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ABSTRACT
Multiobjective evolutionary algorithms (MOEA) are an ef-
fective tool for solving search and optimization problems
containing several incommensurable and possibly conflicting
objectives. Unfortunately, many MOEAs face difficulties in
solving problems when the number of objectives increases.
In this paper, we investigate the efficacy of spatially struc-
tured MOEAs for scalable multiobjective problems. The
algorithm is an extension of the standard cellular evolution-
ary algorithm, where the population is mapped to nodes of
alternative complex networks. A selection regime based on a
non-dominance rating and a crowding mechanism guides the
evolutionary trajectory and an ε-dominance external archive
is used to maintain a spread of solutions across the Pareto-
optimal front. An important outcome of this work is the
classification of the network models based on their impact
on convergence speed and solution quality as the number of
objectives increases for a given problem.

Categories and Subject Descriptors
G.1 [Numerical analysis]: Optimization; I.2 [Artificial
Intelligence]: Problem Solving, Control Methods, and Search

General Terms
Algorithms, Performance, Experimentation

Keywords
Complex network, Parallel evolutionary algorithm, Multi-
objective optimization

1. INTRODUCTION
Multiobjective evolutionary algorithms (MOEA) are now

an established technique used to find a set of Pareto-optimal
solutions when confronted with search and optimization
problems containing several incommensurable and possibly
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conflicting objectives [3, 4]. Well known MOEAs include
NSGA-II [6], SPEA2 [18] and PAES [14].

Unfortunately, many MOEAs face difficulites in solving
problems when the number of objectives increases. This
may be attributed to the fact that the dimensionality of the
objective space has increased and changes in the interaction
patterns between decision variables may cause a large pro-
portion of a random initial population to be non-dominated
with respect to each other [4]. Deb and Sundra [7] suggest
that a number of factors contribute to performance degra-
dation. These include the problems associated with visu-
alising higher-dimensional objective space, the trade-off be-
tween exploration/exploitation of the search space as a con-
sequence of reduced selection pressure in small populations,
and, the exponentially larger number of points required to
represent a higher-dimensional Pareto-optimal front.

A number of papers have appeared examining the role
that spatial structure plays in guiding evolutionary processes
in an evolutionary computation context in the last two years.
Notable examples include the works of Alba and Dorronsoro
[1], Giacobini et. al., [10, 11] and Bryden et. al., [2]. The
results reported, using single objective problems, show how
the topology of the network (or graph) used to constrain
the interactions between individuals has a direct impact on
the overall behaviour of the evolving population. Bryden et.
al., suggest that the graph yielding superior performance is
problem dependent. Giacobini et. al., highlight significant
differences between the so called “small-world” models [16]
and regular lattices.

An interesting question, therefore, is how does the under-
lying spatial structure of an evolving population impact on
the quality of solutions found for multiobjectiove optimiza-
tion problems? Recently, a complex network-based MOEA
was introduced [13], which combined some of the ideas out-
lined above with a Pareto-based algorithm for multiobjec-
tive problems. Fundamentally, the model was a diffusion-
based (or cellular) evolutionary algorithm where the regular
lattice was replaced by a small-world, scale-free or random
network [9]. An important feature of the algorithm was the
variation in connectivity (node degree) and corresponding
selection pressure across a given network. Reported results
suggest that there were signficant differences between the
network architectures considered using the well-known ZDT
benchmark multiobjective problems [19].

In this paper, we use the complex network-based MOEA
as a framework for analyzing the effects of population struc-
ture on scalable multiobjective optimization problems. The
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Figure 1: The 2-objective space is divided into
hyper-boxes of size ε1 ∗ ε2 for objective f1 and f2 re-
spectively. FGCE illustrates the space ε-dominated
by solution A as compared to the actual dominated
space ABCD. The ε parameters allow users to vary
the precision of the boxes and hence the precision
of the solutions obtained. Here, only one solution is
allowed per hyper-box. Note: we are minimizing f1

and f2.

natural synergy between spatial evolutionary models and a
multiobjective problem suggests that by varying the con-
nectivity pattern of the network (that is, the local neigh-
bourhood structure), selection pressure will also vary re-
sulting in changes in the trajectory of the population. For
multiobjective optimization problems with a large number
of objectives, this heterogeneous spatial structure offers the
possibility of improving the quality of solutions distributed
across the Pareto-optimal front. In this study, we limit our
analysis to the impact that alternative networks have on the
algorithm performance for a number of scalable problems.

The remainder of the paper is organized as follows: In
Section 2, we formally describe multiobjective optimization
problems and the concept of ε-dominance. In Section 3, we
describe the complex network-based MOEA. The simulation
experiments are described in Section 4. This is followed by a
discussion of the results in Section 5. We conclude the paper
in Section 6 and outline directions for future research.

2. BACKGROUND

2.1 Multiobjective optimization
Multiobjective problems are problems that consist of a set

of objective functions to be minimized or maximized sub-
ject to specified constraints. A multi-objective optimization
problem can be stated generally as follows [4]:

Minimize: f(x) = [f1(x), f2(x), . . . , fk(x)]T

subject to: gi(x) ≥ 0 , i ∈ [1, . . . , q]

hi(x) = 0 , i ∈ [1, . . . , p] (1)

where x is a vector of decision variables, gi is an inequality
constraint, and hi is an equality constraint. A solution is
said to dominate another if, for all objectives, it is as good
as the other solution and better in at least one objective.
That is, a solution x∗ dominates a solution x (or x∗ ≺ x) iff

∀i fi(x
∗) ≤ fi(x) ∧ ∃j fj(x

∗) < fj(x) , i, j ∈ [1, . . . , M ] (2)

The set of non-dominated solutions with respect to all other
feasible solutions form the Pareto-optimal set.

2.2 ε-dominance
Laumanns et. al. [15], presented ε-dominance as a method

of ensuring both theoretical convergence (given infinite time)
and a well-spread set of solutions along the Pareto-optimal
front.

Given solution vectors f and g, f is said to ε-dominate g iff
∀i ∈ 1, ..., M (1+ε).fi ≥ gi. Convergence can be guaranteed
by maintaining an archive of ε-dominating solutions and an
update strategy such that solutions are never removed unless
they are replaced by another dominating solution.

Through the use of the ε parameters (one for each ob-
jective) and identification vectors, the objective space is di-
vided into hyper-boxes each of size εj (Figure 1). By restrict-
ing each hyper-box on the Pareto-optimal front to contain
only one individual, a well-distributed and size-bounded set
of solutions can be maintained.

Consider two solutions A and B with objective value pairs
(f1, f2)A = (0.134, 0.552) and (f1, f2)B = (0.132, 0.554). If
εi = εj = 0.01 and A already exists in the archive, B is not
admitted to the archive since both belong to the same hyper-
box (0.13, 0.55). Users are thus able to set the precision and
number of the desired solutions by setting the ε parameter.

3. COMPLEX NETWORK-BASED MOEA

3.1 A brief review of complex networks
A network can be modelled as a graph G(N, E) where N

is a finite set of nodes (vertices) and E a finite set of edges
(links) such that each edge is associated with a pair of nodes
i and j.

The degree ki of a node i defines the total number of edges
between node i and all other nodes. The larger the degree,
the “more important” the node is in a network. The node
degree distribution function P (k) is the probability that a
randomly selected node has exactly k edges. Here, we use
< ki > to represent the mean degree. Other structural char-
acteristics of interest are the clustering coefficient, C, which
is the probability that two nearest neighbours of a node are
also nearest neighbours of each other, and the characteris-
tic path length, L, which measures the average separation
between any two nodes in the network.

Four different network architectures were used in this study
(see Fig. 2): (a) the regular network defined as a nearest-
neighbour coupled network (lattice) in which every node in
the network is joined by a few of its neighbours; (b) the ran-
dom network created by specifying that each pair of nodes
is connected by an edge with uniform probability p; (c)
the small-world network created by randomly re-wiring each
edge with some probability p << 1; and (d) the scale-free
network characterized by the distinctive connectivity dis-
tributions – the probability that a node selected uniformly
at random has a certain number of links (degree) follows a
power law governed by the relationship P (k) ∼ k−γ . The
scale free networks were generated using the preferential at-
tachment model in which we specified the initial number of
nodes (b) and the number of edges per node added (e).

Space does not allow for a detailed description of the net-
works and their characteristics, however, a comprehensive
overview can be found in [9].
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Figure 2: Complex network architectures. Here, we illustrate the structure of the alternative networks using
25 nodes for each. (a) Regular 2D lattice, (b) Small-world, (c) Random, and (d) Scale-free.

Algorithm 1: Complex network-based MOEA.

initializeModel()
evaluatePopulation()
updateArchive() //using ε-dominance
while NOT terminationCriteria

outputParetoFront()
for individual (node) i in network do in parallel

j = findBestNeighbour() //non-dominated
o∗ = applyGeneticOperators( i,j )
evaluate(o∗)
w = compare(i,o∗) //non-dominated
addToAuxPopulation(w)

end for
updateArchive() //using ε-dominance
population = AuxPopulation

end while
outputParetoFront()

3.2 Model details
The complex network-based MOEA used in this study is

an enhanced cellular evolutionary algorithm [1, 11, 12]. A
key component of the model is the communication topology
determined by the network architecture. Here, the individu-
als are mapped to the nodes of alternative complex networks
and interact in their local neighbourhood. Algorithm 1 pro-
vides an overview of the key steps.

An important feature of the model is the variation in local
neighbourhood size between networks – and within partic-
ular networks. Typically, the number of neighbours is not
constant across the whole network. That is, the size of the
local neighbourhood is determined by the degree ki of the
current node i. This in turn means that the selection pres-
sure will also vary. The exception to this rule is when a 2D
regular lattice with Moore neighbourhood is used for which
each individual has 8 neighbours.

In the selection phase, a relative non-dominance ranking
mechanism is used to generate a pool of potential mates
from the local neighbourhood. A crowding measure is then
used to rank individuals in the mating pool. Here, the
least crowed individual is viewed as better. This selec-
tion regime results in the identification of a “best” mate,
j, for the current individual i. After the recombination
stage, the resulting offspring are mutated. The parent oc-
cupying node i and the resultant offspring are then com-
pared using the dominance ranking mechanism. The non-
dominated individual is then copied into the auxilary popu-
lation. In the event of a tie, one of the children or parent is
selected randomly to enter the auxiliary population. After

all nodes in the network have been processed, the auxiliary
population is copied to the main population and the evolu-
tionary cycle continues. An external archive is maintained
using the ε-dominance mechanism described in Section 2.
The code for the archive was based on Deb, Mohan and
Mishras’ Epsilon-MOEA [5] archive implementation avail-
able at: http://www.iitk.ac.in/kangal/codes.shtml.

4. SIMULATIONS AND RESULTS
The goal of this study, was to characterize how the un-

derlying network architecture impacts on solution quality as
the number of objectives increases in scalable multiobjective
optimization problems. Thus, a range of different network-
problem scenarios were examined.

4.1 Implementation details
Two benchmark scalable multiobjective problems were

used: DTLZ4 and DTLZ5. A more comprehensive descrip-
tion of the test functions can be found in [8]. The ac-
tual implementation was adapted from the code available
at http://www.tik.ee.ethz.ch/pisa/.

DTLZ4
Minimise:

f1(x) = (1 + g(xM ))
QM−1

j=1 cos(xα
j π/2)

fk(x) = (1 + g(xM )) sin(xα
M−k+1π/2)

QM−k
j=1 cos(xα

j π/2)
for k = 2, 3, . . . , M,

where:

g(xM ) =
P

xi∈xM
(xi − 0.5)2 =

PP
j=M (xj − 0.5)2

0 ≤ xi ≤ 1, for i = 1, 2, . . . , P,

DTLZ5
Minimise:

f1(x) = (1 + g(xM ))
QM−1

j=1 cos(θj)

fk(x) = (1 + g(xM )) sin(θM−k+1)
QM−k

j=1 cos(θj),
for k = 2, 3, . . . , M,

where:

g(xM ) =
P

xi∈xM
(xi − 0.5)2 =

PP
j=M (xj − 0.5)2

0 ≤ xi ≤ 1, for i = 1, 2, . . . , P,
θ1 = x1π/2
θq = π

4(1+g(xM ))
(1 + 2g(xM )xq), for q = 2, 3, . . . , (M − 1).
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Figure 3: The non-dominated reference front for the
3 Objective DTLZ4 problem.
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Figure 4: The non-dominated reference front for the
3 Objective DTLZ5 problem.

We set α = 100 in DTLZ4, and P = M + 9 in both prob-
lems, where M is the number of objectives. Real-encoding
was used with SBX crossover. The mutation probability was
set to 1/P , where P is the number of decision variables. The
selection regime was descibed in Section 3. The number of
nodes in the network (population size) was set to 1024. For
the external archive, values of ε = 0.05 were used for each
scenario.

Table 1 lists the structural properties of each network used
in this study.

Table 1: Network structural characteristics.
Network Description < ki > L C
M Regular 2D network

with 8 neighbourhoods.
8.0 10.7 0.429

SFA Scale-free, preferential
attachment, b=10, e=2.

4.0 4.5 0.013

SFB Scale-free, preferential
attachment, b=10, e=4.

7.9 3.3 0.022

SFC Scale-free, preferential
attachment, b=10, e=6.

11.9 2.9 0.036

SFD Scale-free, preferential
attachment, b=10, e=8.

15.8 2.7 0.046

SWA Small-world, base d=2,
r=1, p = 0.05

8.0 5.3 0.369

SWB Small-world, base d=3,
r=1, p = 0.05

24.0 3.2 0.449

SWC Small-world, base d=3,
r=2, p = 0.05

48.0 2.6 0.469

R Erdös and Rényi random
graph with p = 0.05.

50.7 2.0 0.049

4.2 Results
For each combination of network, test problem, and num-

ber of objectives, the model was run for a maximum of
200 time steps. Thirty independent trials were completed
for each scenario. In order to compare the performance
of alternative network architectures, it is necessary to ex-
amine both the convergence time and spread of solutions
across the Pareto-front. To do this comparison, we have
constructed a reference set, R, by merging all of the archival
non-dominated solutions found by each of the network-based
models for a given problem across all Pareto-fronts (output
every 10 generations) and trials. As an example, the refer-
ence sets for the 3-objective DTLZ4 and DTLZ5 problems
are shown in Figures 3 and 4 respectively.

We have used the Iε unary epsilon indicator [19] as the
primary metric for comparison. Unfortunately, the hyper-
volume indicator, IH , which measures the portion of the ob-
jective space that is weakly dominated by R, could not be
used as the hypervolume is computational expensive when
the number of objectives increases [17].

A non-parametric Kruskal-Wallis test was used to test
for significant differences between scenarios. Tables 2 and
3 present a pair-wise statistical comparison between the
complex network-based MOEAs using the Iε indicator for
DTLZ4 and DTLZ5 respectively as the number of objec-
tives increased from two to six in steps of one. Here, we
test the null hypothesis that the indicator value for the row
entry is significantly better than the column entry (p−value
< 0.05). If the result for the given number of objectives is
statistically significant, the number of objectives is listed in
the cell.

Figures 5, 6 and 7 show the median convergence rate of Iε

for each of the network models on the DTLZ4 test problem
for 2, 4 and 6 objectives repectively. Figures 8,9 and 10 show
the median convergence rate of Iε for each of the network

Table 2: Pair-wise statistical analysis of Iε for the
DTLZ4 problem.

M SFA SFB SFC SFD SWA SWB SWC R
M – 2-6 3-6 4-6 4-6 5,6 5,6
SFA –
SFB 2-4 – 4
SFC 3 2,3 3 – 3
SFD 3 2,3 3 – 3
SWA 3-6 3-6 4-6 4-6 – 5,6 4-6
SWB 3,6 2-6 3-6 3-6 4-6 2,3,6 – 5,6 4-6
SWC 3 3-5 3,4 3,4 3,4 3 3 – 4,6
R 3 2-4 3 3 3,4 3 3 –

Table 3: Pair-wise statistical analysis of Iε for the
DTLZ5 problem.

M SFA SFB SFC SFD SWA SWB SWC R
M – 3 3
SFA – 3 3 3
SFB 6 6 – 5,6 3 3 3
SFC 4-6 4-6 4-6 – 4-6 3 3 3
SFD 3-6 4-6 4-6 4-6 – 4-6 3 3 3
SWA 2 2 2 – 3 3
SWB 2,4-6 4-6 2,4-6 2,4-6 5,6 4-6 – 3 3
SWC 2,4-6 4-6 4-6 2,4-6 4-6 4-6 4-6 –
R 2,4-6 4-6 2,4-6 2,4-6 4-6 4-6 4-6 –
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models on the DTLZ5 test problem for 2, 4 and 6 objectives
repectively. The data points at time t were found by calcu-
lating the Iε values using the archive at time t (across all
trials) and the reference set R.

Figures 11,12,13 and Figures 14,15,16 plot the number
of non-dominated solutions in the population at each itera-
tion for all of the network models on problems DTLZ4 and
DTLZ5 for 2, 4 and 6 objectives respectively.

5. DISCUSSION
As the number of objectives increases in a multiobjective

optimization problem, many of the well-known algorithms
(and variants thereof) struggle to find a range of solutions
distributed across the Pareto-front. This is not really sur-
prising as the Pareto-optimal front is a higher-dimensional
surface, and it is difficult to identify solutions that are close
in objective space. Obviously, the use of niching mecha-
nisms, crowding procedures and ε-dominance comparisons
(to highlight the most common techniques) play a signifi-
cant role in guiding the evolving population. However, the
motivation behind this study, was to investigate how specific
topological features of a network influence the dynamics of
processes executed on the network.

An important advantage of spatially structured evolution-
ary algorithms, as compared to their standard panmictic
counterpart, is their ability to constrain the diffusion rate of
genetic material. The work of Giacobini et. al., [10] provides
supporting evidence that small-world topologies allow for a
tradeoff between robustness and speed of the search in single
objective problems. In that study, they were able to show
that the introduction of a limited amount of “randomness”
built into a network was able to change the population dy-
namics. However, in our previous work [13], a random graph
tended to produce the best performance for two-objective
problems in terms of convergence speed and the dominance
indicators when compared to small-world, scale-free and reg-
ular networks. Therefore, an important question addressed
in this study was to determine whether this apparent trend
was transferable to problems with more than two objectives.

The results of the pair-wise statistical tests listed in Tables
2 and 3 clearly indicate that there are significant difference
in performance between networks. In general, as the num-
ber of objectives in a given problem increases, performance
differences between network topologies are magnified.

The plots of Iε convergence (Figures 5-10) suggest that
the structural properties affect the convergence rate. In the
case of the DTLZ4 problem, the relative ranking of network
performance, in terms of the convergence of the Iε indica-
tor, tends to follow the value of the clustering coefficient.
Here, higher C values lead to improved performance. In
contrast, for the DTLZ5 problem, the relative ranking of
network performance is correlated with the value of < ki >.
Higher values of < ki > lead to better results.

Similar trends in both problems were evident between the
regular lattice and small-world models with small re-wiring
probabilities. As “shortcuts” were introduced (as a result
of link re-wiring) the convergence rate improved. For larger
re-wiring probabilities, the performance reflected that of the
random networks. However, there were significant differ-
ences in convergence rates for the random network across
the test problems considered. As the number of objectives
increased for the DTLZ5 problem, there was a corresponding
increase in the quality of results obtained. For the DTLZ4

problem, the performance of the random network dropped
off as the number of objectives increased. The Iε conver-
gence rate for the scale-free networks were clearly slower for
the DTLZ4 problem and were similar to networks with lower
< ki > values for the DTLZ5 problem.

The time series plots of the number of non-dominated
solutions found per generation (Figures 11-16) shed further
light on the evolutionary dynamics. Initially, there were a
relatively small number of non-dominated solutions in the
population. As expected, for problems with more objectives,
there are more non-dominated solutions in the population.
There is often a decrease in the number of non-dominated
solutions found (the magnitude of which is dependent on the
number of objectives) in the early generations before niches
are established and non-dominated solutions flourish.

For the DTLZ4 problem, the networks with higher < ki >
values tend to evolve a larger number of non-dominated so-
lutions at each generation. For the DTLZ5 problem, net-
works with similar < ki > display similar characteristics as
the number of objectives increases. However, the shape of
the time series plots for the DTLZ4 and DTLZ5 for partic-
ular networks are significantly different. The relative order-
ing of networks for the DTLZ4 problem is consistent across
the number of objectives. Networks at the random end of
the scale typically contain more non-dominated solutions
per generation. In contrast, scale-free network consistently
contain less non-dominated solutions per generation. As
the number of objectives increased for the DTLZ5 prob-
lem, the networks with the larger L values (regular lattice
with Moore neighbourhood, small-world SWA) were able to
find the greatest number of non-dominated solutions later
in the run. Random networks tended to find a fixed number
of non-dominated solutions, possibly indicating population
convergence. Interestingly, the ability of scale-free networks
to find non-dominated solutions improved as the number of
objectives increased.

The locality of interactions plays an important role in the
complex network-based MOEA. The selection pressure in-
duced by the node degree and the corresponding local neigh-
bourhood size have a direct affect on the rate of diffusion of
information across the network. In 2D regular lattices and
small-world models, the clustering coefficient is high. How-
ever, it appears that the average path length has a greater
impact on the diffusion rate than the clustering coefficient.
In networks with high mean node degrees, a few of the “best”
non-dominated individuals will tend to be the parents of nu-
merous offspring, leading to a homogenisation of the popu-
lation due to offspring with similar chromosomes being pro-
duced. These networks will combine existing building blocks
in the population quickly, but they do not excel in their ca-
pacity to find new building blocks. On the other hand, reg-
ular lattices (with Moore neighbourhood) and small-world
networks with small re-wiring probability promote popula-
tion heterogeneity. Novel building blocks can be discovered
as genetic material gradually diffuses across the network.
Here, good individuals require time to dominate the whole
population.

Clearly, the network topology provides a mechanism for
controlling the exploration/exploitation properties of the evo-
lutionary algorithm. As the complexity (level of difficulty)
of the problem increases, networks which limit the explo-
rative powers of the algorithm – those networks with higher
< ki > values – may not be as useful as networks that
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Figure 5: Convergence of Iε for each network on the
2 objective DTLZ4 problem.
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Figure 6: Convergence of Iε for each network on the
4 objective DTLZ4 problem.
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Figure 7: Convergence of Iε for each network on the
6 objective DTLZ4 problem.
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Figure 8: Convergence of Iε for each network on the
2 objective DTLZ5 problem.
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Figure 9: Convergence of Iε for each network on the
4 objective DTLZ5 problem.
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Figure 10: Convergence of Iε for each network on
the 6 objective DTLZ5 problem.
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Figure 11: Number of population nondominated in-
dividuals over time for each complex network on the
2 objective DTLZ4 problem.
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Figure 12: Number of population nondominated in-
dividuals over time for each complex network on the
4 objective DTLZ4 problem.
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Figure 13: Number of population nondominated in-
dividuals over time for each complex network on the
6 objective DTLZ4 problem.
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Figure 14: Number of population nondominated in-
dividuals over time for each complex network on the
2 objective DTLZ5 problem.
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Figure 15: Number of population nondominated in-
dividuals over time for each complex network on the
4 objective DTLZ5 problem.
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Figure 16: Number of population nondominated in-
dividuals over time for each complex network on the
6 objective DTLZ5 problem.
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constrain the rate of diffusion. For relatively small (simple
problems), a random or scale free network (where exploita-
tion can happen quickly due to high node connectivity) may
perform better than other topologies. In contrast, a regular
lattice or small-world network with limited re-wiring, may
be a more appropriate choice for harder problems. How-
ever, even with sufficient time, the regular lattice may not
be the superior performer (in terms of solution quality) since
the diffusion process followed may not have allowed the best
evolutionary trajectory to have been taken.

6. CONCLUSION
In this study, we have investigated how the underlying

communication topology (spatial structure) of a Pareto-based
evolutionary algorithm impacts on the performance of the
algorithm using scalable multiobjective optimization prob-
lems. The simulation results showed that there were signifi-
cant performance differences between networks as the num-
ber of objectives increased. As the complexity of the prob-
lem increases, the ideal network should change from one with
a high mean degree distribution to a network with high clus-
tering coefficient. In all cases, the introduction of a limited
number of long-range connections (via link re-wiring) main-
tains population diversity and helps to promote solutions
distributed along the Pareto-optimal front.

An interesting avenue for future work, would be to inves-
tigate what impact dynamic topologies might have on the
evolutionary trajectories. Such networks could reconfigure
during the evolutionary process to balance exploration and
exploitation and adapt to a given problem.
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