
Using Evolutionary Computation and Local Search
for Solving Multi-objective Flexible Job Shop Problems

Nhu Binh Ho
School of Computer Engineering

Nanyang Technological University
Nanyang Avenue, Singapore 639798
honhubinh@pmail.ntu.edu.sg

Joc Cing Tay
School of Computer Engineering

Nanyang Technological University
Nanyang Avenue, Singapore 639798

asjctay@ntu.edu.sg

ABSTRACT
Finding realistic schedules for Flexible Job Shop Problems has
attracted many researchers recently due to its NP-hardness. In this
paper, we present an efficient approach for solving the multi-
objective flexible job shop by combining Evolutionary Algorithm
and Guided Local Search. Instead of applying random local
search to find neighborhood solutions, we introduce a guided
local search procedure to accelerate the process of convergence to
Pareto-optimal solutions. The main improvement of this
combination is to help diversify the population towards the
Pareto-front. Empirical studies show that 1) the gaps between the
obtained results and known lower bounds are small, and 2) the
multi-objective solutions of our algorithms dominate previous
designs for solving the same benchmarks while incurring less
computational time.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods and Search]:
Scheduling

General Terms
Algorithms, Scheduling, Optimization, Search.

Keywords
Multi-objective Evolutionary Algorithm, Guided Local Search,
Flexible Job Shop Problems.

1. INTRODUCTION
Many real-world scheduling problems involve simultaneous
optimization of a set of conflicting multiple objectives. In
particular, the scheduling task for manufacturing is concerned
with assigning n jobs to m machines so as to minimize some
conflicting objective functions. When considering multiple
objectives, there may not exist a unique solution that is the best
for all objectives (global minimum). Alternatively, a set of

solutions that are superior to the rest of solutions in the search
space are the targets to achieve. A popular model that has been
well studied is the Job-Shop Scheduling Problem (JSP). It is one
of the hardest scheduling problems to solve for optimality [1] and
is NP-hard [2]. In the JSP, the route of every job is fixed and
every operation of a job is allocated a unique machine for
processing. However, the limitation of allocating only one job to
one machine can lead to a bottleneck on the most busy machines
on the shop floor. In practice, the machine environment is more
complex. These busy machines are duplicated to balance their
overall workload and to reduce the flow time of the jobs [3]. This
variation is known as the Flexible Job-Shop Scheduling Problem
(FJSP). It extends the definition of the JSP by allowing an
operation to be processed without interruption on one of a set of
pre-defined machines. Mati and Xie [4] considered the general
FJSP where each operation can be processed by any machine
from a given set associated with the operation, and its processing
time would depend on the selected machine. They proved that
with 2 machines for minimizing makespan (the maximum
completion time of all operations), FJSP is NP-hard. In addition,
the FJSP with multiple objectives is also NP-hard [4]. Many
techniques have been considered for solving the FJSP.
Enumerative methods such as branch and bound [5] can guarantee
optimal solutions but are computationally expensive even for
small sized problems. Other approximation and randomized
algorithms methods such as Evolutionary Algorithms [6-8],
Simulated Annealing [9], or Tabu Search [10] have demonstrated
an efficacy for solving FJSPs.

The combination of Evolutionary Algorithms (EAs) and Local
Search methods (known as Memetic Algorithms) for solving
scheduling problems has been increasingly studied by researchers
and good solutions [11, 12] have been obtained. The local search
methods by themselves have also achieved promising results [9,
10]. These approaches combine the explorative search of EA and
the exploitative search of Local Search together to find better
solutions. However, issues of time and space complexities need to
be addressed. In order to reduce these complexities, the
application of intelligent heuristics to select promising solutions
when applying local search will need further investigation.
Considering both advantages and limitations of previous
approaches, we propose a Multi-Objective Evolutionary
Algorithm with Guided Local Search (MOEA-GLS) algorithm to
solve multi-objective FJSPs. The algorithm comprises three parts:
MOEA, Guided Local Search and Elitism Memory. Instead of
simply using a randomized local search for finding neighborhoods
of a schedule, the local search part in every generation is

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007...$5.00.

821

intelligently guided by an efficient selection towards promising
areas. These mechanisms guarantee that only the moves that
obtain better solutions are visited. Therefore, more good quality
solutions can be obtained and computational cost is also reduced.
In this paper, three objectives are considered: minimization of
makespan, critical machine workload and total workload of all
machines. We validate the efficacy of the MOEA-GLS algorithm
to solve common benchmark problems from [6, 7, 9]. The
experimental results indicate that the multi-objective results of
our algorithm dominate the other approaches for solving the same
benchmarks in shorter computational time.

The paper is organized as follows. Section 2 gives the formal
definition of the FJSP. Section 3 reviews recent related works for
solving the FJSP and classifies current approaches for solving
multi-objective optimization problems using EAs. Section 4
describes Guided Local Search and the integration of MOEA and
Guided Local Search. It also provides some theoretical
considerations and the procedure to find the best moves. Section 5
analyzes the performance results of MOEA-GLS when applied to
solve common benchmarks in literature. Finally, Section 6 gives
some concluding remarks and directions for future work.

2. PROBLEM DEFINITION
The multi-objective FJSP with availability constraints and
functionally related machines is formulated as follows:

• Let J =J1≤i≤n, indexed i, be a set of n jobs to be scheduled.

• Each job Ji consists of a predetermined sequence of
operations. Let Oi,j be operation j of Ji.

• Let M = {Mk}1≤k≤m, indexed k, be a set of m machines.

• Each machine can process only one operation at a time.

• Each operation Oi,j is processed without interruption on Mk
in a given set μi,j ⊂ M with pi,j,k time units.

Let ri and Ci be the release date and the completion date of job Ji.
Wk is the workload of machine Mk. Three objectives (which have
been used to evaluate the efficacy of other algorithms in solving
multi-objective FJSPs [6, 7, 9]) are used in this paper; namely,

• Minimization of overall completion time (makespan):
{ }1 max 1,..,iF C i n== .

• Minimization of critical machine workload:
{ }2 max 1,..,kF k mW ==

• Minimization of total workload of all machines:

3 , ,i j kF p= ∑

The task is to find a set of solutions that are superior among all
the solutions when all objectives are considered. They are known
as Pareto-optimal solutions [13].

The FJSP can also be considered to be a Multi-Purpose Machine
(MPM) job-shop [14]. Using the α|β|γ notation of Graham et al.
[15], the problem we wish to solve can be denoted by:

J MPM | prec jr | 1F 2F 3F

where J denotes a job-shop problem, MPM denotes a multi-
purpose machine, prec represents a set of independent chains
while rj represents the release date given to each job, 1F (or

Cmax) represents makespan, 2F represents the critical machine

workload and finally 3F represents the total workload of all
machines.

In this paper, we will assume that:

• All machines are available at time 0.

• Each job has its own release date.

• The order of operations for each job is predefined and
invariant.

• The machine can execute only one operation at a time.

3. LITERATURE REVIEW
Evolutionary Algorithms (EAs) have been used widely to solve
multi-objective optimization problems. Generally, they can be
classified into three approaches: Population-based, Aggregation
function, and Pareto-based [16].

Population-based approaches, such as VEGA [17], are based on a
division of the current population into s sub-populations where s
is the number of objectives. At each generation, s sub-populations
are generated by performing proportional selection according to
each objective before being shuffled and recombined into a single
population. The crossover and mutation operators are then applied
as usual to this new population. The drawback of this approach is
the focus on one objective per sub-population at a time.
Therefore, the results that are good for more than one objective
may be discarded before recombining together to form a new
population.

The Aggregation function approaches combine all the objectives
of the optimization problems into a single function [7, 11]. An

example of an Aggregation function is min
k

i i
i 1

w F
=
∑ where wi is

the weight of a single objective Fi. This approach is
straightforward to apply to any multi-objective optimization
problem. However, due to the difficulty of setting the weight
vector’s values for exploiting the desired area, it is not sufficient
for solving non-convex objective spaces [16].

Pareto-based approaches, also known as the second generation of
MOEAs [16], use the concept of domination to find the optimal
results. A solution X dominates a solution Y if the solution X has
at least one objective that fares better than the corresponding
objective in solution Y, all others being equal. The family of all
nondominated alternative solutions is denoted as the Pareto
optimal set, Pareto set for short or Pareto optimal front. There are
many Pareto-based approaches that have been developed so far in
literature. The most popular methods are NSGA-II [18] and SPEA
[19] that depend on elitist selection, fitness sharing, and Pareto
ranking. Elitist selection preserves the elite individuals from the
last generation, fitness sharing degrades the fitness values of all
competing members of a niche as the niche size increases while
Pareto ranking uses dominance concepts for selection to eliminate
inferior individuals. The challenge of Pareto-based approaches is

822

to keep the diversity of the population towards the Pareto front of
the problems.

Recently, many researchers have studied the combination of EA
and Local Search for solving multi-objective scheduling
problems. The general idea is to enhance solutions obtained by
each generation by local search to get better results.
Subsequently, these obtained results are used to update the quality
of next generation. Ishibuchi et al.[11] combine EA and Local
Search for solving multi-objective flow shop. The weight vectors
are generated randomly in each generation to combine all
objectives. At the end of each generation, all schedules in the
population are improved by local search after a pre-defined
number of steps. Kacem et al. [7] apply fuzzy logic to control the
way to find weight vectors for solving multi-objective FJSPs
while Xia and Wu [9] use Simulated Annealing integrated with
local search. In the latter approach, two randomly selected nearby
operations on each machine are swapped in the local search.
Similar to other Aggregation function approaches, the algorithms
described above also face issues of finding suitable weight vectors
to diversify the results towards the Pareto front. This is
computationally expensive when all solutions are used to evaluate
new weight vectors. Furthermore, if random local search
algorithms are applied, they do not guarantee that an
improvement in the obtained results. The difference between this
work and previous approaches on solving multi-objective FJSPs is
that we use a mechanism of guided local search to improve only
the best solutions. Furthermore, we have adopted the Pareto-based
approaches for ranking the solutions in each generation. We will
demonstrate the efficacy of the MOEA-GLS algorithm in
comparison to other approaches by using the benchmarks in [7].

4. THE MOEA-GLS ALGORITHM
In this Section, the detailed description of the MOEA-GLS is
presented. Section IV.A gives common definitions that are used in
this paper. Theoretical considerations for improving Guided Local
Search are also discussed. Section IV.B presents our approach to
integrate Guided Local Search with MOEA and the selection of
designed parameters to reduce computational time.

4.1 Guided Local Search
For a given schedule of the FJSP, a neighborhood can be obtained
by moving an operation from one machine to another machine.
However, not all moves improve the current results and a
complete enumeration of the neighbourhood will be expensive.
The challenge is how to find the best move to improve multiple
objectives simultaneously. Before presenting theorems that are
used to guide the local search, some definitions are introduced as
follows to be used throughout this paper.

Definition 1 the critical path of a schedule is a list of operations
whose total process time is the minimum time that all jobs take to
complete. One schedule can have more than one critical path.

Definition 2 a critical block is a set of consecutive operations on
the critical path processed by the same machine. One machine can
be associated with more than one critical block on a given critical
path.

Definition 3 the machine Mk in a schedule is termed the most
loaded machine if its workload WL, is equal to the critical

machine workload MW, which we denote as a function, WL(Mk) =
MW. One schedule can have more than one most loaded machine.

Definition 4 the precedence earliest start time of an operation
(pest(Oi,j)) is equal to the stop time of its immediate precedence
operator Oi,j-1. If it is the first operation, pest(Oi,j) is equal to the
release date of the corresponding job.

Theorem 1 (minimizing the total workload):

When moving an operation Oi,j from machine Mk to another
machine Mk’, the new total workload (TW) is minimal (i.e. at most
the previous total workload) if the processing time of Oi,j on
machine Mk’ is at most the processing time of Oi,j on machine Mk.

Proof: Let pi,j,k be processing time of Oi,j on machine Mk, the total
workload of all machines is:

 , , 1,1, , , , ,
1 1

... ...
inn

i j k l i j k n p q
i j

TW p p p p
= =

= = + + + +∑∑

where n is number of jobs, ni is number of operations of job i and
k is the index of the machine that processes operation Oi,j.

When moving Oi,j from machine Mk to machine Mk’, the new
processing time of this operation on machine Mk’ is pi,j,k’. The new
total workload of all machines is:

 , , 1,1, , , ' , ,
1 1

'
inn

i j k l i j k n p q
i j

TW p p p p
= =

= = + + + +∑∑

Since , , ' , ,i j k i j kp p≤ , we obtain 'TW TW≤ . Therefore, the total
workload is minimal.

Theorem 2 (minimizing the critical machine workload):

When moving an operation Oi,j from one of most loaded machines
(e.g. Mk) to the other machine Mk’ on a schedule, the critical
machine workload is minimal (e.g. at most the critical machine
workload MW) if the workload on machine Mk’ plus processing
time of Oi,j on machine Mk’ is at most MW.

Proof: Let Mk be one of the most loaded machines, then by
Definition 3:

() , ,
k

k i j kM
MW WL M p= = ∑

where , ,i j kp is processing time of Oi,j on machine Mk. Similarly,
the workload of machine Mk’ is:

'
' , , '() '

k
k i j kM

WL M p= ∑

When moving an operation Oi,j from machine Mk (with processing
time pi,j,k) to machine Mk’ (with processing time pi,j,k’), the
workload on machine Mk decreases to

 , ,'() ()k k i j kWL M WL M p= −
while the workload on machine Mk’ increases to

 ' ' , , ''() ()k k i j kWL M WL M p= +

If ''() ()k kWL M WL M≤ or ' , , '()k i j kWL M p MW+ ≤ , then the
new critical machine workload is minimal. Otherwise, the new
critical machine workload (that is equal to the workload on
machine Mk’) will be larger than MW.

823

Theorem 3 (minimizing makespan):

The makespan of a schedule cannot be reduced when moving
operations that are not on the critical paths to other machines.

Proof: The makespan is the total processing time of all operations
of a critical path. If moving any operation that does not belong to
the critical path to another machine (not on this path), the current
makespan remains unchanged. Therefore, the makespan cannot be
reduced by such an action.

Theorem 4 (minimizing makespan): when moving an operation
Oi,j belonging to machine Mk (with processing time pi,j,k) on a
critical path CP to machine Mk’ (with processing time pi,j,k’), if its
immediate precedence and successor operations are also on the
same critical path CP, the makespan cannot be reduced in case of
new processing time pi,j,k’ is equal or larger than pi,j,k.

Proof: Let Cmax be the makespan of the schedule before moving
Oi,j from machine Mk to machine Mk’. Let Oi,j-1 and Oi,j+1 be
precedence and successor operations of Oi,j respectively. Oi,j
cannot start before the stop time of Oi,j-1. Similarly, Oi,j+1 cannot
start before the stop time of Oi,j. Since Oi,j-1 and Oi,j+1 are both on
the critical path CP, the lower bound of the new makespan, C’

max
is:

C’
max = (Cmax – pi,j,k) + pi,j,k’.

 Since pi,j,k’ ≥ pi,j,k, C’
max ≥ Cmax the makespan cannot be reduced.

When moving an operation Oi,j on machine Mk (with processing
time pi,j,k) of a schedule to new machine Mk’ (with processing time
pi,j,k’), the operation Oi,j can only be processed after the
completion of its immediate precedence operation Oi,j-1
(pest(Oi,j)). Using the constraint of pest(Oi,j), we identify the
operation Op.q in machine Mk’ which has a stop time that is
smaller or equal to pest(Oi,j). Oi,j can be processed after Op,q.
However, it may increase the current value of makespan if both
Oi,j+1 and the immediate next operation Or,s of Op,q on machine
Mk’ are on critical paths. This situation is presented in Figure 1
below.

Figure 1. Finding suitable position to insert Oi,j to machine
Mk’.

In Figure 1, both the immediate successor operations Oi,j+1 and
Or,s are on critical paths. Let set B be the critical block that
contains Or,s on machine Mk’ and Cmax be the makespan before
moving. We need to find the position of Oi,j on machine Mk’ so
that i Cmax is minimized. There are two possibilities:

1) Insert Oi,j before Or,s: this can violate the critical path that
contains Or,s. If the stop time of Oi,j on Mk’ is larger than the

start time of Oi,j+1, it will also the critical path containing
Oi,j+1.

2) Insert Oi,j after critical block B: this only violates the
critical path that contains Oi,j+1.

Let st(Oi,j) be start time of Oi,j on machine Mk’. It is equal to
maximum value of pest(Oi,j) and completion time of Op,q. Let
stop(B) be stop time of critical block B. We introduce two values:
positionValue1 and positionValue2 to evaluate the increasing
amount of Cmax for two positions described above:

positionValue1 = max(st(Or,s) - (st(Oi,j)+pi,j,k’),

st(Oi,j+1) - (st(Oi,j)+pi,j,k’))

positionValue2 = stop(B)+ pi,j,k’ - st(Oi,j+1)

Theorem 5 (reducing new makespan value):

If positionValue1 ≤ positionValue2, inserting Oi,j before Or,s can
reduce the amount of increase in Cmax than by inserting Oi,j after
critical block B. Otherwise, inserting Oi,j after critical block B can
reduce the amount of increase in Cmax.

Proof: When inserting Oi,j before Or,s, the lower bound of new
makespan is: C1 = Cmax + positionValue1. When inserting Oi,j after
critical block B, the lower bound of new makespan is: C2 = Cmax +
positionValue2.

If positionValue1 ≤ positionValue2, C1 ≤ C2: we choose to insert
Oi,j before Or,s instead of inserting Oi,j after critical block B.
Otherwise, inserting of Oi,j after critical block B is selected instead
of inserting Oi,j before Or,s.

From the results of Theorem 1 to Theorem 5, it is seen that the
best moves of Guided Local Search can be found into two steps.
Firstly, we identify a set of promising operations S so that when
moving each operation in S to another machine, one or more
objectives described in Section II can be minimized. Next, when
moving Oi,j in set S to new machine Mk’, we find a suitable
position in an array of ordered operations on Mk’ to insert Oi,j so
that the makespan of new schedule is minimized. Theorem 3 and
Theorem 4 have shown that the improvement of makespan can
only be obtained by moving operations on critical paths of a
schedule. Therefore, in order to reduce the computational cost,
only operations that belong to critical paths are selected to be
moved.

The Guided Local Search procedure for finding promising
operations of the current schedule is described as follows:

Step 1) Find all operations on critical paths to insert to set U.

Step 2) For each operation Oi,j in U with processing time pi,j,k in
machine Mk, identify all machines that can process Oi,j
except Mk. Inserting Oi,j and an alternative machine Mk’
to set V if one of the following conditions is satisfied:

a) The new processing time pi,j,k’ on machine Mk’ is
smaller than pi,j,k (to improve total tardiness).

b) Mk is a machine whose workload is equal to critical
machine workload value MW and the new workload on
machine Mk’ where Oi,j is inserted is smaller than MW
(to improve critical workload).

Mk

Mk’

Oi,j

Oi,j+1

Or,s Oi,j Oi,j Op,q

On critical path

Time
Critical block B

New stop time of Oi,j on Mk’

stop(B)

824

c) There is only one critical path (or only one machine
that its stop time is latest), the new processing time is
equal to pi,j,k, and pest(Oi,j) is smaller than start time of
Oi,j on machine Mk (critical machine workload and
total workload are unchanged but makespan can be
improved).

For each operation Oi,j and its corresponding machine Mk’ in set V,
the procedure to find its suitable position on machine Mk’ is
described as follows:

Step 3) Remove operation Oi,j with its corresponding machine
Mk’ from set V.

Step 4) If there is no operation in machine Mk’, insert Oi,j to Mk’.
Otherwise, find a position of an operation Op,q in Mk’ so
that pest(Oi,j) is smaller than current start time of Op,q.

Step 5) If pest(Oi,j) plus the processing time of Oi,j on machine
Mk’ (pi,j,k’) is at most the start time of the next operation
of Op,q (that is Or,s) on machine Mk’, insert Oi,j after Op,q.

Step 6) If Or,s is not on a critical path, insert Oi,j after Op,q.
Otherwise, if Oi,j+1 is not on a critical path, insert Oi,j
after critical block B. If both Oi,j+1 and Or,s are on critical
paths, apply Theorem 5 to find the best move.

Step 7) Stop if there are no operations remaining in set V.
Otherwise, go back to Step 3).

At the end of Step 7), we will obtain a set of neighborhood
schedules of the current schedule. The encodings of these
schedules are then used to update the current population. Note
that after Step 2), only the schedules that their neighborhood
schedules dominate or are at least of the same rank with them are
selected for exploitation.

4.2 Description of MOEA-GLS
The overall control flow of the MOEA-GLS algorithm is
summarized in Figure 2. To generate a good and diversified initial
population, we employ Composite Dispatching Rules presented in
[8]. These rules perform two tasks simultaneously: balancing the
workload of each machine and ordering the operations in the
waiting list of each machine so that good solutions can be
obtained. The Guided Local Search module uses the procedure
described in Section IV.A. Coello [16] mentions that the second
generation of MOEAs have introduced the use of elitism selection
strategy. Similar to previous research in MOEA [11, 19, 20], we
adopt an elitism memory to keep all non-dominated solutions that
have been found after each generation. This elitism memory is
then used to update the current population to enhance its quality
of solutions.

We adopt the Operation Order Machine Selection (OOMS)
chromosomes for FJSPs from [8]. This chromosome has two
parts: the Operation Order part is integer encoded whereas the
Machine Selection part is binary encoded for identifying selected
machines. Please refer to [8] for the decoding method to evaluate
its makespan, critical machine workload and total workload. We
also use the elitism memory introduced in [11, 19] to keep non-
dominated solutions. The MOEA-GLS algorithm is described as
follows:

Figure 2. The outline of the MOEA-GLS algorithm

Step 1) Initialization: generate an initial population using

Composite Dispatching Rules.

Step 2) Evaluation: combine current generation with the solutions
in elitism memory. Applying fast non-domination and
crowding distance from [18] to evaluate the results.
Then, only n best solutions are used to update current
population.

Step 3) Selection: apply ranking selection to generate offspring
population. Randomly select two operations A and B in
the solutions of Step 2), if A dominates B, copy A to
offspring population and vice versa. If A and B are non-
dominated, their bigger crowding value is used to select
the best one to insert to offspring population.

Step 4) Crossover: apply 2-point crossover for OOMS
chromosomes [8] with crossover probability pc in
offspring population.

Step 5) Mutation: apply mutation for OOMS chromosomes [8]
with crossover probability pm in offspring population.

Step 6) Guided Local Search:

a) Decode offspring population, apply fast non-
domination in [18] to rank the offspring population,
select x% of best solutions of offspring population for
performing guided local search described in Section
IV.A.

b) Decode the solutions of guided local search, apply fast
non-domination in [18] to rank them, replace maximum
y% number of the worse solutions in offspring population
by the best solutions of guided local search.

Step 7) Update elitism memory: select the solutions with ranking
1 in offspring population to update elitism memory. If the
solution C dominates any results in elitism memory,
delete these results and copy C to elitism memory. If C is
non-dominated with all results in elitism memory, C is
also copied to elitism memory.

Step 8) Return to Step 2).

This algorithm terminates when it reaches a pre-defined number
of populations. In order to reduce the computational time for
MOEA-GLS, in the local search at Step 6)a), only x% of the best
solutions of offspring population are selected for guided local
search. To keep the diversity of the next population, we do not
replace all solutions of offspring population by the results of
guided local search. Only a maximum of y% of the number of the

Initialization

Current Population

Offspring Population

Guided Local Search

Elitism
Memory

Pareto ranking

Update

Initial Population

Update Best solutions

Genetic operators

825

worst solutions in the offspring population are replaced by the
best solutions in Step 6)b). x and y are two pre-defined
parameters. Note that x can be determined using pre-defined
numbers of chromosomes in one population while y is an upper
limit. In this paper, the values of x and y were estimated based on
preliminary computational experiments as x = 33.3% and y =
50% (see Section V). An illustration of the selection of x% of the
best solutions in offspring population for guided local search is
given in Figure 3.

Figure 3. Illustration of the selection of best solutions in
offspring population to apply Guided Local Search.

In this algorithm, all non-dominated solutions are stored in a
separate elitism memory. For some MOEA algorithms (e.g. SPEA
[19]), the size of the elitism memory has been resized due to the
memory storage and computational time. In our algorithm, we did
not find many non-dominated solutions for FJSP (see Section V).
Therefore, the restriction on the size of elitism memory was not
necessary.

5. EXPERIMENTAL RESULTS
In order to evaluate the efficacy and performance of the MOEA-
GLS algorithm proposed in this paper, six benchmark problems
[6, 7, 9] are used (represented by n jobs x m machines). The lower
bounds of each instance can be found in [7].

Our problem sets were distinguished as follows: Test sample I for
the instances without release date (all release dates of jobs are 0),
Test sample II for the instances with release date. The analysis of
the obtained results will be presented in Section V.C. The system
was implemented using C++, running on a 2 GHz PC with 512
MB RAM. The best results and average processing time of
MOEA-GLS after 30 runs were reported. Details processing times
of all operations of these instances as well as their Gantt charts
presented in this section are available at:

 http://www.ntu.edu.sg/home/asjctay/doc/MOEA_GLS.pdf.

Through experimentation, suitable parameter values were chosen;
namely, population size 200, crossover probability 0.8, mutation
probability 0.3, number of generations 200, percentage of best
results were used for Guided Local Search: 33.3%, maximum
percentage of best results of Guided Local Search that are used to
update current generation: 50%.

For each instance, lower bound of three objectives: F1
*

(makespan), F2
* (critical machine workload), and F3

* (total
workload) are presented. In Test sample II, the release date of
each job will be provided. Average processing time of each
instance is also reported. Each table shows the results obtained by

our algorithm MOEA-GLS, the results of Approach by
Localization and Controlled Genetic Algorithms (AL-CGA) from
Kacem et al. [6, 7], the results of Particle Swarm Optimization
and Simulated Annealing (PSO-SA) from Xia and Wu [9] for
solving the same instance. In the same table, the results in
boldfaced font dominate the results in italic font.

5.1 Test sample I
5.1.1 Problem 8x8
Lower bound: *

1F 13= , *
2F 10= , *

3F 73= .

Average processing time: 9.097 seconds.

Table 1. Comparison of Results on 8 jobs x 8 machines

Algorithms MAKESPAN
Critical
Machine

Workload

Total
workload

15 xa 79 AL-CGA 16 xa 75
16 13 73 PSO-SA 15 12 75
16 13 73
15 12 75
14 12 77 MOEA-GLS

16 11 77
aThe symbol x indicates that the authors didn’t provide the result of this
objective

5.1.2 Problem 10x10
Lower bound: *

1F 7= , *
2F 5= , *

3F 41=

Average processing time: 16.647 seconds.

Table 2. Comparison of Results on 10 jobs x 10 machines

Algorithms MAKESPAN
Critical
Machine

Workload

Total
workload

8 7 41
8 5 42 AL-CGA
7 5 45b

PSO-SA 7 6 44b

8 7 41
8 5 42
7 5 43b MOEA-GLS

7 6 42b

bThe results in boldfaced font dominate the results in italic font

5.1.3 Problem 15x10
Lower bound: *

1F 11= , *
2F 10= , *

3F 91=

Average processing time: 24.149 seconds.

Table 3. Comparison of Results on 15 jobs x 10 machines

Algorithms MAKESPAN
Critical
Machine

Workload

Total
workload

PSO-SA 12 11 91
11 10 93 MOEA-GLS
11 11 91

Objective 1

Objective 2

Selected solution
Solution in offspring
population

Direction of guided
local search

Ranking 1

826

5.2 Test sample II
5.2.1 Problem 4x5
Release date: r1 = 3, r2 = 5, r3 = 1, r4 = 6

Lower bound: *
1F 16= , *

2F 7= , *
3F 32=

Average processing time: 9.314 seconds.

Table 4. Comparison of Results on 4 jobs x 5 machines

Algorithms MAKESPAN
Critical
Machine

Workload

Total
workload

18 8 32
18 7 33
16 9 35 AL-CGA

16 10 34
16 8 32 MOEA-GLS
16 7 33

5.2.2 Problem 10x7
Release date: r1 = 2, r2 = 4, r3 = 9, r4 = 6, r5 = 7, r6 = 5, r7 = 7, r8
= 4, r9 = 1, r10 = 0

Lower bound: *
1F 15= , *

2F 9= , *
3F 60=

Average processing time: 13.564 seconds.

Table 5. Comparison of Results on 10 jobs x 7 machines

Algorithms MAKESPAN
Critical
Machine

Workload

Total
workload

15 11 61
16 12 60
16 10 66

17 10 64
AL-CGA

18 10 63
15 11 61
16 12 60 MOEA-GLS
15 10 62

5.2.3 Problem 15x10
Release date: r1 = 5, r2 = 3, r3 = 6, r4 = 4, r5 = 9, r6 = 7, r7 = 1, r8
= 2, r9 = 9, r10 = 0, r11 = 14, r12 = 13, r13 = 11, r14 = 12, r15 = 5

Lower bound: *
1F 23= , *

2F 10= , *
3F 91=

Average processing time: 17.509 seconds.

Table 6. Comparison of Results on 15 jobs x 10 machines

Algorithms MAKESPA
N

Critical
Machine

Workload

Total
workload

24 11 91 AL-CGA 23 11 95
23 11 91 MOEA-GLS
23 10 93

5.3 Analysis of Results
The results of Test sample I and Test sample II indicate that the
MOEA-GLS algorithm can obtain good solutions with low
computational cost. All of the results of MOEA-GLS are very
close to the lower bounds provided for each objective. In many
solutions, two out of three objectives reach the single lower
bounds.

In instances of Test sample I, for the 8 jobs x 8 machines instance,
although the MOEA-GLS fails to obtain any solutions that
dominate the solutions of AL-CGA and PSO-SA, it achieves a
wider range of non-dominated solutions. For the 10 jobs x 10
machine instance, two new solutions of MOEA-GLS dominate
the solutions from AL-CGA and PSO-SA. Xia and Wu [9]
applied the PSO-SA to solve the 15 jobs x 10 machines without
release dates. The solution obtained by MOEA-GLS (11 11 91)
dominates the solution from PSO-SA (12 11 91). In these two
new solutions of MOEA-GLS, two objectives have already
reached the lower bounds.

In instances of Test sample II, for the 4 jobs x 5 machines
instance, two results from MOEA-GLS dominate all the results
from AL-CGA. Similarly, for 15 jobs x 10 machine instance, two
results from MOEA-GLS again dominate all the results from AL-
CGA. Furthermore, one solution from MOEA-GLS dominates
three solutions obtained by AL-CGA.

Besides the good solutions provided by MOEA-GLS, its
processing time is also acceptable. The maximum computational
time for 15 jobs x 10 machines in Test sample I is around 25
seconds. Ishibuchi et al. [11] mentions that expensive
computational time is a significant issue in the integration of local
search to evolutionary algorithms. However, as presented in Test
sample I and Test sample II, this problem can be solved in our
algorithm using guided local search. GLS explores the area where
the new solutions dominate or are of the same rank (non-
dominated) with the selected solutions. Therefore, better solutions
can be achieved by guided local search. Furthermore, the
restriction of selecting only the best results for applying guided
local search also helps reduce the computational cost. In each
generation, only pre-defined number of the best solutions is
selected for applying local search. This provides more diversity
towards Pareto-optimal solutions

6. CONCLUSION AND FUTURE WORKS
In this paper, we have proposed an efficient algorithm for solving
multi-objective FJSPs. Instead of applying random local search
methods to improve the results in each generation (e.g. [9, 11]),
we introduced a guided local search procedure to accelerate the
process of convergence to Pareto-optimal solutions. It not only
searches unexplored space to find better solutions but also reduces
the computational cost due to selection of the best moves.
Empirical studies show that the gaps between the obtained results
and known lower bounds are small. Furthermore, the results
obtained by the MOEA-GLS algorithm almost dominate the
results of previous researchers in solving the same benchmarks. It
is shown to be capable of obtaining high quality, wide range of
non-dominated solutions, and efficient performance on overall
benchmark problems.

More comprehensive studies can be applied to extend the MOEA-
GLS. Different FJSP data with bigger sizes will be investigated.

827

Other possible criteria in multi-objective optimization will be
considered. Furthermore, more local search methods will be
analyzed for integration to the MOEA-GLS algorithm.

7. REFERENCES
[1] A. S. Jain and S. Meeran, "Deterministic job-shop

scheduling: Past, present and future," European Journal of
Operational Research, vol. 113, pp. 390-434, 1999.

[2] M. R. Garey, D. S. Johnson, and R. Sethi, "The complexity
of flow shop and job-shop scheduling," Mathematics of
Operations Research, vol. 1, pp. 117-129, 1976.

[3] M. Pinedo, Scheduling theory, algorithms, and systems:
Prentice Hall, second edition, chapter 2, 2002.

[4] Y. Mati and X. Xie, "The complexity of two-job shop
problems with multi-purpose unrelated machines," European
Journal of Operational Research, vol. 152, pp. 159-169,
2004.

[5] J. Carlier and E. Pinson, "An Algorithm for Solving the Job-
Shop Problem," Management Science, vol. 35, pp. 164-176,
Feb. 1989.

[6] I. Kacem, S. Hammadi, and P. Borne, "Approach by
localization and multiobjective evolutionary optimization for
flexible job-shop scheduling problems," IEEE Transactions
on Systems Man and Cybernetics Part C-Applications and
Reviews, vol. 32, pp. 1-13, 2002.

[7] I. Kacem, S. Hammadi, and P. Borne, "Pareto-optimality
approach for flexible job-shop scheduling problems:
hybridization of evolutionary algorithms and fuzzy logic,"
Mathematics and Computers in Simulation, vol. 60, pp. 245-
276, 2002.

[8] N. B. Ho, J. C. Tay, and E. M. K. Lai, "An Effective
Architecture for Learning and Evolving Flexible Job-Shop
Schedules," European Journal of Operational Research, vol.
179, pp. 316-333, 2007.

[9] W. Xia and Z. Wu, "An effective hybrid optimization
approach for multi-objective flexible job-shop scheduling
problems," Computers & Industrial Engineering, vol. 48, pp.
409-425, 2005.

[10] M. Mastrolilli and L. M. Gambardella, "Effective
Neighborhood Functions for the Flexible Job Shop Problem,"
Journal of Scheduling, vol. 3, pp. 3-20, 2000.

[11] H. Ishibuchi, T. Yoshida, and T. Murata, "Balance between
genetic search and local search in memetic algorithms for
multiobjective permutation flowshop scheduling," IEEE
Transactions on Evolutionary Computation, vol. 7, pp. 204-
223, 2003.

[12] E. K. Burke and S. J. D. Landa, "The Design of Memetic
Algorithms for Scheduling and Timetabling Problems," in
Recent Advances in Memetic Algorithms, Studies in
Fuzziness and Soft Computing. vol. 166, H. W. Krasnogor
N., Smith J., Ed.: Springer, pp. 289-312, 2004.

[13] K. Deb, Multi-objective optimization using evolutionary
algorithms: John Wiley & Sons, 2001.

[14] P. Brucker, B. Jurisch, and A. Krämer, "Complexity of
scheduling problems with multi-purpose machines," Annals
of Operations Research, vol. 70, pp. 57-73, 1997.

[15] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. R.
Kan, "Optimization and approximation in deterministic
sequencing and scheduling: A survey," Annals of Discrete
Mathematics, vol. 5, pp. 287-236, 1979.

[16] C. A. C. Coello, "Recent Trends in Evolutionary
Multiobjective Optimization," in Evolutionary Multiobjective
Optimization: Theoretical Advances And Applications, L. J.
a. R. G. Ajith Abraham, Ed. London: Springer-Verlag, pp. 7-
32, 2005.

[17] J. D. Schaffer, "Multiple Objective Optimization with Vector
evaluated Genetic Algorithms," Proceedings of the First
International conference on Genetic Algorithms, pp. 93-100,
1985.

[18] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A fast
and elitist multi-objective genetic algorithm: NSGA-II,"
IEEE Transaction on Evolutionary Computation, vol. 6, pp.
181-197, 2002.

[19] E. Zitzler and L. Thiele, "Multi-objective evolutionary
algorithms: A comparative case study and the strength pareto
approach," IEEE transactions on Evolutionary Computation,
vol. 4, pp. 257-271, 1999.

[20] J. D. Knowles and D. W. Corne, "Approximating the
nondominated front using the Paretor Archived evolution
strategy," Evolutionary Computation, vol. 8, pp. 149-172,
2000.

828

