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ABSTRACT
Although multi-objective GA (MOGA) is an efficient multi-
objective optimization (MOO) method, it has some limita-
tions that need to be tackled, which include unguaranteed
uniformity of solutions and uncertain finding of periphery
of Pareto-optimal solutions. It has been shown that, on
bi-objective problems, which are the subject of this paper,
local Pareto-optimal solutions form curves. In this case,
some of the limitations of MOGA can be resolved by sam-
pling the curves uniformly in the variable space and in the
objective space. This paper proposes Pareto Path Following
(PPF) which does the sampling by extending the framework
of Numerical Path Following, verifies that PPF exhibits the
desired behaviors, and addresses the extension of PPF for
problems with more than two objective functions.

Application of PPF is not limited to refinement of solu-
tions obtained with MOGA. PPF makes it natural to have
a local Pareto-optimal solution curve as the unit of search,
which leads to curve-based MOGA. PPF also enables exam-
ination of which Pareto-optimal solution curves are found
by MOO methods, and performance metrics based on it can
be defined. This paper proposes these applications of PPF
in MOGA and compares standard MOGA and curve-based
MOGA using the metrics to reveal their characteristics.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—Gradient meth-
ods; I.2.8 [Artificial Intelligence]: Problem Solving, Con-
trol Methods, and Search
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1. INTRODUCTION
Multi-objective function optimization (MOO) is required

in many real-world problems. The solutions to which no
other feasible solutions are superior in all objective func-
tions are called Pareto-optimal, and those to which no other
solutions in the feasible ε-vicinity are superior are called lo-
cally Pareto-optimal. The dimension N of the variable space
is generally bigger than the dimension M of the objective
space, and it has been shown that local Pareto-optimal solu-
tions locally form (M −1)-dimensional manifold [7, 3]. Con-
sidering the abundance of bi-objective problems, M = 2 is
assumed in this paper. Under this assumption, [7, 3] imply
that local Pareto-optimal solutions form curves.

MOO methods attempt to find solutions that approximate
all Pareto-optimal solutions. Among many MOO meth-
ods, Genetic Algorithms (GA) have been known to be ef-
fective and studied extensively [2]. As described in Subsec-
tion 2.3, multi-objective GA (MOGA) has some limitations
that remain to be addressed, which include unguaranteed
uniformity of solutions and uncertain finding of end-points
of Pareto-optimal solution curves. These limitations can be
lifted if local Pareto-optimal solution curves can be sampled
uniformly in the variable space and in the objective space,
as explained in Subsection 2.4. This paper proposes Pareto
Path Following (PPF) which does the sampling by extending
the framework of Numerical Path Following [1].

Use of PPF is not limited to refinement of MOGA’s final
solutions. When PPF can be used, it is natural to have a
local Pareto-optimal solution curve, instead of a point solu-
tion, as the unit of search in MOGA. Such MOGA is pro-
posed as curve-based MOGA in this paper. PPF also allows
for the calculation of the ratio of the Pareto-optimal solu-
tion curves reached by the solutions of MOO methods. This
paper proposes performance metrics based on it as well.

2. MOO AND MOGA

2.1 Multi-objective Optimization
Denote the vector of variables by x = (x1, . . . , xN )T ∈ R

N
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and the vector of objective functions by f = (f1, . . . , fM )T .
Multi-objective function optimization (MOO) is to minimize
f (x) subject to x ∈ S ⊂ R

N . The feasible region S satisfies
inequality constraints g(x) ≤ 0, where g = (g1, . . . , gL) is
the vector of constraint functions. A solution is feasible if it
is in S, and infeasible otherwise. Since there are a consider-
able number of real-world problems for which analytical or
approximate gradients of fi and gj are available, fi and gj

are assumed to be continuously differentiable. If gj(x) = 0
for some x ∈ R

N , x is on the boundary of the constraint,
and the constraint is active. A direction d ∈ R

N at a so-
lution x on the boundary is feasible if d · ∇gj(x) ≤ 0, and
infeasible otherwise.

If (∀i fi(x1) ≤ fi(x2)) ∧ (∃i fi(x1) < fi(x2)) holds for
x1, x2 ∈ S, x1 is superior to x2, which is denoted by
x1 	 x2. If there is no feasible solution x′ such that x′ 	 x,
x is Pareto-optimal. If there is no solution x′ such that
x′ 	 x in the feasible ε-vicinity of x, x is locally Pareto-
optimal. In general, there are a number of Pareto-optimal
and locally Pareto-optimal solutions. It has been shown
that local Pareto-optimal solutions locally form a (M − 1)-
dimensional manifold [7, 3], assuming N > M . This implies
that they form curves in the variable space and in the ob-
jective space when M = 2. These curves are called local
Pareto-optimal solution curves. In general, there are mul-
tiple such curves. Since Pareto-optimal solutions are also
locally Pareto-optimal, Pareto-optimal solution curves can
be defined similarly.

2.2 Evaluation of MOO Methods
MOO methods attempt to find a set of solutions that ap-

proximate Pareto-optimal solutions, and many evaluation
schemes for MOO methods have been suggested [2]. This
paper notes that, while existing evaluation schemes are suit-
able for problems with only one or a few Pareto-optimal
solution curves, they do not explicitly take into considera-
tion the case of multiple curves. Hence, this paper considers
different perspectives on evaluation of MOO methods: inter-
curve coverage and intra-curve coverage.1

Inter-curve coverage means that all Pareto-optimal solu-
tion curves are reached by at least one solution given by
MOO methods, where a curve is considered to be reached by
a solution if applying multi-objective local search (MOLS)
to the solution brings it to the curve. Intra-curve coverage
means that each Pareto-optimal solution curve is uniformly
covered with high precision from an end-point to the other.
It is intra-curve coverage that has been studies extensively
in previous studies. It is known to be composed of prox-
imity and diversity of the solutions obtained, and diversity
in turn consists of uniformity, a.k.a. distribution, and ex-
tent [2]. These two coverages can be evaluated either in the
variable space or in the objective space.

2.3 Multi-objective GA
GA is known as an effective MOO method and has been

studied extensively [2]. Multi-objective GA (MOGA) main-
tains a set of solutions and efficiently brings them closer to
Pareto-optimal solutions by repeatedly applying a crossover
operator and a selection operator to them. Survival selec-
tion is considered to be the most vital constituent of selec-
tion operators for MOO. Survival selection generally con-
sists of some form of ranking, which selects solutions closer

1The ideas can be easily extended to the cases of M ≥ 3.

to Pareto-optimal solutions, and sharing, which enhances
the diversity of solutions by removing solutions in crowded
areas in the objective space.

Regarding inter-curve coverage, it is generally believed
that MOGA is good at reaching many Pareto-optimal so-
lution curves since maintenance of a set of solutions al-
low MOGA to overcome locally but not globally Pareto-
optimal solution curves. However, MOGA does not neces-
sarily achieve good inter-curve coverage since some Pareto-
optimal solution curves found during the search are lost in
the end, as demonstrated in Subsection 4.4.

Regarding intra-curve coverage, one limitation of MOGA
that has been addressed in existing studies is low precision
[5]. It has been shown that applying MOLS to the final so-
lutions of MOGA, rather than to those of each generation,
resolves the precision limitation [5]. This paper notes that
there are two other limitations that remain to be addressed.
The first is that MOGA does not guarantee uniformity of so-
lutions since it attempts to achieve uniformity as a result of
removing solutions in crowded areas in the objective space.
The second is that the solutions obtained with MOGA are
not necessarily extended to the periphery of each Pareto-
optimal solution curve since a crossover operator does not
necessarily generate offsprings near the end-points of each
curve, as demonstrated in Subsection 4.4. This paper pri-
marily tackles the two limitations regarding intra-curve cov-
erage, and the one regarding inter-curve coverage will be
discussed in Subsection 4.4.3.

2.4 The Approach of This Paper
In order to resolve the limitations of MOGA regarding

intra-curve coverage, this paper considers the problem of
sampling local Pareto-optimal solution curves uniformly in
the variable space and in the objective space. Apparently,
resultant samples guarantee uniformity. Additionally, the
end-points of the curves are reached while the curves are
being sampled. Section 3 proposes Pareto Path Following
(PPF) which does the sampling, and applications and im-
plications of PPF in MOGA will be detailed in Section 4.

3. PARETO PATH FOLLOWING
This section first describes Numerical Path Following (NPF)

and proposes PPF which incorporates the concepts of NPF.
It then verifies through experiments that PPF exhibits the
desired behaviors.

3.1 Numerical Path Following

3.1.1 Framework
Given variables x ∈ R

N+1 and a smooth map H : R
N+1 →

R
N whose Jacobian has maximal rank, the solutions of the

underdetermined system of equations H(x) = 0 form a
curve. The solution curve x(s), where s is a one-dimensional
parameter, can be regarded as solutions to the initial-value
problem ẋ(s) = t(s) with x(0) = x0, where t(s′) is the tan-
gent vector of x(s) at s = s′ (cf. Fig. 1), and H(x0) ≈
0. Suppose that an initial solution x0 ∈ R

N+1 such that
H(x0) ≈ 0 and a sufficiently small stepsize h are given. Nu-
merical Path Following (NPF) [1] is a general framework of
calculating the solutions x1, x2, . . . on the curve, one after
another as depicted in Fig. 1, by alternately applying a pre-
dictor step and a corrector step with the following functions:
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Predictor step

Predictor step

Corrector step

Corrector step

t(0)

Figure 1: The initial-value problem corresponding
to the solution curve of an underdetermined system
of equations, and path following by a predictor step
and corrector step [1]

Predictor step: Calculate yi that is at the distance of h
from xi−1 in the direction of the (unit) tangent vector t̄k−1

of the curve at xi−1, i.e. yi = xi−1 + ht̄i−1.

Corrector step: Since yi is generally off the curve, push
it back onto the curve, and set the resultant solution as the
next search point, i.e. xi = arg minx{||yi−x|| : H(x) = 0}.
3.1.2 Use of NPF in MOO

If constraints are all equality constraints, the necessary
condition of local Pareto-optimality can be expressed as an
underdetermined system of equations, and a method that
follows local Pareto-optimal solution curves using NPF has
been proposed [7]. When there are inequality constraints,
they may be converted to equality constraints by some means,
e.g. introduction of slack variables. However, these conver-
sions make the method vulnerable to numerical errors [7].
Therefore, inequality constraints must be dealt with as they
are. In the presence of inequality constraints, however, the
necessary condition can not be expressed as an underdeter-
mined system of equations, so NPF is not applicable.

3.2 Proposal of Pareto Path Following
In order to extend the path following framework of NPF

for MOO, this subsection presents a predictor step and cor-
rector step that follow local Pareto-optimal solution curves.

Predictor Step: Consider the case of no active constraint
at a current search point xi−1. In this case, the gradients of
objective functions are tangent to local Pareto-optimal so-
lution curves. Therefore, the predictor step for MOO needs
only to calculate a point yi at a distance of h in the direction
of the gradient of one of the two objective functions.2

Now consider the case of some active constraints at xi−1.
If the gradient is feasible, active constraints can be ignored.
If not, the search direction must be the projection of the
gradient onto the tangent planes of the active constraints, as
in gradient projection method [8], in order to avoid searching
toward the outside of the feasible region. Since the active
constraints may be nonlinear, yi in that direction may be
infeasible. If so, it can be made feasible by applying an
appropriate repair operator.3 In this paper, Pareto Descent
Repair operator (PDR) [6] is used, which is briefly described
in Appendix A.
Corrector Step: Since applying MOLS to yi pushes it

2Using the other objective function gives the opposite tan-
gent direction.
3When stepsize h is sufficiently small, the resultant solu-
tion of repairing yi is expected to be approximately at the
distance of h from xi−1.

back onto the local Pareto-optimal solution curve, the cor-
rector step for MOO needs only to apply MOLS to yi and
set the resultant solution to be xi. In this paper, Pareto De-
scent Method (PDM) [4], which efficiently decreases all ob-
jective functions simultaneously with relatively small com-
putational cost, is used as the MOSL.

Given an initial solution x′
0, applying PDR, if x′

0 is infea-
sible, and PDM to x′

0 gives a local Pareto-optimal solution
x0. The local Pareto-optimal solution curve to which x0 be-
longs can be followed using the predictor step and corrector
step. This paper proposes this method as Pareto Path Fol-
lowing (PPF). The primary constituents of PPF are PDM
and PDR, whose main computation occurs in solving lin-
ear programming problems. Since computationally efficient
solvers such as simplex method are available, it can be said
that the computational complexity of PPF is accordingly
small. Some practical uses of PPF are described below.

Uniform Sampling: With fixed stepsize h, PPF can sam-
ple local Pareto-optimal solution curves uniformly in the
variable space. On the other hand, choosing yi such that
||f (yi)−f (xi−1)|| ≈ h by binary search in the predictor step
allows for uniform sampling in the objective space. Hence,
PPF can sample curves uniformly in either space.
Finding the End-Points of Curves: If local Pareto-
optimal solutions are bounded, PPF reaches the end-points
of local Pareto-optimal solution curves while sampling the
curves. When PPF reaches an end-point, the corrector step
either pushes the search point yi back to the end-point, or
pushes it away to another curve. In either case, the distance
||xi−yi|| by which the corrector step moves the search point
becomes big. Therefore, arrival at an end-point can be de-
tected, for example, by examining whether ||xi − yi|| ≥ hη,
where η ∈ (0, 1) is a user-specified parameter.
Determining Stepsize from Sample Size: It is conve-
nient to be able to determine stepsize h so that a specified
number n of solutions are obtained. Suppose that there are
nP Pareto-optimal solution curves and that, when the step-
size is h′, n′ solutions are obtained. The sum of the lengths
of all curves is approximately h′(n′ − nP ), and PPF with

h = h′ n′−nP
n−nP

gives approximately n solutions.

3.3 Verification of the Behaviors of PPF
This subsection verifies through experiments that PPF

samples local Pareto-optimal solution curves uniformly ei-
ther in the variable space or in the objective space.

3.3.1 Experiment Setup
Benchmark Problems: Since PPF does not depend on
the dimension N of a variable space, low dimensional bench-
mark problems Skewed QUAD and TNK are used, in order
to examine in detail the behaviors of PPF inside and on
boundaries of feasible regions, respectively.

Skewed QUAD is a 3-variable-2-objective problem with
no constraint. Its objective functions are

f1(x) =
`
(x1/2)

2 + (x2 − 1)2 + x2
3

´2
,

f2(x) =
`
(x1 − 1)2 + (x2/2)

2 + x2
3

´2
.

Its Pareto-optimal solutions form a curve connecting (0, 1, 0)T

and (1, 0, 0)T in the variable space. The initial solution for
this problem is (0.2, 0.5, 0.8)T , which was chosen arbitrarily.
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TNK [2] is a 2-variable-2-objective problem with non-
linear constraints. Its objective functions are f1(x) = x1

and f2(x) = x2. It has three local Pareto-optimal solu-
tion curves on a boundary. The initial solutions (0.9, 1.0)T ,
(1.1, 0.2)T , and (0.2, 1.1)T for this problem were chosen arbi-
trarily while ensuring that all three curves will be sampled.
PPF: Given an initial point x′

0, PDR is applied, if x′
0 is in-

feasible, and PDM (a pair of direction calculation and linear
search) is applied 12 times to obtain a local Pareto-optimal
solution x0. Since solutions yi that the predictor step gives
are in the proximity of the local Pareto-optimal solution
curve to which x0 belongs, PDM is applied 4 times in the
corrector step. Stepsize h is determined so that approxi-
mately 35 solutions are obtained, as explained in Subsection
3.2. The settings of PDM and PDR are detailed below:
(Common Settings) Approximate gradients of functions are
calculated using the forward difference of 10−4. For lin-
ear search, golden section method is used, with basic search
interval length of 10−2, the maximum number of interval ex-
tension of 20, and the basic number of iteration of 20. When
a distance between a solution and a constraint boundary is
less than 10−2×τ 20, where τ is the golden ratio, the solution
is assumed to be on the boundary.
(PDM) In order to sufficiently approximate the complete
convex cone of feasible descent directions, 40 combination
weights are randomly drawn for direction calculation.
(PDR) When active constraints are Ĉu = {ĉu

1 , . . . , ĉu
L̂u}, Ĉu

and {ĉu
i } for each i = 1, 2, . . . , L̂u are considered for inac-

tivation. Search direction calculation and linear search are
applied at most 30 times.

3.3.2 Experimental Results
PPF was applied to Skewed QUAD and TNK to sample

their local Pareto-optimal solution curves uniformly in the
variable space and in the objective space. The distributions
of the resultant solutions are shown in Fig. 2. For Skewed
QUAD, solutions in the variable space are projected onto the
x1-x2 plane since the x3-component of the Pareto-optimal
solutions of Skewed QUAD is 0. For TNK, only the distri-
bution in the variable space is shown, since each objective
function of TNK equals the corresponding variable.

Examining the results on Skewed QUAD, one can see
that solutions uniformly spaced in the variable space are
obtained when the Pareto-optimal solution curve is sam-
pled uniformly in the variable space, and those uniformly
spaced in the objective space when the curve is sampled
uniformly in the objective space. In addition, end-points
of the curve are identified. Next, examining the results on
TNK, one can observe that solutions uniformly spaced in the
variable/objective space are obtained, and the end-points of
the three curves are identified. These results confirm that
PPF samples local Pareto-optimal solution curves uniformly
either in the variable space or in the objective space, re-
gardless of whether the curves are inside or on boundaries
of feasible regions, and thus ensures intra-curve coverage.

3.4 Extension of PPF for Problems with More
than Two Objective Functions

PPF, in principle, can be extended for problems with more
than two objective functions, for which local Pareto-optimal
solutions form surfaces or solids. The extension of PPF
is explained below assuming M = 3. Similar extension is
possible for the cases of M > 3.
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Figure 2: The distribution of solutions obtained
with PPF. The end-points of local Pareto-optimal
solution curves that PPF identified are denoted by
×. The shaded areas are infeasible, and, the more
constraints they violate, the darker they are shaded.

When M = 3, local Pareto-optimal solutions form 2-
dimensional manifolds, i.e. surfaces. Note that the gradients
of objective functions are tangent to the surfaces. Choose
f1, for example, as the primary objective function, although
the choice is arbitrary. Given an initial local Pareto-optimal
solution x00, the surface to which x00 belongs can be sam-
pled along the direction of ∇f1 by taking ∇f1 as the search
direction in the predictor step. Now choose f2 as the sec-
ondary objective function, although the choice is arbitrary
as long as it has not already been chosen. Assuming that
∇f2 and ∇f1 are linearly independent, projecting ∇f2 onto
the null-space of ∇f1 gives a direction that is tangent to the
surface and orthogonal to ∇f1. Using this direction in pre-
dictor step samples the surface in the direction orthogonal
to ∇f1. The extended PPF consists of the predictor step
that uses these search directions and corrector step which is
the same as before. Note that (M − 1)-dimensional integer
coordinates (i, j) can be assigned to each solution xij given
by the extended PPF, with x00 being assigned (0, 0).

If a local Pareto-optimal solution surface is flat and ∇f1 is
constant on the surface, the extended PPF samples the sur-
face in the square grid pattern in the variable space. How-
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Figure 3: The distribution of solutions obtained by
applying the extended PPF to BRT

ever, since that is generally not the case, the samples in the
square grid pattern may be folded or stretched, which under-
mine the uniformity. Such fold or stretch may be detected
by examining the distances to neighboring solutions implied
by the integer coordinates. This, however, makes the entire
algorithm cumbersome. It is also difficult for the extended
PPF to sample in the square grid pattern in the objective
space and to identify the edges of the surfaces.

In order to demonstrate the principles of the extended
PPF which attempts to sample the surface in the square grid
pattern in the variable space, it was applied to a 3-variable-
3-objective problem with a non-linear constraint, Bumped
Regular Triangle (BRT), whose objective functions are

f1(x) = ||x −e1||2, f2(x) = ||x − e2||2, f3(x) = ||x− e3||2,
where e1 = (1, 0, 0)T , e2 = (0, 1, 0)T , e3 = (0, 0, 1)T , and
the constraint is ||x|| ≥ 0.75. Its Pareto-optimal solutions
form a regular triangle in the variable space whose vertices
are at e1, e2, e3, but part of the triangle is pushed up by
the constraint. Fig. 3 shows the distribution of the resultant
solutions. Although the samples are relatively uniform, one
can observe that the uniformity on some parts of the surface
is disturbed by the curvature of the surface.

4. APPLICATIONS OF PPF IN MOGA
This section gives three applications of PPF in MOGA.

The first is refinement of MOGA’s final solutions, which in-
cludes clustering of the solutions w.r.t local Pareto-optimal
solution curves. The others are curve-based MOGA and
performance metrics that measure the two coverages.

4.1 Refinement of Final Solutions of MOGA
Consider applying PPF to the solutions obtained with

MOGA. Now the precision of solutions is ensured by PDM
[5], and uniformity and extent within each curve are guaran-
teed by PPF, as demonstrated in Subsection 3.3. Therefore,
applying PPF to the final solutions of MOGA ensures high
intra-curve coverage. The experiment in Subsection 4.4 will
show that it is difficult for MOGA alone to achieve compa-
rable intra-curve coverage.

From a practical standpoint, it is favorable to have MOGA’s
solutions clustered w.r.t. local Pareto-optimal solution curves.
This enhances the readability of solutions in, for example,
lens system optimization problems [10], for which solutions
belonging to the same local Pareto-optimal solution curve
represent lenses with similar shapes, and those belonging

x1
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c1
c2

c3

c4

c5

c6

Figure 4: UNDX-based
crossover for curve-based
MOGA

f1

f2

c0

c1

c2

c3

c4

c5

Figure 5: Survival se-
lection for curve-based
MOGA

to different curves represent lenses with dissimilar shapes.
PPF allows for such clustering as explained below. Sup-
pose that curves are uniformly sampled in the variable space
with a stepsize sufficiently small to ensure that the distances
between curves are greater than the stepsize, and a local
Pareto-optimal solution x is given by PDM to be examined
for its belonging to a curve. One can conclude that x be-
longs to a curve if the minimum distance between x and the
samples of the curve is smaller than the stepsize.

4.2 Curve-Based MOGA
When PPF can be used, a different approach of MOGA,

i.e. curve-based MOGA, makes sense, as developed below.

Population: Standard MOGA has a point solution as the
unit of search and attempts to approximate (local) Pareto-
optimal solution curves with many points. However, since
PPF generates an entire local Pareto-optimal solution curve
from a single solution, it is natural to have a curve as the unit
of search. This paper proposes MOGA whose population
is a set of local Pareto-optimal solution curves as curve-
based MOGA. Each curve, in practice, is represented by a
set of solutions. One can use PPF to generate representative
samples of each curve that are uniform in the variable space.
Crossover: When the unit of search is a local Pareto-
optimal solution curve, the role of crossover is to find new
curves. Assuming that a conventional crossover is used for
generating offspring point solutions, it is appropriate, for
that purpose, to take randomly-chosen solutions from differ-
ent curves as parents. Applying PDM to the resultant off-
spring solutions gives local Pareto-optimal solutions. Those
that do not belong to any of the curves in the population
can be identified as described in Subsection 4.1. Since they
belong to new curves, one needs to generate the curves, i.e.
offspring curves, by PPF.

Fig. 4 shows an example. Solid curves c0, c1, c2, c3 are
local Pareto-optimal solution curves in the population, and
dashed ones c4, c5, c6 are those not in the population. Filled
circles denote parent solutions, and offspring solutions are
likely to be generated in the shaded areas when UNDX [9],
for example, is used for crossover. Among the solutions
obtained by applying PDM to the offspring solutions, those
on curves not in the population are shown as white circles.
Hence, the offspring curves are c4 and c5.
Survival Selection: Suppose that the population size is
fixed. A survival selection must choose as many superior
curves from the set of parent and offspring curves as the
population size. In order to do this, one can order the curves
according to their superiority by extending Non-Dominated
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Sorting [2]: take away the curves not entirely dominated
by other curves4 and rank them 0, repeat the same with
increasing rank until all curves are ranked, and select the
curves in the ascending order of the rank. When not all
curves of the same rank can fit into the population, the
curves to be selected must be determined within the rank.
Since the diversity of Pareto-optimal solutions must be max-
imized with the limited population size, it is appropriate to
choose curves in the descending order of the length of the
curve’s non-dominated part(s) in the objective space.5

In the example given in Fig. 5, curves c0, c4 are ranked 0,
c1, c2, c3 are ranked 1, and c5 is ranked 2. When the popu-
lation size is 4, the curves to be selected are c0, c4, c1, c3.

Curve-based MOGA maintains high intra-curve coverage
at all times, and never worsens inter-curve coverage since,
once it finds a Pareto-optimal solution curve, the curve will
never be discarded, as long as population size is greater than
the number of Pareto-optimal solution curves. Standard
MOGA, on the contrary, does worsen inter-curve coverage,
as demonstrated in Subsection 4.4. However, curve-based
MOGA requires many function evaluations for gradient cal-
culation. Hence, it is necessary to investigate whether the ef-
fectiveness of curve-based MOGA measures up to the many
function evaluations.

4.3 Performance Metrics for MOO Methods
Define Inter-Curve Coverage Rate (Inter-CCR) as the ra-

tio of Pareto-optimal solution curves reached by at least one
solution given by an MOO method. This directly measures
inter-curve coverage. Additionally, for each Pareto-optimal
solution curve, define Reach Indicator (RI) which is 1 if at
least one solution given by the MOO method reaches the
curve, and 0 otherwise. RI can be evaluated since PPF en-
ables clustering of solutions w.r.t Pareto-optimal solution
curves as explained in Subsection 4.1. Inter-CCR is simply
the average RI over all Pareto-optimal solution curves. The
average RI over all simulation runs gives the probability,
hence ease or difficulty, of finding the particular curve.

Intra-curve coverage can also be evaluated using PPF.
Given a benchmark problem, generating a large number
of initial solutions uniformly at random in the feasible re-
gion and applying PDM to them give a picture of the local
Pareto-optimal solutions. Applying PPF to them gives sam-
ples of the local Pareto-optimal solution curves. Among the
samples, those not inferior to any others are good approx-
imation of Pareto-optimal solutions and suitable reference
points for evaluating performances. They conveniently al-
low for calculation of an approximate length of each Pareto-
optimal solution curve in either space. Consider evaluating
intra-curve coverage of an MOO method that gives n so-
lutions when there are nP Pareto-optimal solution curves
and the sum of the curves’ lengths is l. If the n solutions
are precise, uniform, and extended to the periphery of each
Pareto-optimal solution curve, each reference solution must
be within the distance of l

2(n−nP )
from at least one of the

4Since each curve is represented by a set of solutions in
practice, the curves which has some constituent solutions
not dominated by any solutions of any other curves are the
ones not entirely dominated by other curves.
5Since each curve is represented by an ordered set of solu-
tions generated by PPF in practice, an approximate length
of the non-dominated parts of each curve can be calculated
using the non-dominated constituent solutions.

n solutions. Define Intra-Curve Coverage Rate (Intra-CCR)
for each Pareto-optimal solution curve as the ratio of the
reference points on the curve that are within the distance of

(1+ε)l
2(n−nP )

from at least one solution that reaches that curve,

where ε > 0 introduces tolerance. Intra-CCR directly mea-
sures intra-curve coverage. Note that, when PPF is used,
Intra-CCR is either 0 or 1 since PPF guarantees intra-curve
coverage of a curve that is reached.

4.4 Comparison of Standard MOGA
and Curve-Based MOGA

This subsection compares standard MOGA and curve-
based MOGA with two aims. The first one is to demon-
strate that standard MOGA does not necessarily give so-
lutions extended to the periphery of Pareto-optimal solu-
tion curves, which validates refinement of the solutions with
PPF. The second is to demonstrate that standard MOGA
worsens inter-curve coverage while curve-based MOGA does
not.

4.4.1 Experiment Setup
Benchmark Problem: Multi-objective Rastrigin problem
(MR), which is a 3-variable-2-objective problem with con-
straints, is used. The first objective function is the Rast-
rigin function, which has many local optima. The second
is also the Rastrigin function but is rotated counterclock-
wise about the x1-axis by 45 degrees, about x2-axis by 70
degrees, about the x3-axis by 20 degrees, and translated by
(0.3, 1.6, 2.8)T . The feasible region is [−5.12, 5.12]3 .

In order to visualize the local Pareto-optimal solutions
around the Pareto-optimal solutions, 2×104 initial solutions
were generated uniformly at random in [−2, 1]×[−1, 4]2, and
PDM was applied to each of them 40 times. The resultant
local Pareto-optimal solutions are shown in Fig. 6. They
form numerous curves even in the limited region, making
MR a difficult problem. PPF with stepsize h = 0.005 was
applied to the solutions in Fig. 6, and, among the samples,
the ones to which no others are superior were separated and
are shown in Fig. 7. Single-point Pareto-optimal solutions,
which are weakly but not globally Pareto-optimal and ac-
crue to the structure of the Rastrigin function, have been re-
moved. These are good approximation of the Pareto-optimal
solutions and form 5 curves.
Performance Metrics: In addition to Inter-CCR and RI,
extent ratio, defined below, is used. Given the final solutions
of an MOO method, cluster them w.r.t. Pareto-optimal so-
lution curves as explained in Subsection 4.1. For each curve
reached by the final solutions, calculate the sum of the dis-
tances from each end-point to the final solution that reaches
the curve and is the closest to the end-point in the nor-
malized objective space. Define extent ratio as the ratio of
the sum to the length of the Pareto-optimal solution curve
in the normalized objective space. Extent ratio measures
how spread the final solutions are on each curve, and the
smaller the better. Note that extent ratio is defined only for
curves reached by at least one final solution. Intra-CCR is
not used since Subsection 3.3 has already shown that PPF
ensures intra-curve coverage.
Standard MOGA: The standard population size 100 is
used. Initial solutions are generated uniformly at random
in the feasible region. UNDX [9] is used for crossover, and
SPEA2 [11] for survival selection. For each generation, 50
parent pairs are formed, and each pair gives 2 or 20 off-
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Table 1: Average extent ratio
C. 0 C. 1 C. 2 C. 3 C. 4

MOGA 02 0.809 0.181 0.013 0.665 0.904
MOGA 20 0.101 0.035 0.010 0.117 0.120

C.-b. MOGA 0.017 0.008 0.005 0.019 0.018

springs. These two versions of standard MOGA will be de-
noted by MOGA 02 and MOGA 20, respectively.
Curve-Based MOGA: Population size is 10. Initial curves
are generated by applying PPF to 10 solutions distributed
uniformly at random in the feasible region. UNDX is used
for crossover. For each generation, 10 parent pairs are formed,
and each pair gives 2 offsprings. The setting of PPF is the
same as in Subsection 3.3, except h = 0.005.

4.4.2 Experimental Results
Table 1 shows the average extent ratios for each curve

over 100 trials, excluding the trials for which the final so-
lutions did not reach the corresponding curve. One can
see that MOGA 20 performs better than MOGA 02 for
all curves, which implies that simply increasing the num-
ber of offsprings for each parent pair gives better spread of
solutions within each curve. However, curve-based MOGA
achieved substantially better average extent ratios than MOGA
20 did for all curves because of PPF. These results validate
application of PPF to the solutions obtained with MOGA
in order to refine them, as explained in Subsection 4.1.

The transitions of the average Inter-CCR and RI over 100
trials are shown in Fig. 8. Comparing MOGA 02 and MOGA
20, one can see that MOGA 20 performed better in both
Inter-CCR and RI, even when taking into consideration that
MOGA 20 consumes 10 times as many function evaluations
as MOGA 02 does. This implies that, although the num-
ber of offspring solutions generated from each parent pair
is 2 in most existing studies, more Pareto-optimal solution
curves are found when the number is bigger, outweighing
the increase in function evaluations. One can also see that
both MOGA worsened both Inter-CCR and RI in the course

of search. This implies that, although more Pareto-optimal
solution curves are reached at some point during the search,
fewer curves are reached in the end, which undermines inter-
curve coverage. The average RI for curve 2 shows that the
curve is found with high probability by all methods, imply-
ing that curve 2 is easy to find. On the contrary, curves 0, 3,
and 4 are found with low probabilities by MOGA, implying
that these curves are difficult for MOGA to find.

Comparing MOGA 20 and curve-based MOGA, one can
see that curve-based MOGA performs better in both Inter-
CCR and RI, and it monotonically improves both of them.
However, the number of function evaluations must be taken
into account when comparing them since curve-based MOGA
requires more function evaluations than MOGA does. Pre-
liminary experiments have shown that curve-based MOGA
consumed about 50 times as many function evaluations as
MOGA 20 did, where PPF is applied to the final solutions of
MOGA 20 so that the outputs of the two methods are simi-
lar. Therefore, it can be inferred that, given a fixed number
of function evaluations, multi-start MOGA 20 will probably
find more Pareto-optimal solution curves with higher prob-
ability than single-run curve-based MOGA.

4.4.3 Discussion
On a large-scale problem with many local Pareto-optimal

solution curves, e.g. lens system optimization problem [10],
it becomes essential not to worsen inter-curve coverage so
that, once any Pareto-optimal solution curves are found,
they are never discarded. For this reason, curve-based MOGA
is a valid approach although it requires more function eval-
uations. Therefore, it remains to compare standard MOGA
and curve-based MOGA on such problems.

5. CONCLUSION
This paper tackled the limitations of MOGA regarding

intra-curve coverage by proposing PPF that samples local
Pareto-optimal solution curves uniformly in the variable space
and in the objective space. When PPF can be used, the fi-
nal solutions of MOGA can be refined, curve-based MOGA
can be constructed, and performance metrics such as Inter-
CCR and Intra-CCR can be evaluated. This paper veri-
fied through experiments that PPF exhibits the desired be-
haviors, and compared standard MOGA and curve-based
MOGA w.r.t. extent ratio, Inter-CCR, and RI, giving some
insight into the characteristics of these methods.

As explained in Subsection 3.4 and Subsection 4.4.3, it
remains to investigate how to circumvent the difficulties that
arise in extending PPF for problems with more than two
objective functions, and to examine the approach of curve-
based MOGA on more complex problems.
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APPENDIX
A. PARETO DESCENT REPAIR OPERATOR

One approach for repairing an infeasible solution is to
search for the feasible solution closest to the infeasible solu-
tion in the constraint space [6] (cf. Fig. 9). Pareto Descent
Repair operator (PDR) [6] does this by incorporating the
concepts of gradient projection method [8] and using PDM
[4] to efficiently reduce all violated constraint functions si-
multaneously.
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