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ABSTRACT 
In the design of evolutionary multiobjective optimization (EMO) 
algorithms, it is important to strike a balance between diversity 
and convergence. Traditional mask-based crossover operators for 
binary strings (e.g., one-point and uniform) tend to decrease the 
diversity of solutions in EMO algorithms while they improve the 
convergence to the Pareto front. This is because such a crossover 
operator, which is called geometric crossover, always generates 
an offspring in the segment between its two parents under the 
Hamming distance in the genotype space. That is, the sum of the 
distances from the generated offspring to its two parents is always 
equal to the distance between the parents. In this paper, first we 
propose a non-geometric binary crossover operator to generate an 
offspring outside the segment between its parents. Next we 
examine the effect of the use of non-geometric binary crossover 
on single-objective genetic algorithms. Experimental results show 
that non-geometric binary crossover improves their search ability. 
Then we examine its effect on EMO algorithms. Experimental 
results show that non-geometric binary crossover drastically 
increases the diversity of solutions while it slightly degrades their 
convergence to the Pareto front. As a result, some performance 
measures such as hypervolume are clearly improved. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, 
and Search – Heuristic Methods. 

General Terms 
Algorithms. 

Keywords 
Non-geometric crossover operators, evolutionary multiobjective 
optimization (EMO) algorithms, multiobjective combinatorial 
optimization, diversity preserving, balance between diversity and 
convergence. 

1. INTRODUCTION 
Evolutionary multiobjective optimization (EMO) algorithms have 
been successfully applied to various application areas [3]. EMO 
algorithms are designed to find a set of well-distributed Pareto-
optimal or near Pareto-optimal solutions with a wide range of 
objective values, which approximates the entire Pareto front of a 
multiobjective optimization problem. It is important in the design 
of EMO algorithms to strike a balance between diversity and 
convergence [1], [13]. Usually no a priori information about the 
decision maker’s preference is used when EMO algorithms search 
for Pareto-optimal solutions. A set of non-dominated solutions is 
presented to the decision maker as a result of the search by an 
EMO algorithm. The decision maker is supposed to choose a final 
solution from the presented solutions based on his/her preference. 
The EMO approach, which consists of the search for a number of 
non-dominated solutions and the choice of a final solution from 
the obtained non-dominated solutions, is referred to as an ideal 
multiobjective optimization procedure in Deb [3]. It is implicitly 
assumed in the EMO approach that the choice of a final solution 
from the obtained non-dominated solutions is much easier for the 
decision maker than the elicitation of his/her preference before the 
search for non-dominated solutions. 

It is essential for the success of the EMO approach to find a set of 
non-dominated solutions that well approximates the entire Pareto 
front. It is, however, not easy (usually very difficult) for EMO 
algorithms to find such a good non-dominated solution set of a 
large-scale combinatorial multiobjective optimization problem as 
pointed out in some studies (e.g., Jaszkiewicz [14]). This is the 
case even when multiobjective optimization problems have only 
two objectives. It was visually demonstrated in Ishibuchi et al. 
[10] that crossover had a negative effect on the diversity of 
solutions (while it improved their convergence to the Pareto front) 
when EMO algorithms were applied to large-scale two-objective 
0/1 knapsack problems. Several ideas of recombining similar 
parents were proposed to improve the performance of EMO 
algorithms by decreasing such a negative effect of crossover and 
increasing its positive effect [12], [15], [21], [23]. 

Recently the concept of geometric crossover was proposed by 
Moraglio and Poli [16]-[18] to analyze crossover operators in 
terms of the distances between an offspring and its parents. 
Roughly speaking, a crossover operator is referred to as being 
geometric crossover when the following relation always holds 
between an offspring C and its two parents P1 and P2: 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
GECCO’07, July 7-11, 2007, London, England, United Kingdom. 
Copyright 2007 ACM 978-1-59593-697-4/07/0007...$5.00. 
 

829



Distance(C, P1) + Distance(C, P2) = Distance(P1, P2),      (1) 

where Distance(A, B) denotes the distance between A and B in 
the genotype space (for details, see [16]-[18]). Traditional mask-
based crossover operators for binary strings (e.g., one-point, two-
point and uniform) are geometric crossover [16], [17] because the 
relation in (1) always holds for the Hamming distance. That is, 
such a crossover operator always generates an offspring in the 
segment between its two parents under the Hamming distance in 
the genotype space. On the other hand, many crossover operators 
for real number strings such as simulated binary crossover (SBX 
[4], [5]), blend crossover (BLX-α [7]), extended line crossover 
[19], unimodal normal distribution crossover (UNDX [20]), and 
linear crossover [24] are non-geometric crossover [18]. That is, 
such a crossover operator can generate an offspring C satisfying 
the following relation for its two parents P1 and P2: 

Distance(C, P1) + Distance(C, P2) > Distance(P1, P2),      (2) 

where the Euclidean distance is used to measure the distance 
between real number strings. 

In almost all genetic algorithms for real number strings, non-
geometric crossover operators have been used to maintain the 
diversity of solutions. On the other hand, geometric crossover 
operators have been used in almost all genetic algorithms for 
binary strings. 

In this paper, we propose the use of non-geometric crossover in 
EMO algorithms for binary strings to increase the diversity of 
solutions. First we propose a non-geometric crossover operator 
for binary strings in Section 2. Next we examine its effect on the 
performance of single-objective genetic algorithms (SOGA) in 
Section 3. Then we examine its effect on the performance of 
EMO algorithms in Section 4 using NSGA-II [6]. Finally we 
conclude this paper in Section 5. 

2. NON-GEOMETRIC CROSSOVER 
Let x and y be two real number vectors (they can also be viewed 
as real number strings). A simple line crossover operator for 
generating an offspring vector z from the two parent vectors x and 
y can be written as follows: 

z = α x + (1 − α )y ,          (3) 

where α  is a randomly specified real number. When α  is always 
in the unit interval [0, 1], this is geometric crossover. On the other 
hand, this is non-geometric crossover when α  may assume a real 
number outside the unit interval [0, 1]. In the latter case, the 
crossover operator in (3) is referred to as extended line crossover 
[19], by which an offspring C satisfying the inequality relation in 
(2) can be generated. 

Non-geometric crossover operators have been used in almost all 
genetic algorithms for real number strings as in [4], [5], [7], [19], 
[20], [24]. On the contrary, traditional mask-based binary 
crossover operators (e.g., one-point, two-point, and uniform) are 
geometric crossover. We illustrate uniform crossover in Fig. 1 
where an offspring C is generated from two parents P1 and P2. In 
Fig. 1, the Hamming distance between the two parents (i.e., 10) is 
equal to the sum of the Hamming distances from the offspring C 
to its two parents P1 and P2. The same uniform crossover 
operator is illustrated in Fig. 2 in the Hamming distance space. 

The horizontal axis of Fig. 2 is the Hamming distance from Parent 
1 (P1) to the offspring C while its vertical axis is the Hamming 
distance from Parent 2 (P2). The offspring C in Fig. 1 is located at 
the point (5, 5) in Fig. 2. Each open circle in Fig. 2 shows a 
possible location of an offspring that can be generated from P1 
and P2 in Fig. 1 by geometric crossover. As shown in Fig. 2, an 
offspring is always generated in the segment between its parents 
P1 and P2 in the Hamming distance space. The three arrows from 
C in Fig. 2 show possible moves by a bit-flip mutation for a single 
bit of the offspring C in Fig. 1.  

0*0*0**0*0 0**00*0*0*
Parent 1 (P1) 0000000000 1111111111
Offspring (C) 0000000000 0110010101
Parent 2 (P2) 0000000000 0000000000  

Figure 1. Illustration of uniform crossover. 
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Figure 2. Relation between an offspring C and its two parents 
P1 and P2 in the Hamming distance space. The three arrows 
from C show possible moves by a bit-flip mutation for a single 
bit of the offspring C in Fig. 1. 

As shown in Fig. 2, traditional mask-based binary crossover 
operators always generate an offspring in the segment between its 
two parents in the Hamming distance space. This corresponds to 
the situation where α  is always in the unit interval [0, 1] in line 
crossover in (3). In order to generate an offspring outside the 
segment between its two parents, we propose a non-geometric 
binary crossover operator which corresponds to the situation 
where α  is outside the unit interval [0, 1] in line crossover in (3). 

Let x and y be two binary strings of length n. We denote them as 
x = x1 x2  ... xn  and y = y1 y2  ... yn . The proposed non-geometric 
binary crossover operator generates an offspring z = z1 z2  ... zn  
satisfying the following relation: 

Distance(x, z) + Distance(y, z) > Distance(x, y),       (4) 

where the distance between two binary strings is measured by the 
Hamming distance. The basic idea is to generate an offspring 
from one parent in the opposite side of the other parent. 
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First one parent is chosen as a primary parent (say x). The choice 
of a primary parent is discussed later. The other parent is used as 
a secondary parent (say y). Then an offspring z is generated from 
the primary parent x and the secondary parent y as follows: 

(1) When xi = yi :  

       zi = xi with a probability (1 − *
MP ) , 

       zi = (1 − xi) with a probability *
MP . 

(2) When xi ≠  yi :  
       zi = xi . 

In the proposed non-geometric binary crossover operator, the 
standard bit-flip mutation operator is applied to xi of the primary 
parent with a prespecified probability when xi = yi (i.e., when the 
values are the same between the two parents). On the other hand, 
when xi ≠  yi (i.e., when the values are different between the two 
parents), xi is always inherited to the offspring.  

The proposed crossover operator is illustrated in Fig. 3 where 
Parent 1 is used as a primary parent (i.e., as x = x1 x2  ... xn ). Since 
the values are the same between the two parents in the first 10 loci 
in Fig. 3, the standard bit-flip mutation operator is applied to each 
of the first 10 values of Parent 1 with a prespecified probability 
(0.3 in Fig. 3). On the other hand, the last 10 values of Parent 1 

are inherited to the offspring with no modification since the 
values in the last 10 loci are different between the two parents.  

 

00*00*00*
Parent 1 (P1) 0000000000 1111111111
Offspring (C) 0010010010 1111111111
Parent 2 (P2) 0000000000 0000000000  

Figure 3. Illustration of the proposed non-geometric binary 
crossover operator. In this figure, Parent 1 and Parent 2 are 
used as primary and secondary parents, respectively. 

Hamming distance from Parent 1
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Figure 4. Relation between an offspring C and its two parents 
P1 and P2 in the case of non-geometric crossover. The three 
arrows from C show possible moves by a bit-flip mutation. 

From Fig. 3, we can see that the Hamming distance between the 
offspring C and the secondary parent P2 is 13 while the Hamming 
distance between the two parents is 10. The generated offspring C 
in Fig. 3 is depicted in the Hamming distance space in Fig. 4. Its 
location shows the Hamming distances from Parent 1 and Parent 2. 
When Parent 1 is a primary parent, our crossover operator can 
generate an offspring at one of the open circles in the left-upper 
part of Fig. 4. On the other hand, the open circles in the right-
lower part of Fig. 4 show possible offspring by our crossover 
operator when Parent 2 is a primary parent. The three arrows from 
C in Fig. 4 show possible moves by a bit-flip mutation for a single 
bit of the offspring C in Fig. 3. 

The choice of a primary parent can be performed randomly from 
two parents. We can also choose the better one from two parents 
as a primary parent. These two strategies (i.e., random choice and 
better parent choice) are compared with each other through 
computational experiments in this paper. 

We use the proposed non-geometric binary crossover operator 
with a prespecified probability P and a standard geometric binary 
crossover operator with a probability (1 − P). When the crossover 
probability is PX , the non-geometric and geometric crossover 
operators are used with the probabilities P ⋅ PX  and )1( P− ⋅ PX , 
respectively. 

3. EFFECTS ON SOGA ALGORITHMS 
First we examine the effect of the proposed non-geometric binary 
crossover operator on the performance of single-objective genetic 
algorithms (SOGAs). Its effect on EMO algorithms is examined 
in the next section. In our computational experiments, we used as 
a test problem a single-objective 500-item 0/1 knapsack problem 
with two constraint conditions. This test problem was generated 
from the two-objective 500-item 0/1 knapsack problem of Zitzler 
and Thiele [27] by using the sum of the two objectives as a 
scalarizing fitness function. That is, the following fitness function 
was maximized:  

fitness(x) = f1(x) + f2(x),         (5) 

where x is a 500-dimensional binary vector, f1(x) and f2(x) are the 
two objectives of the original 2-500 test problem in [27]. Each 
solution is represented by a binary string of length 500. Thus the 
size of the search space is 2500. 

As an SOGA, we used a single-objective version of NSGA-II (i.e., 
SOGA with the (μ +λ)-ES generation update mechanism where 
μ =λ). In our SOGA (and also in NSGA-II in the next section), we 
used the maximum ratio scheme [27] to repair infeasible solutions 
into feasible ones. This repair scheme was implemented in the 
Lamarckian manner [9]. Our SOGA was applied to the test 
problem 50 times using the following parameter specifications: 

Population size: 200 (i.e., μ = λ = 200), 
Crossover probability XP : 0.8, 
Mutation probability MP : 0.002 (i.e., 1/500), 
Termination condition: 2000 generations. 

As a traditional geometric binary crossover operator, we used the 
uniform crossover operator. The proposed non-geometric binary 
and uniform crossover operators were used with the probabilities 

XPP ⋅  and XPP ⋅− )1( , respectively. We examined six values of 
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P: P = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5. It should be noted that only the 
uniform crossover operator was used in the case of P = 0.0. On 
the other hand, we examined eight values of P*

M : P*
M  = 0.002, 

0.004, 0.008, 0.012, 0.016, 0.020, 0.040, 0.080. As a result, we 
used 48 (i.e., 86× ) combinations of these parameter values in 
our computational experiments.  

Using the optimal solution x* of our test problem, we calculated 
the relative error of the solution x as  

100
*)(

)(*)()( ×
−

=
x

xxx
fitness

fitnessfitnesserrorRelative  (%).       (6) 

The average relative error was calculated over 50 runs of our 
SOGA after the 2000th generation for each combination of the 
above-mentioned parameter values. 

Experimental results are summarized in Fig. 5 where we used the 
better parent choice to choose a primary parent in our non-
geometric binary crossover operator. The base plane of Fig. 5 
shows the combination of the parameter values while the height of 
each bar is the average relative error. The performance of SOGA 
with only uniform crossover (i.e., P = 0.0 in Fig. 5) was improved 
by the use of the proposed non-geometric binary crossover 
operator around the right-bottom corner in Fig. 5. For example, 
the average relative error was improved from 0.424 (with P = 0.0) 
to 0.363 (with P = 0.5 and P*

M  = 0.008). This improvement is 
statistically significant (the p-value was 0.002 in Student’s t-test). 
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Figure 5. Average relative errors by SOGA with the proposed 
non-geometric binary crossover operator where the better 
parent choice was used to choose a primary parent. 

 

For comparison, we examined the random choice of a primary 
parent. Experimental results are shown in Fig. 6. We can see that 
similar results were obtained in Fig. 5 and Fig. 6. That is, the 
choice of a primary parent did not have a large effect on the 
performance of SOGA with our non-geometric crossover operator.  

In order to examine the effect of our non-geometric crossover 
operator on the diversity of solutions, we calculated the entropy 
of each population. Let p0k and p1k be the ratios of 0 and 1 at the 
k-th locus over all binary strings of length n in a population, 

respectively (thus p0k + p1k = 1). Then the entropy of this 
population n is calculated as follows (n: string length): 

∑
=

+−=
n

k
kkkk ppppH

1
1100 )loglog( .        (7) 

Average entropy values over 50 runs with 2000 generations in Fig. 
5 are summarized in Fig. 7. From Fig. 7, we can see that our non-
geometric crossover operator increased the diversity of solutions 
in many cases. The diversity was decreased by our non-geometric 
crossover operator in only a few cases with small values of P*

M . In 
those cases, the consistent use of the better parent as a primary 
parent has a negative effect on the diversity of solutions. Actually, 
this negative effect can be removed by randomly choosing one of 
two parents as a primary parent (see Fig. 8 where average entropy 
values are summarized for computational experiments in Fig. 6). 
In Fig. 7 and Fig. 8, we can also see that P*

M  has a positive effect 
on the diversity of solutions. 
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Figure 6. Average relative errors by SOGA with the proposed 
non-geometric crossover operator where the random parent 
choice was used to choose a primary parent. 
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Figure 7. Average values of the entropy over 50 runs in Fig. 5 
where the better parent choice was used to choose a primary 
parent. 
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Figure 8. Average values of the entropy over 50 runs in Fig. 6 
where the random parent choice was used to choose a primary 
parent. 

 

4. EFFECTS ON EMO ALGORITHMS 
We have already demonstrated that the proposed non-geometric 
binary crossover operator improved the performance of SOGA 
and increased the diversity of solutions. Whereas the performance 
improvement was statistically significant, it was not so impressive. 
In this section, we demonstrate that our non-geometric crossover 
operator has a large effect on the performance of EMO algorithms 
through computational experiments on the two-objective 500-item 
0/1 knapsack problem [27] using NSGA-II [6]. 
Using the same parameter specifications as in the previous section, 
we applied NSGA-II to the 2-500 knapsack problem. The effect 
of our non-geometric crossover operator was evaluated using four 
performance measures (i.e., generational distance, D1R measure, 
hypervolume measure, and range measure).  
Let S and S* be a non-dominated solution set and the Pareto-
optimal solution set, respectively. The convergence of the non-
dominated solution set S to the Pareto-optimal solution set S* has 
been often measured by the following performance index called 
the generational distance [22]: 

*}:||)()(||min{
||

1)(GD S
S

S
S

∈−= ∑
∈

yyfxf
x

,       (8) 

where ||)()(|| yfxf −  is the Euclidean distance between the two 
solutions x and y in the objective space, and || S  is the number of 
solutions in S (i.e., || S  is the cardinality of S ). The generational 
distance is the average distance from each solution in S to its 
nearest Pareto-optimal solution in S*. 
Whereas the generational distance measures the proximity of the 
non-dominated solution set S to the Pareto-optimal solution set S*, 
it can not measure the diversity of solutions. In order to measure 
not only the convergence but also the diversity, we can use the 
following performance index called the D1R measure: 

}:||)()(||min{
|*|

1)(D1
*

R S
S

S
S

∈−= ∑
∈

xyfxf
y

.       (9) 

The D1R measure is the average distance from each Pareto-
optimal solution y in S* to its nearest solution in S. This measure 
was used in [2], [13]. 
The diversity of the non-dominated solution set S can be more 
directly measured by the sum of the range of objective values for 
each objective function: 

∑
= ∈∈

−=
K

i
i

S
i

S
ffS

1
])}({min)}({max[)(Range xx

xx
,      (10) 

where fi(x) is the i-th objective and K is the total number of 
objectives. This measure is similar to the maximum spread of 
Zitzler [25].  
In order to measure both the diversity and the convergence, we 
can also use the hypervolume measure [26] that calculates the 
volume of the dominated region by the non-dominated solution 
set S in the objective space. The boundary of the dominated 
region in the objective space is called the attainment surface [8]. 
From multiple attainment surfaces obtained by multiple runs of an 
EMO algorithm for a multiobjective optimization problem, we 
can calculate the 50% attainment surface as a kind of their 
average result. For the calculation of the 50% attainment surface, 
see [3], [8]. 
As in the previous section, we examined two strategies for the 
choice of a primary parent: Better parent choice and random 
parent choice. In the better parent choice, the better one between 
two parents was always chosen as a primary parent. Two parents 
were compared using Pareto ranking and a crowding measure in 
the same manner as the fitness evaluation in NSGA-II. In the 
random parent choice, one of two parents is randomly chosen. 
Average values of the generational distance are summarized in 
Fig. 9 with the better parent choice and Fig. 10 with the random 
parent choice. In these figures, the generational distance was 
monotonically degraded by the increase in the probability P of 
our non-geometric crossover operator. This may suggest that the 
convergence of solutions to the Pareto front was degraded by the 
use of our non-geometric crossover operator.  
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Figure 9. Average values of the generational distance by 
NSGA-II. The better parent choice was used to choose a 
primary parent in our non-geometric crossover operator. 
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Figure 10. Average values of the generational distance by 
NSGA-II. The random parent choice was used to choose a 
primary parent in our non-geometric crossover operator. 
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Figure 11. 50% attainment surfaces obtained by the original 
NSGA-II and the proposed algorithm (i.e., NSGA-II with our 
non-geometric crossover operator). 

 
The above-mentioned observations are somewhat misleading. 
Whereas the generational distance was increased, the convergence 
of solutions to the Pareto front was not severely degraded. This is 
visually demonstrated by depicting the 50% attainment surface by 
each algorithm in Fig. 11 where our non-geometric crossover 
operator was implemented using the better parent choice, P = 0.5 
and P*

M  = 0.008 (i.e., the best combination in the previous section: 
Good results are also obtained from this combination in this 
section as shown in Figs. 14-18 later). From Fig. 11, we can see 
that the convergence of solutions to the Pareto front was not 
severely degraded by our non-geometric crossover operator. 

The effect of our non-geometric crossover operator on NSGA-II 
can be more clearly demonstrated by depicting all individuals in 
some generations in a single run of the original NSGA-II and the 
NSGA-II with our non-geometric crossover operator as in Fig. 12 
and Fig. 13. In Fig. 13, the same parameter specifications were 

used in our non-geometric crossover operator as in Fig. 11. From 
the comparison between Fig. 12 and Fig. 13, we can observe a 
large positive effect of our non-geometric crossover operator on 
the diversity of solutions in NSGA-II.  
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Figure 12. All individuals in some generations in a single run 
of NSGA-II. 
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Figure 13. All individuals in some generations in a single run 
of NSGA-II with our non-geometric crossover operator. 

 
Average values of the D1R measure are summarized in Fig. 14 for 
the better parent choice and Fig. 15 for the random parent choice. 
From these figures, we can see that the performance of NSGA-II 
was clearly improved by our non-geometric crossover operator 
(especially around the left-bottom corner in Fig. 14). We can also 
see that better results were obtained by the better parent choice in 
Fig. 14 than the random parent choice in Fig. 15. 

We also observed performance improvement of NSGA-II by our 
non-geometric crossover operator for the hypervolume and range 
measures as shown in Fig. 16 and Fig. 17 (due to the page 
limitation, we only report experimental results with the better 
parent choice). Average values of the entropy were shown in Fig. 
18. From the comparison between Fig. 18 and the other figures, 
we can see that the increase in the entropy is strongly related to 
the performance improvement of NSGA-II.  
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Figure 14. D1R measure with the better parent choice. 
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Figure 15. D1R measure with the random parent choice. 

5. CONCLUDING REMARKS 
In this paper, we proposed the use of a non-geometric binary 
crossover operator to increase the diversity of solutions in EMO 
algorithms. The use of non-geometric crossover for binary strings 
was motivated by the fact that non-geometric crossover has been 
almost always used for real number strings whereas traditional 
mask-based binary crossover is geometric crossover. The effect of 
our non-geometric crossover operator on the performance of 
EMO algorithms was clearly demonstrated through computational 
experiments on a two-objective 500-item 0/1 knapsack problem 
using NSGA-II. Experimental results showed that the diversity of 
solutions was drastically improved without severely degrading 
their convergence to the Pareto front. It was shown that our non-
geometric crossover operator improved the performance of not 
only EMO algorithms but also single-objective genetic algorithms. 

Diversity improvement can be also easily realized by increasing 
the mutation probability in NSGA-II. The use of a large mutation 
probability, however, severely degrades the convergence of 
solutions to the Pareto front in NSGA-II [11]. 
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Figure 16. Hypervolume with the better parent choice. 
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Figure 17. Range with the better parent choice. 

0.5
0.4

0.3
0.2

0.1
0.0

0.002
0.004

0.008
0.012

0.016
0.020

0.040
0.080

P

*
MP

En
tro

py

10

30

50

70

 

Figure 18. Entropy with the better parent choice. 
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