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ABSTRACT
There exist a number of high-performance Multi-Objective
Evolutionary Algorithms (MOEAs) for solving Multi-
Objective Optimization (MOO) problems; two of the best
are NSGA-II and ε-MOEA. However, they lack an archive
population sorted into levels of non-domination, making
them unsuitable for construction problems where some type
of backtracking to earlier intermediate solutions is required.
In this paper we introduce our Stored Non-Domination
Level (SNDL) MOEA for solving such construction prob-
lems. SNDL-MOEA combines some of the best features
of NSGA-II and ε-MOEA with the ability to store and re-
call intermediate solutions necessary for construction prob-
lems. We present results for applying SNDL-MOEA to the
Tight Single Change Covering Design (TSCCD) construc-
tion problem, demonstrating its applicability. Furthermore,
we show with a detailed performance comparison between
SNDL-MOEA, NSGA-II, and ε-MOEA on two standard
test series that SNDL-MOEA is capable of outperforming
NSGA-II and is competitive with ε-MOEA.

Categories and Subject Descriptors
I.2.M [Computing Methodologies]: Artificial Intelli-
gence

General Terms
Algorithms, Design, Experimentation.

Keywords
Evolutionary Multiobjective Optimization, Pareto Optimal-
ity, Constructive Problem Solving.

1. INTRODUCTION
Multi-Objective Optimization (MOO) problems are char-
acterized by having multiple objectives which need to
be simultaneously optimized and which may conflict with
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one another [1]. Multi-Objective Evolutionary Algorithms
(MOEAs) are an extension of the standard EA capable of
solving MOO problems. A solution a to a MOO problem
is said to dominate a solution b if, for every objective, a is
either equal to or superior to b and for at least one objective
a is superior to b. The set of solutions which is superior is
referred to as the non-dominated set, while the other indi-
viduals are said to be dominated [1]. An arbitrary set of
solutions can be sorted into levels of non-domination by it-
eratively removing the non-dominated solutions and placing
those subsets in levels.

There exist a number of high-performance MOEAs; two
of the best are NSGA-II [3] and ε-MOEA [2]. However,
they lack an archive population sorted into levels of non-
domination, making them unsuitable for construction prob-
lems where some type of backtracking to earlier intermedi-
ate solutions is required. The Tight Single Change Covering
Design (TSCCD) problem [8] is such a construction prob-
lem. It requires assembling a sequence of blocks of integers.
The problem uses two variables which dictate the size of the
problem. The first variable, v, indicates the number of inte-
gers available for use. The second variable, k, indicates the
number of integers in a block, which is just a set of integers.
A TSCCD must have the following traits [8]:

1. Every possible pair of integers in the range 1 to v oc-
curs at least one time.

2. Each block contains the same integers as the block
which precedes it, except for the transfer. A transfer
is an element of a block that differs from the values in
the previous block.

3. Each block contains k − 1 pairs which can be con-
structed with the transfer and one other element of
that block. These pairs do not occur in previous
blocks.

TSCCD problems can be solved with extensive backtrack-
ing but at great computational expense [7]. In order to
solve them with a MOEA, we construct solutions by start-
ing with a single block and incrementally adding blocks one
at a time. Storing the solutions in various stages of the con-
struction process allows the same partial solution to be used
in multiple construction attempts.

In this paper we introduce our Stored Non-Domination
Level (SNDL) MOEA for solving construction problems such
as TSCCD. SNDL-MOEA combines some of the best fea-
tures of NSGA-II and ε-MOEA with the ability to store
and recall intermediate solutions necessary for construction
problems; some of its salient features are as follows:
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• The main population is stored in a special data struc-
ture that maintains levels of non-domination. This
makes it unnecessary to re-sort the population every
generation like NSGA-II does.

• The number and size of the levels of non-domination
are user configurable so that the user can fully cus-
tomize the depth and breadth of the archive for prob-
lem specific parameter tuning.

• It incorporates a deterioration prevention mechanism
in the form of negative efficiency preservation (see Sec-
tion 2).

In Section 2 we provide some background on MOEAs, in-
cluding the performance metrics we use for comparison and
descriptions of NSGA-II and ε-MOEA, the two algorithms
which inspired our algorithm and against which we compare
it. Section 3 describes our SNDL-MOEA in detail, while in
Section 4 we present a detailed performance comparison be-
tween SNDL-MOEA, NSGA-II, and ε-MOEA on two stan-
dard test series, showing that SNDL-MOEA is capable of
outperforming NSGA-II and is competitive with ε-MOEA
on general MOO problems. In the same section we also
present results for applying SNDL-MOEA to the TSCCD
construction problem, demonstrating its applicability. This
is followed by a brief discussion of the results in Section 5,
and conclusions and some ideas for future work in Section 6.

2. BACKGROUND
The goal of most MOEAs is to find the Pareto-optimal set
of solutions. Given the set of all solutions to a given prob-
lem (including those which have not been discovered by the
algorithm), the Pareto-optimal set will be the subset of solu-
tions which are non-dominated [1]. This set will contain all
the best solutions; within that set users can select a solution
which fits their particular needs.

One of the problems associated with many MOEAs oc-
curs during the removal of individuals from the population.
While it is necessary to remove individuals to keep the pop-
ulation size in check, doing so can lead to a condition known
as deterioration, which is the situation in which one or more
individuals are dominated by an individual which previously
existed in the solution set, but is no longer [6]. Deterioration
can be prevented by employing an efficiency preservation
method, which involves accepting a new solution only when
the solution dominates one or more of the current solutions.
Alternately, negative efficiency preservation (deleting an in-
dividual only when a superior individual is inserted) may be
employed to the same end [6].

While our goal was to develop a MOEA with special stor-
age properties appropriate for solving construction prob-
lems, we wanted our MOEA still to be competitive with
the best existing general purpose MOEAs. In the following
subsections we provide background on the metrics we used
to evaluate our MOEA’s performance and describe NSGA-II
and ε-MOEA, two of the best MOEAs currently known and
the inspiration for SNDL-MOEA.

2.1 Metrics
Two important metrics for comparing MOEAs based on the
quality of the solution sets they generate are (1) conver-
gence, which measures how close the generated solutions are

to the Pareto-optimal front, and (2) diversity, which mea-
sures how well distributed the solution set is. Both measures
and our use of them are described next.

Convergence Metric. The convergence metric used in this
research is essentially the same as the metric presented in [2].
First, a Pareto-optimal front is generated for each test prob-
lem. Then, each generated individual is compared to the so-
lution set and the distance from the individual to the closest
Pareto-optimal solution is calculated. The average of these
distances is the measure of convergence.

Diversity Metric. In MOEA applications, the user is typ-
ically interested in obtaining an evenly distributed set of
solutions residing on the generated Pareto front, devoid of
clusters of solutions.

The diversity metric we employed is based on the Voronoi
Diagram. Steven S. Skiena discusses this diagram in The Al-
gorithm Design Manual [9]. The problem description reads
as follows: “Decompose space into regions around each point
such that all the points in the region around pi are closer to
pi than they are to any other point in S”. Thus, a Voronoi
Diagram of a solution set generated by a MOEA would select
a region of space around each of the individuals. In a per-
fectly distributed solution, each region would have exactly
the same area.

We employed the Qhull software package1 to produce
Voronoi Diagrams. The diversity metric is calculated as
follows: First, the Qhull software is employed to draw a
Voronoi Diagram of a solution set. Then, the standard de-
viation of the areas in each of these solutions is calculated
(over all 30 runs). This value is the metric used to com-
pare the diversity of solutions generated. Smaller values are
preferable, because a smaller value reflects less variation in
the areas.

2.2 NSGA-II
An algorithm called the “nondominated sorting-based multi-
objective evolutionary algorithm II” (NSGA-II) is currently
the benchmark against which other MOEAs are compared.
This algorithm is efficient and produces good results, but
suffers from deterioration. We have tried to maintain con-
sistency in this paper with the language and symbology used
in [3] which contains a detailed description and analysis of
NSGA-II.

NSGA-II begins with a series of five steps which sets the
stage for the primary loop. The first of these steps is ran-
dom initialization of the population P0. This population is
then sorted on the basis of nondomination using a special
non-dominated sorting algorithm. The best rank is level 1;
members of this group are not dominated. Members of level
2 can be dominated only by members of level one. Thus,
members of a particular level can be dominated by members
of lower numbered levels, but not higher numbered levels.
The fitness of every individual is set equal to that individ-
ual’s nondomination level. This “fitness” value is then used
in Binary Tournament Selection. Mutation and recombina-
tion operations are then performed, resulting in the offspring
population Q0. At this point, the initial five steps are com-
plete, and the algorithm will enter its main evolutionary
loop.

1http://www.qhull.org
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The primary loop begins by defining Rt to be the combi-
nation of Pt and Qt (t = 0 the first time). Thus, Rt includes
all the individuals from the previous iteration, which makes
it elitist. Rt is then sorted on the basis of nondomination,
leading to the creation of Pt+1.

The creation of Pt+1 consists of adding nondomination
levels of Rt to Pt+1 until adding the next level would cause
the size of Pt+1 to exceed the population size N (see Ta-
ble 1 for the variables and constants used in our complexity
analysis). Each level is subjected to the Crowding Distance
operator before its individuals are added to the population.
Then, if Pt+1 is not large enough, the next nondomination
level is sorted using the Crowded Comparison Operator ≺n

(Algorithm 1). Individuals from that level are then added
to Pt+1 until it is of size N .

Algorithm 1 NSGA-II: Crowded Comparison Operator ≺n

(Individual i, Individual j)

if irank < jrank then
return true

else
if ((irank = jrank) and (idistance > jdistance)) then

return true
else

return false
end if

end if

After Pt+1 is created, Qt+1 will be defined to be the result
of Binary Tournament Selection, Mutation, and Recombina-
tion applied to Pt+1. This is the last step in the primary
loop. The loop will continue until the terminating condition
is met.

The overall complexity per generation can be calcu-
lated by considering three major components of the al-
gorithm. The nondominated sorting algorithm requires
O(M(2N)2), the crowding distance assignment requires
O(M(2N) log(2N)), and sorting requires O(2N log(2N)).
This makes the overall complexity O(MN2).

2.3 ε-MOEA
ε-MOEA is a steady-state, elitist EA which seeks to obtain a
diverse population quickly without suffering from the affects
of deterioration. The following is a brief summary of the
algorithm description available in [2].

ε - MOEA begins with the creation of an initial population
P (0). The ε non-dominated solutions from P (0) are assigned
to an archive population E(0). ε dominance is a modified
form of dominance and is presented in [6]. One individ-
ual from P and one individual from E are chosen. These
individuals will mate and produce an offspring, ci. This in-
dividual is assigned an identification array B of length M
which is defined as follows:

Bj(f) =

8<
:

� (fj−fmin
j )

εj
�, for minimizing fj

� (fj−fmin
j )

εj
�, for maximizing fj

(1)

where fj represents the jth objective and fmin
j its mini-

mum possible value, and εj represents the tolerance allowed
in the jth objective [2]. The purpose of this is to reduce the
significance of the objective values, allowing a given individ-
ual to dominate a greater number of other individuals.

After the creation of ci, an attempt is made to insert ci

into the archive population. If the B array of any archive
member dominates the B array of ci, then ci is said to be ε
- dominated by that archive member and will not be added
to the archive. If the B array of ci dominates the B array
of a particular archive member, that archive member will
be deleted and replaced with ci. If neither of the two previ-
ous cases occur, ci is ε non - dominated within the archive,
and may or may not be inserted into the population, based
on a closer inspection (see [2] for details.) Additionally, the
offspring ci may be inserted into the population P (t) if it
dominates a member of P (t). In this case, one of the domi-
nated members will be replaced by ci.

This process of selection, mating, and insertion executes
for a specified number of iterations. The archive members
make up the solution presented to the user. The complexity
of ε-MOEA is not explicitly stated in [2], but appears to
be O(CMN). For comparison purposes, we will assume the
number of children is equivalent to the population size, as
done in NSGA-II, which results in O(MN2).

3. ALGORITHM DESCRIPTION
We now describe SNDL-MOEA. The user can set the num-
ber of domination levels, limit the size of the levels, and
choose from three different selection approaches. Addition-
ally, the user chooses the granularity of the objective com-
parison, the mutation and recombination methods, and the
domination operation; these characteristics are incorporated
into one problem specific object.

Parent Selection. The selection procedures utilize levels
of non-domination, similar to the approach employed by
NSGA-II [3]. The reader should note that SNDL-MOEA
depends on the use of a container which stores the popu-
lation in ranks of non-domination. This data structure is
further explained later in this section. There are three dif-
ferent selection procedures from which the user can choose;
those procedures are described next.

The first selection procedure creates a high selection pres-
sure. The specified number of parents is selected at random
from the top level. Random selection from the top level
will continue until the desired number of parents has been
reached. Duplicate parents are allowed.

The second selection process begins with the highest non-
domination level. If the number of parents needed is less
than the size of the level, parents will be selected randomly
from that level. If the number of parents needed is greater
than or equal to the size of the level, all individuals from the
level are chosen. This approach will move from the current
level to the next best as needed until enough parents are
selected, or all levels have been visited. If all levels are
visited and the number of parents has not been reached,
parents are chosen at random from the population until the
desired number is reached.

The third selection procedure chooses parents at random
from the entire population until the desired number of par-
ents is reached.

Each selection procedure will add a few randomly gener-
ated individuals to the group of parents. This small addi-
tion is above and beyond the required number of parents
and causes large jumps in a few of the individuals during
recombination. This is intended to improve the robustness

839



Ind Ind Ind

Ind Ind Ind

Ind Ind Ind

Ind Ind Ind

3

2

1

0

Level Root Ptr Container

Figure 1: Population data structure with 4 levels

of the algorithm in problems with large search spaces which
might not be adequately sampled by the initial population.

Recombination and Mutation. Following the selection
process, the parents recombine to create children which are
subjected to mutation. The recombination and mutation
details are implemented in a problem specific class, which
we will refer to as Ind. The problem specific class Ind is re-
quired to provide a function named CrossAndMutate, which
will take another Ind as an argument. Both the crossover
and mutation operations are implemented in this function.
The programmer is free to implement any kind of crossover
and mutation, provided the desired operations can be per-
formed with only two parents.

Section 4 describes the use of a number of test problems
used by the authors to test SNDL-MOEA against other al-
gorithms. In these test problems, the genotype is typically
implemented with a vector of floating point numbers. While
each problem is implemented in its own special version of
Ind, the CrossAndMutate operation typically proceeds as
follows:

1. Choose a crossover point somewhere in the vector

2. Perform a typical one point crossover

3. Randomly choose one value v in the vector

4. Randomly add or subtract a small value in the range
[0 - 1] to v

5. Ensure that the resulting gene is valid

Variations on this approach are employed as needed, but
this sequence of steps represents the most common technique
employed by the authors.

Insertion. In order to eliminate the computation of a fitness
value and a non-dominated sort [3], the population is stored
in ranks of non-domination. The container used to store the
population consists of a vector of root pointers. Each root
pointer refers to a container. The “top” level is considered
the best. (The top level has the largest index.) Individuals
in this level dominate individuals in lower levels. There are
no duplicate individuals allowed in the population. Figure 1
illustrates this data structure.

The insertion procedure is shown in Algorithm 2. Chil-
dren are checked against each level, starting with the top
level and moving down as needed. If a child dominates ev-
ery single individual in a given level, that child is said to
strongly dominate the level. If the child dominates some,
but not all individuals in a level, it weakly dominates that
level [1]. A child which does not dominate and is not dom-
inated by individuals in a level is said to be equal to that
level.

If the child is found to be equal to a level, it is inserted
into that level. If the child is a duplicate of an existing
individual, the insertion operation has no impact. If the
child strongly dominates a level, a new level above that one
is created and the child is inserted there. If a child weakly
dominates a level, the child is inserted into that level, and
all the solutions it dominates are deleted from that level and
inserted into a lower level. If after checking every level no
place for the child is found, then it is an inferior solution,
so it is deleted. If the number of levels exceeds the user
specified limit, the worst level is deleted. This approach
is similar to the update function for the ε - Pareto set as
outlined in [6].

The current implementation for the level container is a bi-
nary search tree. Insertion into a binary search tree requires
an object to have both a less than operator and an equiva-
lency operator. The operators truncate the objectives based
on a problem specific, programmer specified value. (For ex-
ample, a comparison of floating point numbers in the range
from zero to one might utilize only two digits.) This trun-
cation limits the number of potential solutions, therefore
limiting the size of the tree. (The truncation approach was
inspired by the concept of ε - dominance as described in [6].
A standard dominance check is used by SNDL-MOEA.)

The size of the top non-domination level is limited by the
objective truncation as described in the previous paragraph.
The size of each lower level is limited by a user defined value.
If an individual is inserted into one of the lower levels and
the size exceeds the limit, the level is searched for the two
individuals which are closest (Euclidean distance in objec-
tive space) to each other, and one of them is deleted. Since
an individual in the top level is only deleted when it is re-
placed by a superior individual, the algorithm is guaranteed
to converge to a solution [6]; this solution is not necessarily
Pareto-optimal.

The result of this insertion approach is a data struc-
ture that maintains a number of different levels of non-
domination. Every solution is unique. The best level of
non-domination is always the top one. Additionally, a solu-
tion is not deleted unless it is certain that a better solution
exists in the population, which prevents deterioration [6].

3.1 Complexity
The complexity of the insertion is described next, with all
the relevant variables summarized in Table 1. First, the
outer loop runs one iteration per child, which is O(C), with
C equal to the number of children. Next, the inner for loop
runs once per domination level. Checking to see if an indi-
vidual belongs to a domination level requires a domination
check against all the individuals in that level. If the number
of objectives is M and the maximum size of a level is Z,
this requires M ·Z operations, which brings the complexity
to O(CDMZ), where D is the number of domination levels.
Removing one of the two closest individuals requires M ·Z2
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Table 1: Complexity analysis variables
Variable Description

C Number of children
D Number of domination levels
M Number of objectives
Z Maximum level size
Zt Size of the top level
N Population Size

operations, which gives us O(CDMZ2). This applies to all
levels but the top level.

The top level is not bounded by Z. Individuals are not
removed from this level, so the M · Z2 removal operation
is not needed either. Insertion into the top level is linear
in the level size; the size of the top level is bounded only
by the objective truncation method used in the less than
and equivalency operators as described previously. This ap-
proach allows the top level to grow beyond the Z size bound.
However, as superior individuals are generated, the top level
will be moved down quickly before it becomes large, which
will cause its size to be pruned to Z. While pruning the level
is a M · Z2

t (Zt is the size of the top level) operation, the
Zt will be reasonable in the early stages of the algorithm
when a level shift occurs frequently. The Zt will become
large only when it contains members of the Pareto-optimal
front, at which time it will never be moved down.

Thus, the overall complexity for the insertion algorithm
per generation is O(CDMZ2)). The term C indicates the
number of children in a generation which will be set to N
(population size) to match NSGA-II. This makes the average
complexity of the algorithm O(DMNZ2).

Algorithm 2 Insert into the population

for all x ∈ ChildPop do
for d = top level to lowest level do

Determine whether x dominates level d
if x is equal to d then

Insert x into d
while |d| > D SIZE AND d �= top level do

Remove one of the two closest individuals
end while

else if x strongly dominates d then
Create a new level
Insert x into the new level
Insert the new level above d

else if x weakly dominates d then
Insert x into d
Remove dominated individuals from d

end if
end for
while numberLevelsUsed > numberLevelsAllowed
do

Delete the lowest level
end while

end for

4. RESULTS
In this section SNDL-MOEA is compared to NSGA-II [3]
and ε-MOEA [2]. NSGA-II converges quickly and produces
a diverse population. ε-MOEA has the advantage of being

Table 2: ZDT Algorithm Parameters
ε-MOEA NSGA-II SNDL

Pop Size 100 100 100
Num Children 1 100 100
Num Generations 20000 200 200
NumEvals 20000 20000 20000
Eps 0 0.0075 N/A N/A
Eps 1 0.0075 N/A N/A
Crossover Prob 1 0.9 1
Mutation Prob 0.033 0.033 1
EtaC 15 15 N/A
EtaM 20 20 N/A
LevelSize N/A N/A 100
NumLevels N/A N/A 4
Selection N/A N/A First

not only fast, but also guaranteeing convergence. Code for
both these algorithms was obtained from the Kanpur Ge-
netic Algorithms Laboratory website2.

Five test problems used in this research are from Zitzler,
Deb, and Thiele’s ZDT test problem series [1]. They all seek
to minimize the following two objectives:

f1( x ) (2)

f2( x ) = g( x )h(f1( x ), g( x )) (3)

Each problem in this series has its own definition for f1( x ),
g(x) and h(f1, g) [1].

Another five test problems utilized in this research come
from Deb, Thiele, Laumanns, and Zitzler’s DTLZ test prob-
lem series [4]. This problem set is considerably more difficult
than ZDT. The user can specify the number of objectives as
well as other problem features to customize the problems.
The examples employed here all use three objectives. Ad-
ditionally, they are implemented using the settings recom-
mended in the paper describing the problems [4].

For all these test problems, NSGA-II was set to run 200
iterations with the number of children set to 100. ε-MOEA
was set to run 20,000 generations with 1 child per genera-
tion. SNDL-MOEA was set to run 200 iterations with the
number of children set to 100. These parameter settings
ensure that each algorithm will use an equal number of fit-
ness evaluations (20,000 each) for fair comparison. Each
algorithm was executed 30 times per problem to facilitate
statistical analysis.

The convergence and diversity metrics described in Sec-
tion 2 were applied to our experimental results. A two-
sample two-tailed t-test with α = 0.05 was used to ascertain
whether the differences in convergence and diversity are sta-
tistically significant. Results from this test are included with
the discussion of each sample problem.

Table 2 specifies the parameters used for each algorithm
on the ZDT problems, while convergence and diversity met-
rics for the ZDT problems are presented in Table 4. Ta-
ble 3 specifies the parameters used for each algorithm on
the DTLZ problems, while convergence and diversity met-
rics for the DTLZ problems are presented in Table 5.

2http://www.iitk.ac.in/kangal/codes.shtml
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Table 3: DTLZ Algorithm Parameters
ε-MOEA NSGA-II SNDL

Pop Size 100 100 100
Num Children 1 100 100
Num Generations 20000 200 200
NumEvals 20000 20000 20000
Eps 0 0.02 N/A N/A
Eps 1 0.02 N/A N/A
Eps 2 0.05 N/A N/A
Crossover Prob 1 0.9 1
Mutation Prob 0.033 0.1 1
EtaC 15 15 N/A
EtaM 20 20 N/A
LevelSize N/A N/A 100
NumLevels N/A N/A 4
Selection N/A N/A First

Table 4: ZDT Results
ε-MOEA NSGA-II SNDL

ZDT1
Avg Con 0.00162059 0.00241427 0.00039867
Avg Div 0.00082819 0.00107833 0.00089480

ZDT2
Avg Con 0.00238283 0.00241762 0.00040317
Avg Div 0.00101474 0.00098353 0.00088526

ZDT3
Avg Con 0.00105527 0.00138903 0.00061604
Avg Div 0.00363732 0.00129403 0.00167855

ZDT4
Avg Con 0.00630488 0.01467574 0.02256824
Avg Div 0.00086732 0.00098623 0.00438463

ZDT6
Avg Con 0.00662071 0.01649615 0.00291917
Avg Div 0.00029392 0.00022953 0.00085335

4.1 ZDT Test Problem Series

ZDT1. T-Test analysis indicates that the difference in the
average convergence between each of the algorithms is signif-
icant. SNDL-MOEA shows the best convergence, followed
by ε-MOEA, with NSGA-II last. In terms of diversity, ε-
MOEA and SNDL-MOEA are about the same; both are
better than NSGA-II.

ZDT2. The t-test indicates no significant difference be-
tween ε-MOEA and NSGA-II. The convergence of SNDL-
MOEA is better than the other two algorithms. There is no
significant difference in diversity between NSGA-II and ε-
MOEA. SNDL-MOEA displays better diversity than either
of the other algorithms.

ZDT3. The only significant convergence difference is be-
tween SNDL-MOEA and NSGA-II, with SNDL-MOEA be-
ing slightly better. All of the differences between the di-
versity metric are significant, with NSGA-II being the best,
followed by SNDL-MOEA, and ε-MOEA being worst.

Table 5: DTLZ1 Results
ε-MOEA NSGA-II SNDL

DTLZ1
Avg Con 0.31408666 0.31296544 0.34627738
Avg Div 0.00016548 0.02627617 0.00031916

DTLZ2
Avg Con 0.01889054 0.02340261 0.02686478
Avg Div 0.00019262 0.00065760 7.82032E-05

DTLZ3
Avg Con 6.30348067 42.64948 5.84609866
Avg Div 0.32994313 3269.401309 0.46402944

DTLZ4
Avg Con 0.02931693 0.02833454 0.02699411
Avg Div 0.00019657 0.00072440 0.00184699

DTLZ5
Avg Con 0.03070071 0.02654871 0.02111537
Avg Div 7.4123E-07 2.84239E-06 1.89804E-06

ZDT4. ZDT4 is a problem which involves a number of lo-
cal Pareto-optimal fronts which parallel the global front.
ε − MOEA achieves superior convergence on this prob-
lem. There is no significant difference between NSGA-II
and SNDL-MOEA.

Initial experiments with this problem yielded very poor
results for SNDL-MOEA. To improve convergence, mutation
for the problem was modified such that the size of the jumps
differs based on the generation number. This variation on
mutation involves taking larger jumps in the early stages of
the algorithm, and smaller jumps near the end. The size of
the value added to v (v is a randomly chosen element from
x) is stored in val, and can be calculated in one of three
ways:

1. In the first ten percent of generations: val = rand+1,
where rand is a real number in the range [0 - 1]

2. In the middle 80 percent of generations: val = rand

3. In the last 10 percent of generations:
val = generationsLeft/maxGenerations

This tweak improved convergence, but not enough to over-
take the other two algorithms. ε-MOEA and NSGA-II are
to be preferred in terms of diversity on this problem, with
no significant difference between them.

ZDT6. The differences in average convergence are signif-
icant, with SNDL-MOEA converging to a better solution
than do the other two algorithms. The difference shown
between their average diversities is also significant, with
NSGA-II having the best diversity, followed closely by ε-
MOEA.

4.2 DTLZ Test Problem Series

DTLZ1. With this problem, there is no significant differ-
ence in the convergence values; all three algorithms perform
equally well. In terms of diversity, ε-MOEA is better than
the other two. There is no significant difference in the di-
versity of NSGA-II and SNDL-MOEA.
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DTLZ2. Statistical analysis indicates that the differences
between average convergence and average diversity are all
significant. ε-MOEA has the best convergence, while SNDL-
MOEA has the best diversity.

DTLZ3. Statistical analysis indicates that the convergence
of ε-MOEA and SNDL-MOEA is not significantly different.
The other differences between convergence and diversity are
significant. ε-MOEA is the best, SNDL-MOEA is second
best, and NSGA-II is worst.

DTLZ4. The differences between the convergence values on
all three algorithms is so small that none of them are statis-
tically significant. However, the diversity metrics are signif-
icant, with ε-MOEA having a slight edge over the other two
algorithms.

DTLZ5. The average differences shown for convergence are
all statistically significant, with SNDL-MOEA having the
best convergence for this problem. The diversity of ε-MOEA
is the smallest for this problem; this is also statistically sig-
nificant.

4.3 TSCCD
Solving a TSCCD is no easy task. Prior to the publication
of [7] by Phillips, the largest known TSCCD was k = 4, v
= 12. (Henceforth, we will use the notation TSCCD(v, k).)

Because the content of each block depends on the con-
tent of all the previous blocks, solutions are constructed one
block at a time, rather than all at once. Tables 6 and 7
contain a solution to TSCCD(12,4) that was generated by
SNDL-MOEA. Each column represents one block. Thus, the
first block is (1, 2, 3, 4)T , and the second block is (1, 2, 9, 4)T .
Note that the transfers are underlined in this solution.

Table 6: TSCCD(12,4) Part 1
1 1 1 1 1 1 1 1 1 3 3
2 2 5 6 11 7 7 7 12 12 12
3 9 9 9 9 9 9 9 9 9 6
4 4 4 4 4 4 10 8 8 8 8

Table 7: TSCCD(12,4) Part 2
3 4 2 2 2 2 2 11 11 11
12 12 12 11 5 5 5 5 5 5
10 10 10 10 10 10 7 7 7 7
8 8 8 8 8 6 6 6 3 12

Representation. The solution is represented as a vector of
blocks, where each block is an object containing k integers
in the range 1, 2, ...v.

Dominance. Solutions to the TSCCD are generated one
block at a time, and there will be solutions of varying lengths
in the population. In order to determine whether one solu-
tion is better than another, the number of pairs that have
occurred in the solution are counted and this number is com-
pared to the total number of pairs required of a correct so-
lution. This difference is to be minimized. A solution is not
reached until this difference is zero.

Distance. The distance between two solutions is defined as
the number of values which differ between solutions. Two
solutions are compared one entry at a time. Every time a
difference is encountered, the distance is incremented.

Crossover and Mutation. Since the correctness of a given
block depends on the blocks which precede it, mutation is
impractical, as one change could invalidate an entire solu-
tion. Crossover is not performed for the same reason. In-
stead, an attempt is made to generate a new correct block
and append it to the solution.

Results. Initially in the construction phase, it is easy to
select a block that is correct in relation to the blocks that
precede it. However, when most of the blocks have been
chosen, the last few blocks will typically be impossible to
find, because of a mistake that was made early on, but was
“correct” in terms of that block following the rules. The
number of blocks generated will drop dramatically early in
the evolutionary run, but will quickly level off as various
routes through the search space are tried.

As the algorithm runs, the overall size of the population
will increase until all the levels of nondomination are filled
up. The lower levels will fill first, and gradually, the middle
levels will fill. The upper levels will be more difficult to fill,
and indeed may not fill up. However, the population will
continue to evolve over time, and, theoretically, will always
converge to a correct solution.

The solution shown in Tables 6 and 7 was generated with
SNDL-MOEA; the algorithm ran for a period of several days
to generate this solution. Work is currently underway to
solve TSCCD(20,5), but to date, we have not yet found a
solution.

5. DISCUSSION
NSGA-II uses the concept of levels of non-domination, in
which individuals are separated into groups; individuals in
each group do not dominate each other. This idea of us-
ing levels of non-domination is also employed by SNDL-
MOEA. The distinction between the two uses of this con-
cept is that NSGA-II does a sort every generation [3], while
SNDL-MOEA maintains a sorted list across the generations.
This difference allows SNDL-MOEA to benefit from know-
ing which individuals are the best, and reduces the number
of computations involved to get that information.

SNDL-MOEA, NSGA-II, and ε-MOEA all employ a diver-
sity preservation method. NSGA-II uses a crowding distance
computation and a crowded comparison operator, which
are utilized during population creation every iteration. ε-
MOEA does not explicitly calculate the distances between
individuals. Instead, it utilizes a special identification array
(B) which is built from abbreviated versions of the objective
values. Only individuals with a unique B array are allowed
into the archive. This approach divides the search space into
a number of hyper-boxes, and maintains diversity by allow-
ing only one solution into each box. SNDL-MOEA utilizes a
concept similar to the B array; truncation of objective values
occurs in the comparison operators of the individual. Only
unique individuals are allowed in SNDL-MOEA containers.

NSGA-II suffers from deterioration. However, the so-
lutions it generates will still be very close to the Pareto-
optimal set. SNDL-MOEA and ε-MOEA do not suffer from
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deterioration, so they are able to get closer to the Pareto-
optimal front.

6. CONCLUSIONS AND FUTURE WORK
NSGA-II, ε-MOEA, and SNDL-MOEA all produced good
solutions to the ZDT and DTLZ test problems. To quantify
the differences, points are awarded to each algorithm based
on how it compares to the other algorithms on each problem.
Every time an algorithm performs significantly better than
the other two algorithms in either convergence or diversity, it
is awarded one point. If two algorithms tie, both algorithms
are awarded points. If all three algorithms are the same, no
points are awarded. ε-MOEA and SNDL-MOEA are tied
with nine points each. NSGA-II runs a distant second with
three points. Based on the results presented in this paper,
SNDL-MOEA is shown to be competitive with ε-MOEA and
superior to NSGA-II.

SNDL-MOEA produces populations which are both di-
verse and very close to Pareto-optimal with a reasonable
amount of work. Efficiency preservation is employed to
prevent deterioration, which allows the overall quality of
the solution to steadily and consistently increase over time.
The user can choose one of three different selection pro-
cedures, each of which has a different impact on selection
pressure. Additionally, the user can specify the number of
non-domination levels and the size of each level, which also
has a direct impact on selection pressure. Furthermore, be-
cause the levels of non-domination are stored, the algorithm
has the ability to go back to a very early solution and using
the same foundation to solve a problem again and again,
which makes it very useful for construction problems.

While we have shown SNDL-MOEA to be competitive
with ε-MOEA based on convergence and diversity, our al-
gorithm can suffer from a higher complexity when the
size or number of levels are set high (to be exact, when
DZ2 > N). We are currently working on an improved ver-
sion of SNDL-MOEA which exhibits a time complexity of
O(MND · log(Z)) per generation, while still maintaining
the archive population in levels of nondominance keeping it
suitable for construction problems. Furthermore, we plan
to extend our algorithmic comparison to other test problem
series such as the rotated test problem series as described
in [5].
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