, 4] 100
6 26 16 5 4 59 6 52
7 56 16 6 {−4, 0, 6, 8} 2 {6, 8} 2
8 112 16 5 8 22 NA NA
8 116 24 7 10 8 NA NA

8. COMPARISON WITH TWO-STAGE

APPROACH
In this section we briefly compare results by the multiob-

jective approach used in this work with the two-stage op-
timization approach proposed in [11] generating functions
with n = {5, 6, 7, 8} variables.

Table 8 summarizes results obtained on 50 runs by the
multiobjective approach, where n indicates the number of
variables, and |f | indicates the number of different functions
(at the genotype level) found with characteristics Nl, Ac,
and Or. As indicated before, the multiobjective approach
expended T = 50, 000 evaluations in each run setting the
size of its Population and Archive to 250.

Table 9 summarizes best results by the two-stage opti-
mization approach reported in [11]. NLT/ACT shows re-
sults when Nl/Ac was targeted on the second stage (hill
climbing). X-best indicates the values of parameter X for
best performance (R = 3.0). The above results were col-
lected after performing 100 different runs for each combina-
tion of parameter setting X and R, varying X in the range
[−10, 16] on intervals of 2 (n = 8) and R = {2.0, 2.5, 2.75, 3.0}.
The range of X for other n changes slightly. The algorithm
was set to expend a maximum of 160.000 iterations (evalu-
ations) in each run during the first stage (annealing). How-
ever, no indication is given about the number of evaluations
spent during the second stage (hill climbing).

From these tables, we can see that the multiobjective ap-
proach can find many more functions with similar character-
istics (Nl,Ac,Or) than the two-stage optimization approach,
especially for n = {5, 6, 8}. For example, for n = 6 the

755

multiobjective approach finds 12,500 different functions with
characteristics Nl = 26, Ac = 16, and Or = 5, whereas the
two stage optimization approach could find only 59 functions
with similar characteristics.

For n = 5, where we know all solutions by enumeration,
it should be mentioned that the multiobjective optimization
approach is able to find functions with all three combina-
tion of characteristics (Nl,Ac,Or) present in the true Pareto
front as shown in Table 1. However, looking closely at Ta-
ble 8, is worth noting that the multiobjective optimization
approach finds 12,350 functions with (Nl = 12, Ac = 16,
Or = 4) and only 50 functions with (Nl = 10, Ac = 8,
Or = 4), despite the fact that the percentage of functions
with those characteristics respect to the whole search space
are 0.28% and 5.32%, respectively (see Table 1). These re-
sults suggest that the evaluation functions we use bias the
search towards optimum regions of Nl better than to opti-
mal regions of Ac. For n = 6 the multiobjective approach is
by far more efficient than the two-stage approach. However,
in n = 7 is should be noted that the two-stage approach
found 2 functions with (Nl = 56, Ac = 16, Or = 6) and
the multiobjective approach could find none. In n = 8, the
multiobjective approach found many more functions with
(Nl = 116, Ac = 24, Or = 7) than the two stage approach,
but it could not find non-dominated solutions that favor Ac
at the expense of Nl and Or as the two-stage approach did.

Overall, the performance by the multiobjective approach
seems promising, especially considering that many more func-
tions with similar characteristics can be found expending
fewer runs and much fewer evaluations than the two-stage
optimization approach. These results encourage us to de-
velop further the multiobjective approach for automatic gen-
eration of Boolean functions with cryptographic character-
istics.

9. CONCLUSIONS
In this work we have focused on non-linearity related cri-

teria and used an elitist, Pareto dominance-based, multiob-
jective algorithm to generate several balanced functions of
similar characteristics. The multiobjective approach is more
efficient than a two-stage optimization approach, requiring
much fewer runs and evaluations to generate functions with
high non-linearity. These results encourage us to develop
further the multiobjective approach for automatic genera-
tion of Boolean functions with cryptographic characteris-
tics. An important aspect of the problem analyzed in this
work is that there are many functions mapping to the same
combination of (Nl, Ac, Or) characteristics. Thus, rank-
ing by non-dominance and diversity in objective space loses
its effectiveness when the population is composed by differ-
ent functions of similar characteristics. As future works, it
would be worth exploring genotype diversity as a way to bias
selection in order to guide better the search. Also, we would
like to include other objectives in addition to non-linearity
criteria, for which tradeoffs are well known. Furthermore,
the multiobjective approach should be tried on functions
with more input variables.

10. REFERENCES
[1] T. Siegenthaler, “Correlation Immunity of Non-linear

Combining Functions for Cryptographic Applications”,
IEEE Transactions on Information Theory, vol.30,
pp.776-780,1984.

[2] M. Matsui, “Linear Cryptanalysis Method for DES
Cipher”, Proc. EUROCRYPT’93, Springer-Verlag, Lecture
Notes in Computer Science, vol.765, pp.386-397, 1994.

[3] E. Biham and A. Shamir “Differential Cryptanalysis of
DES-like Cryptosystems”, Journal of Cryptology, vol.4,
no.1, pp.3-72, 1991.

[4] H. M. Heys, “A Tutorial on Linear and Differential
Cryptanalysis”, Technical Report CORR 2001-17, Centre
for Applied Cryptographic Research, Department of
Combinatorics and Optimization, University of Waterloo,
Mar. 2001.

[5] S. Maitra and E. Pasalic, “Further Constructions of
Resilient Boolean Functions with Very High Nonlinearity”,
IEEE Transactions on Information Theory,
48(7):1825-1834, July 2002.

[6] E. Pasalic, S. Maitra, T. Johansson, and P. Sarkar, “New
Constructions of Resilient and Correlation Immune
Boolean Functions Achieving Upper Bound on
Nonlinearity”, Proc. Workshop on Coding and
Cryptography - WCC 2001, Electronic Notes in Discrete
Mathematics, vol.6, Elsevier Science, 2001.

[7] P. Sarkar and S. Maitra, “Nonlinearity Bounds and
Construction of Resilient Boolean Functions”, Advances in
Cryptology - Crypto 2000, Springer-Verlag, Lecture Notes
in Computer Science, vol.1880, pp.515-532, 2000.

[8] W. Millan, A. Clark and E. Dawson, “An Effective Genetic
Algorithm for Finding Highly Non-linear Boolean
Functions”, Proc. First International Conference on
Information and Communication Security,
Springer-Verlag, Lecture Notes in Computer Science,
vol.1334, pp.149-158, 1997.

[9] W. Millan, A. Clark and E. Dawson, “Heuristic Desing of
Cryptographically Strong Balanced Boolean Functions”,
Proc. Advances in Cryptology - EUROCRYPT’98,
Springer-Verlag, Lecture Notes in Computer Science,
vol.1403, pp.489-499, 1998.

[10] W. Millan, A. Clark and E. Dawson, “Boolean Functions
Desing Using Hill Climbing Methods”, Proc. 4th
Australasian Conference on Information, Security and
Privacy, Springer-Verlag, Lecture Notes in Computer
Science, vol.1587, pp.1-11, 1999.

[11] J.A. Clark and J. L. Jacob, “Two-Stage Optimization in
the Design of Boolean Functions”, Proc. 5th Australasian
Conference on Information, Security and Privacy- ACISP
2000, Springer-Verlag, Lecture Notes in Computer Science,
vol.1841, pp.242-254, 2000.

[12] K. Deb, Multi-Objective Optimization using Evolutionary
Algorithms, John Wiley & Sons,2001.

[13] C. Coello, D. Van Veldhuizen, and G. Lamont,
Evolutionary Algorithms for Solving Multi-Objective
Problems, Kluwer Academic Publishers, Boston, 2002.

[14] C. J. A. Jansen and D.E. Boekee, “The Algebraic Normal
Form of Arbitrary Functions over Finite Fields”, Proc. 8th
Symposium of Information Theory in the Benelux,
pp.69-76, 1987.

[15] X. Lai, “Additive and Linear Structures of Cryptographic
Functions”, Proc. Fast Software Encription - FSE Leuven
Workshop 1994, Springer-Verlag, Lecture Notes in
Computer Science, pp.75-85, 1994.

[16] W. Meier and O. Staffelbach, “Nonlinearity Criteria for
Cryptographic Application”, Proc. EUROCRYPT’89,
Springer-Verlag, Lecture Notes in Computer Science,
vol.434, pp.549-562, 1990.

[17] H. Aguirre and K. Tanaka, “Effects of Elitism and
Population Climbing on Multiobjective MNK-Landscapes”,
Proc. 2004 IEEE Congress on Evolutionary Computation,
IEEE Center, pp.449-456, 2004.

[18] H. Aguirre and K. Tanaka, “Selection, Drift,
Recombination, and Mutation in Multiobjective
Evolutionary Algorithms on Scalable MNK-Landscapes”,
Proc. Third Intl. Conf. on Evolutionary Multi-Criterion
Optimization, Springer, LNCS, vol.3410, pp. 355-369, 2005.

756

