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ABSTRACT 
Finding realistic schedules for Flexible Job Shop Problems has 
attracted many researchers recently due to its NP-hardness. In this 
paper, we present an efficient approach for solving the multi-
objective flexible job shop by combining Evolutionary Algorithm 
and Guided Local Search. Instead of applying random local 
search to find neighborhood solutions, we introduce a guided 
local search procedure to accelerate the process of convergence to 
Pareto-optimal solutions. The main improvement of this 
combination is to help diversify the population towards the 
Pareto-front. Empirical studies show that 1) the gaps between the 
obtained results and known lower bounds are small, and 2) the 
multi-objective solutions of our algorithms dominate previous 
designs for solving the same benchmarks while incurring less 
computational time. 

Categories and Subject Descriptors 
I.2.8 [Problem Solving, Control Methods and Search]: 
Scheduling 

General Terms 
Algorithms, Scheduling, Optimization, Search. 

Keywords 
Multi-objective Evolutionary Algorithm, Guided Local Search, 
Flexible Job Shop Problems. 

1. INTRODUCTION 
Many real-world scheduling problems involve simultaneous 
optimization of a set of conflicting multiple objectives. In 
particular, the scheduling task for manufacturing is concerned 
with assigning n jobs to m machines so as to minimize some 
conflicting objective functions. When considering multiple 
objectives, there may not exist a unique solution that is the best 
for all objectives (global minimum). Alternatively, a set of 

solutions that are superior to the rest of solutions in the search 
space are the targets to achieve. A popular model that has been 
well studied is the Job-Shop Scheduling Problem (JSP).  It is one 
of the hardest scheduling problems to solve for optimality [1] and 
is NP-hard [2]. In the JSP, the route of every job is fixed and 
every operation of a job is allocated a unique machine for 
processing. However, the limitation of allocating only one job to 
one machine can lead to a bottleneck on the most busy machines 
on the shop floor. In practice, the machine environment is more 
complex. These busy machines are duplicated to balance their 
overall workload and to reduce the flow time of the jobs [3]. This 
variation is known as the Flexible Job-Shop Scheduling Problem 
(FJSP). It extends the definition of the JSP by allowing an 
operation to be processed without interruption on one of a set of 
pre-defined machines. Mati and Xie [4] considered the general 
FJSP where each operation can be processed by any machine 
from a given set associated with the operation, and its processing 
time would depend on the selected machine. They proved that 
with 2 machines for minimizing makespan (the maximum 
completion time of all operations), FJSP is NP-hard. In addition, 
the FJSP with multiple objectives is also NP-hard [4]. Many 
techniques have been considered for solving the FJSP. 
Enumerative methods such as branch and bound [5] can guarantee 
optimal solutions but are computationally expensive even for 
small sized problems. Other approximation and randomized 
algorithms methods such as Evolutionary Algorithms [6-8], 
Simulated Annealing [9], or Tabu Search [10] have demonstrated 
an efficacy for solving FJSPs. 

The combination of Evolutionary Algorithms (EAs) and Local 
Search methods (known as Memetic Algorithms) for solving 
scheduling problems has been increasingly studied by researchers 
and good solutions [11, 12] have been obtained. The local search 
methods by themselves have also achieved promising results [9, 
10]. These approaches combine the explorative search of EA and 
the exploitative search of Local Search together to find better 
solutions. However, issues of time and space complexities need to 
be addressed. In order to reduce these complexities, the 
application of intelligent heuristics to select promising solutions 
when applying local search will need further investigation. 
Considering both advantages and limitations of previous 
approaches, we propose a Multi-Objective Evolutionary 
Algorithm with Guided Local Search (MOEA-GLS) algorithm to 
solve multi-objective FJSPs. The algorithm comprises three parts: 
MOEA, Guided Local Search and Elitism Memory. Instead of 
simply using a randomized local search for finding neighborhoods 
of a schedule, the local search part in every generation is 
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intelligently guided by an efficient selection towards promising 
areas. These mechanisms guarantee that only the moves that 
obtain better solutions are visited.  Therefore, more good quality 
solutions can be obtained and computational cost is also reduced. 
In this paper, three objectives are considered: minimization of 
makespan, critical machine workload and total workload of all 
machines. We validate the efficacy of the MOEA-GLS algorithm 
to solve common benchmark problems from [6, 7, 9]. The 
experimental results indicate that the multi-objective results of 
our algorithm dominate the other approaches for solving the same 
benchmarks in shorter computational time. 

The paper is organized as follows.  Section 2 gives the formal 
definition of the FJSP. Section 3 reviews recent related works for 
solving the FJSP and classifies current approaches for solving 
multi-objective optimization problems using EAs. Section 4 
describes Guided Local Search and the integration of MOEA and 
Guided Local Search. It also provides some theoretical 
considerations and the procedure to find the best moves. Section 5 
analyzes the performance results of MOEA-GLS when applied to 
solve common benchmarks in literature.  Finally, Section 6 gives 
some concluding remarks and directions for future work. 

2. PROBLEM DEFINITION 
The multi-objective FJSP with availability constraints and 
functionally related machines is formulated as follows: 

• Let J =J1≤i≤n, indexed i, be a set of n jobs to be scheduled. 

• Each job Ji consists of a predetermined sequence of 
operations. Let Oi,j be operation j of Ji. 

• Let M = {Mk}1≤k≤m, indexed k, be a set of m machines. 

• Each machine can process only one operation at a time. 

• Each operation Oi,j is processed without interruption on Mk 
in a given set μi,j ⊂ M with pi,j,k time units. 

Let ri and Ci be the release date and the completion date of job Ji. 
Wk is the workload of machine Mk.  Three objectives (which have 
been used to evaluate the efficacy of other algorithms in solving 
multi-objective FJSPs [6, 7, 9]) are used in this paper; namely, 

• Minimization of overall completion time (makespan): 
{ }1 max 1,..,iF C i n== . 

• Minimization of critical machine workload: 
{ }2 max 1,..,kF k mW ==  

• Minimization of total workload of all machines: 

3 , ,i j kF p= ∑  

The task is to find a set of solutions that are superior among all 
the solutions when all objectives are considered. They are known 
as Pareto-optimal solutions [13]. 

The FJSP can also be considered to be a Multi-Purpose Machine 
(MPM) job-shop [14].  Using the α|β|γ  notation of Graham et al. 
[15], the problem we wish to solve can be denoted by: 

J MPM  | prec jr | 1F 2F 3F  

where J denotes a job-shop problem, MPM denotes a multi-
purpose machine, prec represents a set of independent chains 
while rj represents the release date given to each job, 1F  (or 

Cmax) represents makespan, 2F represents the critical machine 

workload and finally 3F  represents the total workload of all 
machines. 

In this paper, we will assume that: 

• All machines are available at time 0. 

• Each job has its own release date. 

• The order of operations for each job is predefined and 
invariant. 

• The machine can execute only one operation at a time. 

3. LITERATURE REVIEW 
Evolutionary Algorithms (EAs) have been used widely to solve 
multi-objective optimization problems. Generally, they can be 
classified into three approaches: Population-based, Aggregation 
function, and Pareto-based [16].  

Population-based approaches, such as VEGA [17], are based on a 
division of the current population into s sub-populations where s 
is the number of objectives. At each generation, s sub-populations 
are generated by performing proportional selection according to 
each objective before being shuffled and recombined into a single 
population. The crossover and mutation operators are then applied 
as usual to this new population. The drawback of this approach is 
the focus on one objective per sub-population at a time. 
Therefore, the results that are good for more than one objective 
may be discarded before recombining together to form a new 
population.  

The Aggregation function approaches combine all the objectives 
of the optimization problems into a single function [7, 11]. An 

example of an Aggregation function is min
k

i i
i 1

w F
=
∑ where wi is 

the weight of a single objective Fi. This approach is 
straightforward to apply to any multi-objective optimization 
problem. However, due to the difficulty of setting the weight 
vector’s values for exploiting the desired area, it is not sufficient 
for solving non-convex objective spaces [16]. 

Pareto-based approaches, also known as the second generation of 
MOEAs [16], use the concept of domination to find the optimal 
results. A solution X dominates a solution Y if the solution X has 
at least one objective that fares better than the corresponding 
objective in solution Y, all others being equal. The family of all 
nondominated alternative solutions is denoted as the Pareto 
optimal set, Pareto set for short or Pareto optimal front.  There are 
many Pareto-based approaches that have been developed so far in 
literature. The most popular methods are NSGA-II [18] and SPEA 
[19] that depend on elitist selection, fitness sharing, and Pareto 
ranking. Elitist selection preserves the elite individuals from the 
last generation, fitness sharing degrades the fitness values of all 
competing members of a niche as the niche size increases while 
Pareto ranking uses dominance concepts for selection to eliminate 
inferior individuals. The challenge of Pareto-based approaches is 
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to keep the diversity of the population towards the Pareto front of 
the problems.  

Recently, many researchers have studied the combination of EA 
and Local Search for solving multi-objective scheduling 
problems. The general idea is to enhance solutions obtained by 
each generation by local search to get better results. 
Subsequently, these obtained results are used to update the quality 
of next generation. Ishibuchi et al.[11] combine EA and Local 
Search for solving multi-objective flow shop. The weight vectors 
are generated randomly in each generation to combine all 
objectives. At the end of each generation, all schedules in the 
population are improved by local search after a pre-defined 
number of steps. Kacem et al. [7] apply fuzzy logic to control the 
way to find weight vectors for solving multi-objective FJSPs 
while Xia and Wu [9] use Simulated Annealing integrated with 
local search. In the latter approach, two randomly selected nearby 
operations on each machine are swapped in the local search. 
Similar to other Aggregation function approaches, the algorithms 
described above also face issues of finding suitable weight vectors 
to diversify the results towards the Pareto front.  This is 
computationally expensive when all solutions are used to evaluate 
new weight vectors. Furthermore, if random local search 
algorithms are applied, they do not guarantee that an 
improvement in the obtained results. The difference between this 
work and previous approaches on solving multi-objective FJSPs is 
that we use a mechanism of guided local search to improve only 
the best solutions. Furthermore, we have adopted the Pareto-based 
approaches for ranking the solutions in each generation. We will 
demonstrate the efficacy of the MOEA-GLS algorithm in 
comparison to other approaches by using the benchmarks in [7]. 

4. THE MOEA-GLS ALGORITHM 
In this Section, the detailed description of the MOEA-GLS is 
presented. Section IV.A gives common definitions that are used in 
this paper. Theoretical considerations for improving Guided Local 
Search are also discussed. Section IV.B presents our approach to 
integrate Guided Local Search with MOEA and the selection of 
designed parameters to reduce computational time. 

4.1 Guided Local Search 
For a given schedule of the FJSP, a neighborhood can be obtained 
by moving an operation from one machine to another machine. 
However, not all moves improve the current results and a 
complete enumeration of the neighbourhood will be expensive. 
The challenge is how to find the best move to improve multiple 
objectives simultaneously. Before presenting theorems that are 
used to guide the local search, some definitions are introduced as 
follows to be used throughout this paper. 

Definition 1 the critical path of a schedule is a list of operations 
whose total process time is the minimum time that all jobs take to 
complete. One schedule can have more than one critical path. 

Definition 2 a critical block is a set of consecutive operations on 
the critical path processed by the same machine. One machine can 
be associated with more than one critical block on a given critical 
path. 

Definition 3 the machine Mk in a schedule is termed the most 
loaded machine if its workload WL, is equal to the critical 

machine workload MW, which we denote as a function, WL(Mk) = 
MW. One schedule can have more than one most loaded machine. 

Definition 4 the precedence earliest start time of an operation 
(pest(Oi,j)) is equal to the stop time of its immediate precedence 
operator Oi,j-1. If it is the first operation, pest(Oi,j) is equal to the 
release date of the corresponding job. 

Theorem 1 (minimizing the total workload):  

When moving an operation Oi,j from machine Mk to another 
machine Mk’, the new total workload (TW) is minimal (i.e. at most 
the previous total workload) if the processing time of Oi,j on 
machine Mk’ is at most the processing time of Oi,j on machine Mk. 

Proof:  Let pi,j,k be processing time of Oi,j on machine Mk, the total 
workload of all machines is:  

 , , 1,1, , , , ,
1 1

... ...
inn

i j k l i j k n p q
i j

TW p p p p
= =

= = + + + +∑∑  

where n is number of jobs, ni is number of operations of job i and 
k is the index of the machine that processes operation Oi,j. 

When moving Oi,j from machine Mk to machine Mk’, the new 
processing time of this operation on machine Mk’ is pi,j,k’. The new 
total workload of all machines is: 

 , , 1,1, , , ' , ,
1 1

' ... ...
inn

i j k l i j k n p q
i j

TW p p p p
= =

= = + + + +∑∑  

Since , , ' , ,i j k i j kp p≤ , we obtain 'TW TW≤ . Therefore, the total 
workload is minimal.  

Theorem 2 (minimizing the critical machine workload):  

When moving an operation Oi,j from one of most loaded machines 
(e.g. Mk) to the other machine Mk’ on a schedule, the critical 
machine workload is minimal (e.g. at most the critical machine 
workload MW) if the workload on machine Mk’ plus processing 
time of Oi,j on machine Mk’ is at most MW. 

Proof: Let Mk be one of the most loaded machines, then by 
Definition 3: 

( ) , ,
k

k i j kM
MW WL M p= = ∑  

where , ,i j kp is processing time of Oi,j on machine Mk. Similarly, 
the workload of machine Mk’ is: 

'
' , , '( ) '

k
k i j kM

WL M p= ∑  

When moving an operation Oi,j from machine Mk (with processing 
time pi,j,k) to machine Mk’ (with processing time pi,j,k’), the 
workload on machine Mk decreases to  

 , ,'( ) ( )k k i j kWL M WL M p= −  
while the workload on machine Mk’ increases to 

 ' ' , , ''( ) ( )k k i j kWL M WL M p= +  

If ''( ) ( )k kWL M WL M≤ or ' , , '( )k i j kWL M p MW+ ≤ , then the 
new critical machine workload is minimal. Otherwise, the new 
critical machine workload (that is equal to the workload on 
machine Mk’) will be larger than MW. 
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Theorem 3 (minimizing makespan):  

The makespan of a schedule cannot be reduced when moving 
operations that are not on the critical paths to other machines. 

Proof:  The makespan is the total processing time of all operations 
of a critical path. If moving any operation that does not belong to 
the critical path to another machine (not on this path), the current 
makespan remains unchanged. Therefore, the makespan cannot be 
reduced by such an action. 

Theorem 4 (minimizing makespan): when moving an operation 
Oi,j belonging to machine Mk (with processing time pi,j,k) on a 
critical path CP to machine Mk’ (with processing time pi,j,k’), if its 
immediate precedence and successor operations are also on the 
same critical path CP, the makespan cannot be reduced in case of 
new processing time pi,j,k’ is equal or larger than pi,j,k. 

Proof: Let Cmax be the makespan of the schedule before moving 
Oi,j from machine Mk to machine Mk’. Let Oi,j-1 and Oi,j+1 be 
precedence and successor operations of Oi,j respectively. Oi,j 
cannot start before the stop time of Oi,j-1. Similarly, Oi,j+1 cannot 
start before the stop time of Oi,j. Since Oi,j-1 and Oi,j+1 are both on 
the critical path CP, the lower bound of the new makespan, C’

max 
is:  

C’
max = (Cmax – pi,j,k) + pi,j,k’.  

 Since pi,j,k’ ≥ pi,j,k, C’
max ≥ Cmax the makespan cannot be reduced.  

When moving an operation Oi,j on machine Mk (with processing 
time pi,j,k) of a schedule to new machine Mk’ (with processing time 
pi,j,k’), the operation Oi,j can only be processed after the 
completion of its immediate precedence operation Oi,j-1 
(pest(Oi,j)).  Using the constraint of pest(Oi,j), we identify the 
operation Op.q in machine Mk’ which has a stop time that is 
smaller or equal to pest(Oi,j). Oi,j can be processed after Op,q. 
However, it may increase the current value of makespan if both 
Oi,j+1 and the immediate next operation Or,s of Op,q on machine 
Mk’ are on critical paths. This situation is presented in Figure 1 
below.  

 
 

Figure 1. Finding suitable position to insert Oi,j to machine 
Mk’. 

In Figure 1, both the immediate successor operations Oi,j+1 and 
Or,s are on critical paths. Let set B be the critical block that 
contains Or,s on machine Mk’ and Cmax be the makespan before 
moving. We need to find the position of Oi,j on machine Mk’ so 
that i Cmax is minimized. There are two possibilities:  

1) Insert Oi,j before Or,s: this can violate the critical path that 
contains Or,s. If the stop time of Oi,j on Mk’ is larger than the 

start time of Oi,j+1, it will also the critical path containing 
Oi,j+1. 

2) Insert Oi,j after critical block B: this only violates the 
critical path that contains Oi,j+1. 

Let st(Oi,j) be start time of Oi,j on machine Mk’. It is equal to 
maximum value of pest(Oi,j) and completion time of Op,q. Let 
stop(B) be stop time of critical block B. We introduce two values: 
positionValue1 and positionValue2 to evaluate the increasing 
amount of Cmax for two positions described above: 

positionValue1 = max( st(Or,s) - (st(Oi,j)+pi,j,k’),  

st(Oi,j+1) - (st(Oi,j)+pi,j,k’)) 

positionValue2 = stop(B)+ pi,j,k’ - st(Oi,j+1) 

Theorem 5 (reducing new makespan value): 

If positionValue1 ≤ positionValue2, inserting Oi,j before Or,s can 
reduce the amount of increase in Cmax than by inserting Oi,j after 
critical block B. Otherwise, inserting Oi,j after critical block B can 
reduce the amount of increase in Cmax. 

Proof: When inserting Oi,j before Or,s, the lower bound of new 
makespan is: C1 = Cmax + positionValue1. When inserting Oi,j after 
critical block B, the lower bound of new makespan is: C2 = Cmax + 
positionValue2. 

If positionValue1 ≤ positionValue2, C1 ≤ C2: we choose to insert 
Oi,j before Or,s instead of inserting Oi,j after critical block B. 
Otherwise, inserting of Oi,j after critical block B is selected instead 
of inserting Oi,j before Or,s. 

From the results of Theorem 1 to Theorem 5, it is seen that the 
best moves of Guided Local Search can be found into two steps. 
Firstly, we identify a set of promising operations S so that when 
moving each operation in S to another machine, one or more 
objectives described in Section II can be minimized. Next, when 
moving Oi,j in set S to new machine Mk’, we find a suitable 
position in an array of ordered operations on Mk’ to insert Oi,j so 
that the makespan of new schedule is minimized. Theorem 3 and 
Theorem 4 have shown that the improvement of makespan can 
only be obtained by moving operations on critical paths of a 
schedule. Therefore, in order to reduce the computational cost, 
only operations that belong to critical paths are selected to be 
moved. 

The Guided Local Search procedure for finding promising 
operations of the current schedule is described as follows: 

Step  1)  Find all operations on critical paths to insert to set U. 

Step 2) For each operation Oi,j in U with processing time pi,j,k in 
machine Mk, identify all machines that can process Oi,j 
except Mk. Inserting Oi,j and an alternative machine Mk’ 
to set V if one of the following conditions is satisfied: 

a) The new processing time pi,j,k’  on machine Mk’ is 
smaller than pi,j,k (to improve total tardiness). 

b) Mk is a machine whose workload is equal to critical 
machine workload value MW and the new workload on 
machine Mk’ where Oi,j is inserted is smaller than MW 
(to improve critical workload). 

Mk 

Mk’ 

Oi,j 

Oi,j+1 

Or,s   Oi,j Oi,j Op,q 

On critical path 

Time 
Critical block B 

New stop time of Oi,j on Mk’ 

stop(B)
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c) There is only one critical path (or only one machine 
that its stop time is latest), the new processing time is 
equal to pi,j,k, and pest(Oi,j) is smaller than start time of 
Oi,j on machine Mk (critical machine workload and 
total workload are unchanged but makespan can be 
improved).  

For each operation Oi,j and its corresponding machine Mk’ in set V, 
the procedure to find its suitable position on machine Mk’ is 
described as follows: 

Step 3) Remove operation Oi,j  with its corresponding machine 
Mk’ from set V. 

Step 4) If there is no operation in machine Mk’, insert Oi,j to Mk’. 
Otherwise, find a position of an operation Op,q in Mk’ so 
that pest(Oi,j) is smaller than current start time of Op,q. 

Step 5) If pest(Oi,j) plus the processing time of Oi,j  on machine 
Mk’ (pi,j,k’) is at most the start time of the next operation 
of Op,q (that is Or,s) on machine Mk’, insert Oi,j after Op,q. 

Step 6) If Or,s is not on a critical path, insert Oi,j after Op,q. 
Otherwise, if Oi,j+1 is not on a critical path, insert Oi,j 
after critical block B. If both Oi,j+1 and Or,s are on critical 
paths, apply Theorem 5 to find the best move.  

Step 7) Stop if there are no operations remaining in set V. 
Otherwise, go back to Step 3). 

At the end of Step 7), we will obtain a set of neighborhood 
schedules of the current schedule. The encodings of these 
schedules are then used to update the current population. Note 
that after Step 2), only the schedules that their neighborhood 
schedules dominate or are at least of the same rank with them are 
selected for exploitation. 

4.2 Description of MOEA-GLS 
The overall control flow of the MOEA-GLS algorithm is 
summarized in Figure 2. To generate a good and diversified initial 
population, we employ Composite Dispatching Rules presented in 
[8]. These rules perform two tasks simultaneously: balancing the 
workload of each machine and ordering the operations in the 
waiting list of each machine so that good solutions can be 
obtained. The Guided Local Search module uses the procedure 
described in Section IV.A. Coello [16] mentions that the second 
generation of MOEAs have introduced the use of elitism selection 
strategy. Similar to previous research in MOEA [11, 19, 20], we 
adopt an elitism memory to keep all non-dominated solutions that 
have been found after each generation. This elitism memory is 
then used to update the current population to enhance its quality 
of solutions. 

We adopt the Operation Order Machine Selection (OOMS) 
chromosomes for FJSPs from [8]. This chromosome has two 
parts: the Operation Order part is integer encoded whereas the 
Machine Selection part is binary encoded for identifying selected 
machines. Please refer to [8] for the decoding method to evaluate 
its makespan, critical machine workload and total workload. We 
also use the elitism memory introduced in [11, 19] to keep non-
dominated solutions. The MOEA-GLS algorithm is described as 
follows: 

 
Figure 2. The outline of the MOEA-GLS algorithm 

 
Step  1)  Initialization: generate an initial population using 

Composite Dispatching Rules. 

Step 2) Evaluation: combine current generation with the solutions 
in elitism memory. Applying fast non-domination and 
crowding distance from [18] to evaluate the results. 
Then, only n best solutions are used to update current 
population. 

Step 3) Selection: apply ranking selection to generate offspring 
population. Randomly select two operations A and B in 
the solutions of Step 2), if A dominates B, copy A to 
offspring population and vice versa. If A and B are non-
dominated, their bigger crowding value is used to select 
the best one to insert to offspring population. 

Step 4) Crossover: apply 2-point crossover for OOMS 
chromosomes [8] with crossover probability pc in 
offspring population. 

Step 5) Mutation: apply mutation for OOMS chromosomes [8] 
with crossover probability pm in offspring population. 

Step 6) Guided Local Search:  

a) Decode offspring population, apply fast non-
domination in [18] to rank the offspring population, 
select x% of best solutions of offspring population for 
performing guided local search described in Section 
IV.A. 

b) Decode the solutions of guided local search, apply fast 
non-domination in [18] to rank them, replace maximum 
y% number of the worse solutions in offspring population 
by the best solutions of guided local search. 

Step 7) Update elitism memory: select the solutions with ranking 
1 in offspring population to update elitism memory. If the 
solution C dominates any results in elitism memory, 
delete these results and copy C to elitism memory. If C is 
non-dominated with all results in elitism memory, C is 
also copied to elitism memory. 

Step 8) Return to Step 2). 

This algorithm terminates when it reaches a pre-defined number 
of populations. In order to reduce the computational time for 
MOEA-GLS, in the local search at Step 6)a), only x% of the best 
solutions of offspring population are selected for guided local 
search. To keep the diversity of the next population, we do not 
replace all solutions of offspring population by the results of 
guided local search. Only a maximum of y% of the number of the 

Initialization 

Current Population 

Offspring Population 

Guided Local Search 

 

 

Elitism 
Memory 

Pareto ranking 

Update 

Initial Population 

Update Best solutions 

Genetic operators 
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worst solutions in the offspring population are replaced by the 
best solutions in Step 6)b). x and y are two pre-defined 
parameters. Note that x can be determined using pre-defined 
numbers of chromosomes in one population while y is an upper 
limit. In this paper, the values of x and y were estimated based on 
preliminary computational experiments as x = 33.3% and y = 
50% (see Section V). An illustration of the selection of x% of the 
best solutions in offspring population for guided local search is 
given in Figure 3. 

 
 

Figure 3. Illustration of the selection of best solutions in 
offspring population to apply Guided Local Search. 

 
In this algorithm, all non-dominated solutions are stored in a 
separate elitism memory. For some MOEA algorithms (e.g. SPEA 
[19]), the size of the elitism memory has been resized due to the 
memory storage and computational time. In our algorithm, we did 
not find many non-dominated solutions for FJSP (see Section V). 
Therefore, the restriction on the size of elitism memory was not 
necessary. 

5. EXPERIMENTAL RESULTS 
In order to evaluate the efficacy and performance of the MOEA-
GLS algorithm proposed in this paper, six benchmark problems  
[6, 7, 9] are used (represented by n jobs x m machines). The lower 
bounds of each instance can be found in [7].  

Our problem sets were distinguished as follows: Test sample I for 
the instances without release date (all release dates of jobs are 0), 
Test sample II for the instances with release date. The analysis of 
the obtained results will be presented in Section V.C. The system 
was implemented using C++, running on a 2 GHz PC with 512 
MB RAM. The best results and average processing time of 
MOEA-GLS after 30 runs were reported. Details processing times 
of all operations of these instances as well as their Gantt charts 
presented in this section are available at: 

 http://www.ntu.edu.sg/home/asjctay/doc/MOEA_GLS.pdf.  

Through experimentation, suitable parameter values were chosen; 
namely, population size 200, crossover probability 0.8, mutation 
probability 0.3, number of generations 200, percentage of best 
results were used for Guided Local Search: 33.3%, maximum 
percentage of best results of Guided Local Search that are used to 
update current generation: 50%. 

For each instance, lower bound of three objectives: F1
* 

(makespan), F2
* (critical machine workload), and F3

* (total 
workload) are presented. In Test sample II, the release date of 
each job will be provided. Average processing time of each 
instance is also reported. Each table shows the results obtained by 

our algorithm MOEA-GLS, the results of Approach by 
Localization and Controlled Genetic Algorithms (AL-CGA) from 
Kacem et al. [6, 7], the results of  Particle Swarm Optimization 
and Simulated Annealing (PSO-SA) from Xia and Wu [9] for 
solving the same instance. In the same table, the results in 
boldfaced font dominate the results in italic font. 

5.1 Test sample I 
5.1.1 Problem 8x8 
Lower bound: *

1F 13= , *
2F 10= , *

3F 73= . 

Average processing time: 9.097 seconds. 

Table 1. Comparison of Results on 8 jobs x 8 machines 

Algorithms MAKESPAN 
Critical 
Machine 

Workload 

Total 
workload 

15 xa 79 AL-CGA 16 xa 75 
16 13 73 PSO-SA 15 12 75 
16 13 73 
15 12 75 
14 12 77 MOEA-GLS 

16 11 77 
aThe symbol x indicates that the authors didn’t provide the result of this 
objective  

5.1.2 Problem 10x10 
Lower bound: *

1F 7= , *
2F 5= , *

3F 41=  

Average processing time: 16.647 seconds. 

 

Table 2. Comparison of Results on 10 jobs x 10 machines  

Algorithms MAKESPAN 
Critical 
Machine 

Workload 

Total 
workload 

8 7 41 
8 5 42 AL-CGA 
7 5 45b 

PSO-SA 7 6 44b 

8 7 41 
8 5 42 
7 5 43b MOEA-GLS 

7 6 42b 

bThe results in boldfaced font dominate the results in italic font 

5.1.3 Problem 15x10 
Lower bound: *

1F 11= , *
2F 10= , *

3F 91=  

Average processing time: 24.149 seconds. 

 

Table 3. Comparison of Results on 15 jobs x 10 machines  

Algorithms MAKESPAN 
Critical 
Machine 

Workload 

Total 
workload 

PSO-SA 12 11 91 
11 10 93 MOEA-GLS 
11 11 91 

Objective 1 

Objective 2 

Selected solution
Solution in offspring 
population 

Direction of guided 
local search 

Ranking 1 
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5.2 Test sample II 
5.2.1 Problem 4x5 
Release date: r1 = 3, r2 = 5, r3 = 1, r4 = 6  

Lower bound: *
1F 16= , *

2F 7= , *
3F 32=  

Average processing time: 9.314 seconds. 

Table 4. Comparison of Results on 4 jobs x 5 machines  

Algorithms MAKESPAN 
Critical 
Machine 

Workload 

Total 
workload 

18 8 32 
18 7 33 
16 9 35 AL-CGA 

16 10 34 
16 8 32 MOEA-GLS 
16 7 33 

 

5.2.2 Problem 10x7 
Release date: r1 = 2, r2 = 4, r3 = 9, r4 = 6, r5 = 7, r6 = 5,    r7 = 7, r8 
= 4, r9 = 1, r10 = 0 

Lower bound: *
1F 15= , *

2F 9= , *
3F 60=  

Average processing time: 13.564 seconds. 

 

Table 5. Comparison of Results on 10 jobs x 7 machines  

Algorithms MAKESPAN 
Critical 
Machine 

Workload 

Total 
workload 

15 11 61 
16 12 60 
16 10 66 

17 10 64 
AL-CGA 

18 10 63 
15 11 61 
16 12 60 MOEA-GLS 
15 10 62 

5.2.3 Problem 15x10 
Release date: r1 = 5, r2 = 3, r3 = 6, r4 = 4, r5 = 9, r6 = 7,    r7 = 1, r8 
= 2, r9 = 9, r10 = 0, r11 = 14, r12 = 13, r13 = 11,   r14 = 12, r15 = 5 

Lower bound: *
1F 23= , *

2F 10= , *
3F 91=  

Average processing time: 17.509 seconds. 

 

Table 6. Comparison of Results on 15 jobs x 10 machines  

Algorithms MAKESPA
N 

Critical 
Machine 

Workload 

Total 
workload 

24 11 91 AL-CGA 23 11 95 
23 11 91 MOEA-GLS 
23 10 93 

 

5.3 Analysis of Results 
The results of Test sample I and Test sample II indicate that the 
MOEA-GLS algorithm can obtain good solutions with low 
computational cost. All of the results of MOEA-GLS are very 
close to the lower bounds provided for each objective. In many 
solutions, two out of three objectives reach the single lower 
bounds. 

In instances of Test sample I, for the 8 jobs x 8 machines instance, 
although the MOEA-GLS fails to obtain any solutions that 
dominate the solutions of AL-CGA and PSO-SA, it achieves a 
wider range of non-dominated solutions. For the 10 jobs x 10 
machine instance, two new solutions of MOEA-GLS dominate 
the solutions from AL-CGA and PSO-SA.  Xia and Wu [9] 
applied the PSO-SA to solve the 15 jobs x 10 machines without 
release dates. The solution obtained by MOEA-GLS (11 11 91) 
dominates the solution from PSO-SA (12 11 91). In these two 
new solutions of MOEA-GLS, two objectives have already 
reached the lower bounds. 

In instances of Test sample II, for the 4 jobs x 5 machines 
instance, two results from MOEA-GLS dominate all the results 
from AL-CGA. Similarly, for 15 jobs x 10 machine instance, two 
results from MOEA-GLS again dominate all the results from AL-
CGA. Furthermore, one solution from MOEA-GLS dominates 
three solutions obtained by AL-CGA. 

Besides the good solutions provided by MOEA-GLS, its 
processing time is also acceptable. The maximum computational 
time for 15 jobs x 10 machines in Test sample I is around 25 
seconds. Ishibuchi et al. [11] mentions that expensive 
computational time is a significant issue in the integration of local 
search to evolutionary algorithms. However, as presented in Test 
sample I and Test sample II, this problem can be solved in our 
algorithm using guided local search. GLS explores the area where 
the new solutions dominate or are of the same rank (non-
dominated) with the selected solutions. Therefore, better solutions 
can be achieved by guided local search. Furthermore, the 
restriction of selecting only the best results for applying guided 
local search also helps reduce the computational cost. In each 
generation, only pre-defined number of the best solutions is 
selected for applying local search. This provides more diversity 
towards Pareto-optimal solutions 

6. CONCLUSION AND FUTURE WORKS 
In this paper, we have proposed an efficient algorithm for solving 
multi-objective FJSPs. Instead of applying random local search 
methods to improve the results in each generation (e.g. [9, 11]), 
we introduced a guided local search procedure to accelerate the 
process of convergence to Pareto-optimal solutions. It not only 
searches unexplored space to find better solutions but also reduces 
the computational cost due to selection of the best moves. 
Empirical studies show that the gaps between the obtained results 
and known lower bounds are small. Furthermore, the results 
obtained by the MOEA-GLS algorithm almost dominate the 
results of previous researchers in solving the same benchmarks. It 
is shown to be capable of obtaining high quality, wide range of 
non-dominated solutions, and efficient performance on overall 
benchmark problems.  

More comprehensive studies can be applied to extend the MOEA-
GLS. Different FJSP data with bigger sizes will be investigated. 
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Other possible criteria in multi-objective optimization will be 
considered. Furthermore, more local search methods will be 
analyzed for integration to the MOEA-GLS algorithm. 
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