
Multi-Objective Particle Swarm Optimization
on Computer Grids

Sanaz Mostaghim, Jürgen Branke, and Hartmut Schmeck
Institute AIFB, University of Karlsruhe

Karlsruhe, Germany
mostaghim@aifb.uni-karlsruhe.de, branke@aifb.uni-karlsruhe.de,

schmeck@aifb.uni-karlsruhe.de

ABSTRACT
In recent years, a number of authors have successfully extended
particle swarm optimization to problem domains with multiple objec-
tives. This paper addresses the issue of parallelizing multi-objec-
tive particle swarms. We propose and empirically compare two
parallel versions which differ in the way they divide the swarm into
subswarms that can be processed independently on different pro-
cessors. One of the variants works asynchronously and is thus par-
ticularly suitable for heterogeneous computer clusters as occurring
e.g. in modern grid computing platforms.

Categories and Subject Descriptors: I.2.11 [Computing Method-
ologies]: Distributed Artificial Intelligence

General Terms: Algorithms.

Keywords: Parallel Optimization, Multi-objective Optimization,
Particle Swarm Optimization, Grid Computing.

1. INTRODUCTION
Particle Swarm Optimization (PSO) is now established as an ef-

ficient optimization algorithm for static functions in a variety of
contexts [24]. PSO is a population based technique, similar in some
respects to evolutionary algorithms, except that potential solutions
(particles) move, rather than evolve, through the search space. The
rules, or particle dynamics, which govern this movement, are in-
spired by models of swarming and flocking [18]. Each particle has
a position and a velocity, and experiences linear spring-like attrac-
tions towards two attractors:

1. The best position attained by that particle so far (local attrac-
tor), and

2. The best position found by the swarm as a whole (global at-
tractor),

where best is in relation to evaluation of an objective function at
that position. The global attractor therefore enables information
sharing between particles, whilst the local attractors serve as indi-
vidual particle memories. The optimization process is iterative. In

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

each iteration, the acceleration vectors of all the particles are calcu-
lated based on the positions of the corresponding attractors. Then,
this acceleration is added to the velocity vector, the updated veloc-
ity is constricted so that the particles progressively slow down, and
this new velocity is used to move the individual from the current to
the new position. The details of our implementation are provided
in Section 3.

Due to the success of particle swarm optimization (PSO) in sin-
gle objective optimization, in recent years, more and more attempts
have been made to extend PSO to the domain of multi-objective
problems, see e.g. [21, 4]. The main challenge in multi-objective
particle swarm optimization (MOPSO) is to select the global and
local attractors such that the swarm is guided towards the Pareto
optimal front and maintains sufficient diversity. Our paper simply
adopts one of the proposed strategies, namely the sigma-method
[21]. The paper’s focus is on parallelization strategies, and is largely
independent from the multi-objectivization technique used.

The motivation for parallelization is that for many practical op-
timization problems, evaluating a single solution already requires
a significant computational effort, e.g. if the evaluation involves
a computationally demanding fluid dynamics simulation. On the
other hand PSO and also other nature-inspired optimization tech-
niques like evolutionary computation or simulated annealing usu-
ally require the evaluation of a large number of solutions before
producing good results. One way to resolve this predicament is to
employ parallel processing. While only few people have access to
a dedicated parallel computer, recently, it also became possible to
distribute an algorithm over any bunch of networked computers,
using a paradigm called “grid computing”. Grid Computing en-
ables the sharing, selection, and aggregation of a wide variety of
geographically distributed computational resources (such as super-
computers, compute clusters, storage systems, etc.) and presents
them as a single, unified resource for solving large-scale and data
intensive computing applications [16]. This idea is analogous to
the electric power network (grid) where power generators are dis-
tributed, but the users are able to access electric power without
bothering about the source of energy and its location. As such, grid
computing promises to make high performance computing avail-
able to almost everyone. On the other hand, it makes parallelization
more challenging, as one can no longer assume a homogeneous set
of processors. Also, grid computers usually do not allow the direct
communication between processors.

In this paper, we propose two parallel variants of MOPSO aimed
at using a small (<50) number of computers in parallel, as they
are available e.g. in a company grid network. For both algorithms,
the basic idea is to repeatedly divide the population into a number
of subswarms which can be processed in parallel. The subswarms

869

run for a limited number of iterations and then return their result
(i.e. all non-dominated solutions found) to a central server. In the
next iteration, they are provided with a “guide”, a non-dominated
particle, and re-start search with this guide and all other particles re-
initialized within the local search-space neighborhood of the guide.
The two proposed variants differ in the way they select the guides.
The cluster-based subswarm MOPSO (CMOPSO) waits for all sub-
swarms to return their results, and then performs a clustering step to
identify a number of well-distributed guides along the non-dominated
front. The hypervolume-based subswarm MOPSO (HMOPSO) se-
lects guides one at a time based on their marginal hypervolume, i.e.
the hypervolume covered by a particle that is not covered by any
other particle. Note that the latter version works asynchronously,
which makes it the first MOPSO (to our knowledge) particularly
suitable for heterogeneous computer clusters such as the grid.

The paper is structured as follows. In the next section, we briefly
survey related work. Our parallel PSO variants are presented in
Section 3. An empirical analysis and comparison with straightfor-
ward alternatives on homogeneous as well as heterogeneous com-
puter clusters is provided in Section 4. The paper concludes with a
summary and several ideas for future work.

2. RELATED WORK
In PSO, parallelization has been largely neglected so far. We are

aware of only one paper [12] on parallel single-objective PSO, and
one paper on parallel MOPSO [23], none of them considering het-
erogeneous computing resources. Thus, in the following, we first
discuss parallel multi-objective evolutionary algorithms (MOEAs),
where parallelization has been studied extensively. Parallel evolu-
tionary algorithms (EAs) can be grouped into three categories:

1. Farming model: Here, a single processor maintains control
over selection, and uses the other processors only for crossover,
mutation and evaluation of individuals. It is useful only for
few processors or very large evaluation times, as otherwise
the strong communication overhead outweighs the benefit of
parallelization.

2. Island model: In this model, every processor runs an inde-
pendent EA, using a separate sub-population. In regular in-
tervals, migration takes place: The processors cooperate by
exchanging good individuals. The island model is partic-
ularly suitable for computer clusters, as communication is
limited, and thus most related to our work.

3. Diffusion model: Here, the individuals are spatially arranged,
and mate with other individuals from their local neighbor-
hood. When parallelized, there is a lot of inter-processor
communication (every individual has to communicate with
its neighbors in every iteration), but the communication is
only local. Thus this paradigm is particularly suitable for
massively parallel computers with a fast local intercommu-
nication network.

A detailed discussion of parallel EAs is out of the scope of this
paper. The interested reader is referred to e.g. [26, 11, 3]. One of
the few papers considering heterogeneous processors is [6], which
assumes an island model and examines different migration policies
and neighborhood structures.

Also, there are several papers on parallelizing multi-objective
evolutionary algorithms. Most of these methods are based on the
island model, and attempt to divide the objective space into several
regions which are then assigned to different processors. Deb [15]
uses ideas from the Guided-MOEA [7] to focus the different sub-
populations on different trade-off ranges between the objectives.

Branke et al. [9] proposed to explicitly divide up the objective space
into “cones”. Streichert et al. [27] refines this idea, integrating a
clustering method. In the only parallel MOPSO paper [23] we are
aware of, several single objective PSO algorithms are run in paral-
lel, each optimizing a different objective. For the velocity update,
however, as global best, one of the global bests from all single ob-
jective swarms are chosen at random. All of above approaches as-
sume communication between processors, and tested only a rather
small number of parallel processors (2-16). Heterogeneity of the
processors has not been considered in either of these papers.

Subswarms in MOPSO have already been used in [22] in order
to obtain a better covering of the front, and in [17] to maintain the
spread of solutions.

Optimization in Grid Computing is an established field, see e.g.,
Nimrod/O [1]. In Nimrod/O, several heuristics are provided like
Simulated Annealing, Evolutionary Programming and Genetic Al-
gorithms which are being used to solve many real-world appli-
cations. However, they involve only single objective optimiza-
tion techniques, and to our knowledge, no PSO has been proposed
yet. In [10], a general framework for parallel and distributed meta-
heuristics has been proposed, another such framework is imple-
mented in [2]. In [20], such a Grid framework is used to run several
PAES-style [19] multi-objective EAs independently in parallel.

3. PARALLEL MULTI-OBJECTIVE
PARTICLE SWARM OPTIMIZATION

In this section, we briefly explain Multi-Objective Particle Swarm
Optimization (MOPSO) methods. Then the parallel MOPSO is be-
ing introduced.

3.1 Multi-Objective
Particle Swarm Optimization

A MOPSO starts with a set of uniformly distributed random ini-
tial particles defined in the search space S. A set of M particles
are considered as a population Pt in generation t. Each particle i
has a position defined by �xi = (xi

1, x
i
2, · · · , xi

n) and a velocity de-
fined by �vi = (vi

1, v
i
2, · · · , vi

n) in the search space S. Beside the
population, another set At (called Archive) can be defined in order
to store the obtained non-dominated solutions. Due to the presence
of an archive, good solutions are preserved over generations. The
particles are evaluated and the non-dominated solutions are added
to the archive in every generation, while dominated solutions are
pruned. In the next step, the particles are moved to a new positions
in the space. The velocity and position of each particle i is updated
as follows.

vi
j,t+1 = wvi

j,t + c1R1(p
i
j,t − xi

j,t) + c2R2(p
i,g
j,t − xi

j,t)(1)

xi
j,t+1 = xi

j,t + vi
j,t+1

where j = 1, . . . , n, i = 1, . . . , M , c1 and c2 are two positive
constants, R1 and R2 are random variables uniformly distributed
in [0, 1] and w is the inertia weight which is employed to control
the impact of the previous history of velocities.

�p i,g
t and �p i

t are the positions of the global and local attractors,
respectively. They guide the particles towards promising regions
of the search space. In single-objective PSO, the global attractor is
simply the best solution found by the swarm so far, while the local
attractor is the best solution found by the particle itself. These so-
lutions are uniquely determined because the solutions can be fully
ordered according to objective function values.

But in MOPSO, in the presence of multiple objectives, an anal-
ogous choice of global and local attractor is not straightforward.
The global attractor �p i,g

t might be any solution from the updated

870

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

�
�
�
�

����

��

����
��
����

�
�
�
�

K1

K2

f2(x)

f1(x)

Figure 1: Selecting the global attractor using sigma method.
o and � denote the population members and non-dominated
solutions respectively.

set of non-dominated solutions stored in the archive, and several
papers have proposed different methods to make a definite choice,
see e.g. [13, 4]. For a recent survey on MOPSO, see [25]. We use
the sigma-method for selecting �p i,g

t [21]. As global attractor for
each particle, it chooses the archive member which is closest to the
line connecting the particle’s current position to the origin. This
idea is illustrated in Figure 1 for 2 dimensions.

Different strategies to select the local attractor in the presence of
multiple objectives have been examined in [8]. Here, we simply
keep the non-dominated (best) position of the particle by compar-
ing the new position �x i

t+1 in the objective space with the current
local attractor �p i

t , and setting the local attractor to the new position
if and only if the new position is non-dominated with respect to the
current local attractor.

The steps of a MOPSO are iteratively repeated until a termina-
tion criterion is met. Note that our implementation of MOPSO ad-
ditionally uses a “turbulence factor” [21] which introduces diver-
sity into the swarm by randomizing the coordinates of a fraction
of the particles within the area covered by the particles, i.e., within
[xmin

i , xmax
i] where xmin

i and xmax
i are the minimal and maximal

coordinates for decision variable xi over all particles in the popu-
lation and the archive.

3.2 Parallelization
Here, we propose two parallelization techniques. We assume a

small number of loosely connected computers as e.g. in a company
network. Furthermore, we assume a central server maintaining the
archive, distributing work to different processors and collecting the
results. This assumption is in line with the usual grid technology.
The parallel processors are assigned sub-swarms, and run indepen-
dent MOPSOs based on these subswarms for a prespecified num-
ber of iterations. All found non-dominated solutions are returned
as result to the central processor. Intuitively, it makes sense to
have different subswarms focusing on different regions of the non-
dominated front. This is also the underlying assumption of the par-
allel MOEAs discussed in Section 2. In our case, focus on differ-
ent areas of the non-dominated front is achieved by assigning each
subswarm a “guide”. A guide is a non-dominated solution from
the archive. The subswarm is then randomly initialized in a search-
space neighborhood of the guide, and the guide itself becomes part
of the swarm. Because of the guide and the local initialization, the
search of the sub-swarm is likely to focus on a region of the non-
dominated front close to the location of the guide.

The two parallelization approaches differ in the way they select
guides from the archive, which will be explained in more detail in
the following subsections.

hyper−volume

hyper−volume without A

A

B

hyper−volume without B

f2

f1

f2

f1

Figure 2: Selection of the global guide. Point B has a larger im-
pact on the hyper-volume and therefore must be selected first.
(�: solutions, •: reference point)

3.2.1 Cluster-based subswarm MOPSO
The idea of the cluster-based subswarm MOPSO (CMOPSO) is

to pick a set of guides which represents the current non-dominated
front as well as possible. This is achieved by performing a cluster-
ing operation on the archive, with the goal to find N cluster repre-
sentatives if N is the number of processors available.

Note that this assumes synchronization after every iteration: the
central processor performs the clustering, sends out the different
guides to the different processors, waits for them to return their
results, updates the archive, and then starts the next iteration. The
master processor’s algorithm is sketched in Algorithm 1.

Algorithm 1 Cluster-based subswarm MOPSO (Master)
Initiate subswarms
Wait for results of all subswarms
repeat

Update archive
Clustering to determine new guides
Send guides to subswarms
Wait for results of all subswarms

until Termination condition met
Return archive

3.2.2 Hypervolume-based subswarm MOPSO
In the hypervolume-based subswarm MOPSO (HMOPSO), guides

are selected one by one according to their marginal hypervolume.
The hypervolume is the area dominated by all solutions stored in
the archive [28]. The marginal hypervolume of a particle is the area
dominated by the particle that is not dominated by any other parti-
cle. As guide, the particle from the archive is selected which has not
been selected before and which has the largest marginal hypervol-
ume. Only if all archive solutions have been used as guides before,
they are allowed to be re-used. Figure 2 illustrates this. Point A has
a smaller contribution to the whole hyper-volume value than Point
B. Therefore, Point B would be selected first.

Note that this guide selection process is asynchronous, the mas-
ter’s algorithm is outlined in Algorithm 2. Whenever a proces-
sor returns its results, they can be immediately integrated into the
archive, a new guide can be selected and the processor can be as-
signed a subswarm based on a new guide. This makes the approach
particularly suitable for heterogeneous computer clusters such as
grids, where very fast processors are used along with rather slow
ones. It is not necessary to wait for the slowest processor to return
its results before spawning the next set of subswarms as is the case
with CMOPSO.

For both variants, the region used to initialize a subswarm around

871

Algorithm 2 Hypervolume-based subswarm MOPSO (Master)
Initiate subswarms
repeat

if A subswarm returns results then
Update archive
Determine next guide according to hypervolume
Spawn new subswarm

end if
until Termination condition met
Return archive

A

x2

x1

x2

x1

(a) (b)

Figure 3: (a) A fixed sized area around each guide is selected
to be the search space of the corresponding MOPSO for that
guide. (b) The area in search space between surrounding neigh-
bors in the objective space is selected to be the search space for
the MOPSO. The neighbors are shown with arrows. For point
A, both neighbors are not surrounding it in the search space,
therefore the maximum and minimum coordinates of A and its
neighbors are selected to define the search space.

the guide can be chosen in different ways. In preliminary experi-
ments, we tested the following three approaches:

• A subswarm can use the whole search space of the problem.
This is not efficient, if the search space is large, as it takes
a while until the subswarm converges to the interesting area
around the current non-dominated front.

• A fixed, but smaller search area can be defined around the
input guide. We use ±10% of the whole search space range
in each dimension (capped by the search space boundaries,
of course).

• The area between the 2m neighbors (in the m-objective space)
of the guide which the guide is in between, is selected as
the search space of the subswarm. The neighbors are non-
dominated solutions selected from the archive. The selection
of neighbors is based on the distances in the objective space.

Figure 3 shows the last two scenarios in an example with 2 param-
eters. • denotes the non-dominated solutions stored in Archive.dat.
In (a), a selected area around each guide is set to be the search space
for the corresponding MOPSO. Depending on the defined size, the
main search space can be easily covered by all of them. In (b) the
area between the two neighbors is selected to be the search space.
Since the neighbors of the guide are selected in the objective space,
it can happen that the area defined by their positions in the search
space does not contain the guide, e.g., point A. Therefore, the max-
imums and minimum values of their corresponding decision vec-
tors are set to be the high and low ranges for the defined search
space. In our preliminary experiments, the second range definition
performed best and will be used for the remainder of this study.

8 − 20321 7654

321

321 7654

8 − 20

321 7654

321 7654

321

321

8 − 20

T
1

t
1

t
2

T
2

T
3

t
3

Figure 4: 20 heterogeneous processors are illustrated. t1, t2
and t3 are equal.

4. EXPERIMENTS
In this section, we test CMOPSO and HMOPSO on two sce-

narios, one consisting of homogeneous processors, one consisting
of heterogeneous processors. Furthermore, we compare its perfor-
mance with several straightforward alternatives.

4.1 Parameter Settings
In both approaches, for a subswarm, a MOPSO method as pro-

posed in [21] is used with 20 particles and an internal archive size
of 20 and is run for 20 generations. We select standard values for
turbulence factor and inertia weights as 0.1 and 0.4.

The selected test functions from literature [14] are 2-objective
tests as in Table 1.

Table 1: Test functions.
Test Function
FF f1(�x) = 1 − exp(−P

i (xi − 1√
n
)2)

f2(�x) = 1 − exp(−P
i (xi + 1√

n
)2)

xi ∈ [−4, 4] and n = 10

OKABE x
′
1 = cos (π

12
)x1 − sin (π

12
)x2

x
′
2 = sin (π

12
)x1 + cos (π

12
)x2

f1(�x) = x
′
1

f2(�x) =
√

2π −
p

|x′
1| + 2|x′

2 − 3 cos x
′
1 − 3| 13

n = 2
x1 ∈ [6 sin (π

12
), 6 sin (π

12
) + 2 cos (π

12
)]

x2 ∈ [−2 sin (π
12

), 6 cos (π
12

)]

We examine both of the methodologies in homogeneous and
heterogeneous environments. In order to simulate the heteroge-
neous environment, we consider 20 processors as shown in Fig-
ure 4. Three processors (1-3) are fast and can finish their optimiza-
tion tasks (i.e. running a subswarm for 20 iterations) in time T1,
four processors (4-7) are slower and require time T2 = 2T1 for this
task. The rest of the processors (8-20) are even slower, requiring
T3 = 3T1. In Figure 4, a total time of 6T1 is depicted. After this
time, all processors are synchronized again, and we call this a “cy-
cle”. We run our tests for 6 such cycles (i.e. the slowest processors
can process 12 subswarms in this time, the fastest processors can
run 36 subswarms). The homogeneous environment uses 20 pro-
cessors with the same speed, which corresponds to the speed of the
slowest processor from the heterogeneous environment. Note that

872

for CMOPSO, as it always waits for the slowest processor before
spawning the next set of subswarms, there is no difference between
the heterogeneous and the homogeneous environment. HMOPSO,
on the other hand, can run more subswarms on the faster processors
and thus can make better use of the available processing power in a
heterogeneous environment.

For a more in-depth evaluation, we additionally compare the re-
sults of our new algorithms to a number of straightforward alterna-
tives:

Case1 Instead of running a parallel MOPSO, a simple alternative
would just be to run a single MOPSO on the fastest proces-
sor available for the same time. While this scenario uses less
computational power overall, it will tell us how much we can
benefit from parallelization. Consequently, we use a single
population with population size of 20 and run the optimiza-
tion for 6 × 6 × 20 = 720 generations (the fast processor
computes 6 times 20 generations in each of the 6 cycles).

Case2 We could also let a single processor run for as many gen-
erations as all processors in our heterogeneous example to-
gether. In the above scenario we span 56 subpopulations
per cycle. This leads to a population of 20 particles for
56 × 6 × 20 = 6720 generations. This uses the same com-
putational power as our heterogeneous HMOPSO, but takes
much more time because it is not run in parallel.

Case3 In our parallel MOPSO, the 20 subpopulations are processed
in parallel, i.e. the total population size at any time is ac-
tually 400. Thus, in Case 3 we run a single population for
56×6×20×20

400
= 336 generations, which again corresponds to

the same overall computational power as used for our hetero-
geneous HMOPSO.

Case4 Finally, we could run 20 independent MOPSOs on the 20
processors, merging the results of all the runs in the end, but
otherwise without interaction. This means that 3 processors
are run for 6 × 6 × 20 = 720, 4 for 3 × 6 × 20 = 360 and
13 for 2 × 6 × 20 = 240 generations, all with a population
size of 20 as in the heterogeneous HMOPSO.

The solutions are evaluated by measuring hypervolume [28] and
C-metric values [28]. Hyper-volume is a measurement which takes
into account the diversity as well as the convergence of solutions.
High values of hypervolume indicate high diversity and conver-
gence of solutions. For comparing two sets A and B in terms of
their convergence, the C-metric of two sets A and B, C(A, B), is
defined as the percentage of solutions in B dominated by solutions
in A. If all of the solutions in B are dominated by A, C(A,B) and
C(B,A) are 1.0 and 0.0 respectively. All results reported below are
averaged over 11 independent runs.

4.2 Evaluations
The results of CMOPSO as well as the heterogeneous and homo-

geneous HMOPSO are compared in Table 2 for the FF test function,
and Table 3 for the OKABE test function, based on hyper-volume.
These results are also visualized in Figure 5. In both test functions,
the heterogeneous HMOPSO performs best, followed by the homo-
geneous HMOPSO and CMOPSO performing worst (as explained
above, for CMOPSO, heterogeneous and homogeneous are identi-
cal). The superiority of heterogeneous HMOPSO over the homoge-
neous case shows clearly the benefit of allowing asynchronous op-
eration in a heterogeneous computing environment. But also when
comparing CMOPSO and HMOPSO on the homogeneous environ-
ment, HMOPSO performs better. Because both use exactly the

Table 2: Average values and std. error of Hyper-volume values
computed for Heterogeneous HMOPSO (Hetero.HMOPSO),
CMOPSO and Homogeneous HMOPSO (Homo.HMOPSO)
methods after every cycle for FF test function.

Hetero. Homo.
cycle HMOPSO stderr CMOPSO stderr HMOPSO stderr

1 20429 96.57 18203 117.18 13473 256.92
2 20903 46.23 19196 110.82 19230 96.38
3 21004 46.98 19552 96.49 20230 81.02
4 21073 45.18 19733 83.86 20617 64.45
5 21118 42.46 19934 77.17 20769 54.52
6 21167 38.55 20075 64.51 20853 58.13

Table 3: Average values and std. error of Hyper-volume values
computed for Heterogeneous HMOPSO (Hetero.HMOPSO),
CMOPSO and Homogeneous HMOPSO (Homo.HMOPSO)
methods after every cycle for OKABE test function.

Hetero. Homo.
cycle HMOPSO stderr CMOPSO stderr HMOPSO stderr

1 28712 80.42 26405 79.5 27771 106.28
2 29006 72.29 27387 118.37 28272 119.28
3 29156 44.88 27794 112.95 28493 141.25
4 29220 47.28 28069 77.70 28611 130.94
5 29266 50.30 28252 50.30 28741 152.91
6 29315 52.40 28371 55.72 28789 157.84

same processing power, this difference has to be due to the strategy
of selecting the guide. We conclude that selecting guides according
to hypervolume is better than trying to obtain an even distribution
along the front by using clustering.

As an alternative performance measure, Tables 4 and 5 show the
C-metric values for the same scenarios. We observe that for the FF
test function, the conclusions are very similar to the hypervolume
metric: heterogeneous HMOPSO works best, followed by homo-
geneous HMOPSO and then CMOPSO. For the OKABE test func-
tion, the results are not so clear. Comparing the obtained fronts, we
could see that HMOPSO is generating a larger spread of solutions,
while CMOPSO finds slightly better solutions in the middle area of
the Pareto front.

Figure 6 compares the average hypervolume (with error bars)
obtained at the end of the run by the heterogeneous HMOPSO, the
homogeneous HMOPSO, CMOPSO, and the four additional algo-
rithms defined in Section 4.1. As would be expected, the single
processor running the same time as the parallel algorithms clearly
performs worst, demonstrating the advantage of using a parallel
computing platform. The other three test cases perform compara-
bly to CMOPSO, and all these perform worse than HMOPSO. The
comparison with Case 4 (the independent MOPSOs run in parallel)
shows that the indirect communication through the master node and
the explicit division of subswarm to different regions of the search
space by the selected guides is indeed advantageous. Somewhat
surprising, the heterogeneous HMOPSO even performs better than
Cases 2 and 3, which use the same processing power for a single
swarm on a single processor. This indicates that the explicit sepa-
ration in HMOPSO may be advantageous even when implemented
on a single processor, due to its diversity maintenance (similar to
the findings that the island model EA is often found superior to
a single-population EA). Also, it is interesting that Case 2 (small
population run for many iterations) and Case 3 (large population
run for fewer generations) are almost equivalent, demonstrating the
robustness of the used MOPSO. Finally, note that CMOPSO, al-

873

0 1 2 3 4 5 6 7
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2
x 10

4

Cycles

H
yp

er
vo

lu
m

e

FF test function

HMOPSO
het

HMOPSO
homo

CMOPSO

0 1 2 3 4 5 6 7
2.6

2.65

2.7

2.75

2.8

2.85

2.9

2.95
x 10

4

Cycles

H
yp

er
vo

lu
m

e

OKABE test function

HMOPSO
het

HMOPSO
homo

CMOPSO

Figure 5: Hypervolume values computed for homogeneous and
heterogeneous HMOPSO and CMOPSO methods over 6 cycles.

though similar in performance to Case 2-3, uses less computational
power (the fast processor have to wait for the slow ones regularly).

5. CONCLUSION AND FUTURE WORK
In this paper, we proposed two new parallel methodologies of

Multi-Objective Particle Swarm Optimization (MOPSO). One of
the methods is particularly designed to also work in parallel envi-
ronments with heterogeneous computing resources as is a typical
setting for modern grid-computing environments. To our knowl-
edge, it thus represents the first MOPSO specifically designed to
work efficiently in such environments.

The basic idea behind these methods is to divide the population
into subswarms which can be processed in parallel. Cluster-based
MOPSO (CMOPSO) is designed to work on a fixed number of pro-
cessors where hypervolume-based MOPSO (HMOPSO) is flexible
to work on a heterogeneous set of processors. As the results show,
HMOPSO outperformed CMOPSO also in homogeneous environ-
ments, showing that the way to generate subswarms according to
marginal hypervolume performs better than trying to distribute sub-
swarms evenly along the current non-dominated front by cluster-
ing. Moreover, HMOPSO clearly outperformed a set of straight-
forward alternative approaches like independent MOPSO runs or
single population MOPSOs with an equivalent computational ef-
fort. In particular the latter finding is interesting, as it suggests that
HMOPSO may also be helpful to improve MOPSO on a single pro-
cessor.

Table 4: Average values and std. error of c-metric values
computed for Heterogeneous HMOPSO (Hetero.HMOPSO),
CMOPSO and Homogeneous HMOPSO (Homo.HMOPSO)
methods after every cycle for FF test function.

C(Hetero. , Homo.) C(Homo., Hetero.)
cycle HMOPSO stderr HMOPSO stderrr

1 1 0 0 0
2 0.926 0.012 0.014 0.004
3 0.831 0.016 0.045 0.005
4 0.751 0.019 0.078 0.006
5 0.735 0.016 0.099 0.005
6 0.720 0.017 0.107 0.006

C(Hetero.HMOPSO, C(CMOPSO,
cycle CMOPSO) stderr Hetero.HMOPSO) stderrr

1 0.931 0.013 0.014 0.006
2 0.893 0.011 0.026 0.006
3 0.886 0.012 0.033 0.005
4 0.898 0.007 0.030 0.002
5 0.883 0.009 0.029 0.003
6 0.892 0.008 0.031 0.003

Table 5: Average values and std. error of c-metric values
computed for Heterogeneous HMOPSO (Hetero.HMOPSO),
CMOPSO and Homogeneous HMOPSO (Homo.HMOPSO)
methods after every cycle for OKABE test function.

C(Hetero. , Homo.) C(Homo., Hetero.)
cycle HMOPSO stderr HMOPSO stderrr

1 0.584 0.055 0.151 0.021
2 0.590 0.060 0.163 0.028
3 0.637 0.030 0.155 0.021
4 0.557 0.038 0.184 0.041
5 0.507 0.032 0.148 0.033
6 0.567 0.023 0.138 0.032

C(Hetero.HMOPSO, C(CMOPSO,
cycle CMOPSO) stderr Hetero.HMOPSO) stderrr

1 0.477 0.037 0.278 0.018
2 0.371 0.033 0.330 0.032
3 0.327 0.039 0.319 0.041
4 0.259 0.033 0.321 0.040
5 0.235 0.031 0.332 0.035
6 0.198 0.033 0.339 0.032

In future, we will test the approaches on a larger set of test prob-
lems and parallel environments. We will also test a number of
possible improvements to the current approach, e.g. by allowing
solutions with high marginal hypervolume to be re-selected after
some time, even if some other non-dominated solutions with low
marginal hypervolume have not yet been selected. Finally, we will
test the above approached on a real grid system called JOSCHKA
(Job Scheduling Karlsruhe) [5] with a real world application.

6. REFERENCES
[1] D. Abramson, A. Lewis, and T. Peachy. Nimrod/o: A tool for

automatic design optimization. In The 4th International
Conference on Algorithms and Architectures for Parallel
Processing (ICA3PP 2000), 2000.

[2] E. Alba, F. Ameida, M. Blesa, C. Cotta, M. Diaz, I. Dorta,
J. Gabarro, C. Leon, G. Luque, J. Petit, C. Rodriguez,
A. Rojas, and F. Xhafa. Efficient parallel LAN/WAN
algorithms for optimization. the MALLBA project. Parallel
Computing, 32:415–440, 2006.

[3] E. Alba and M. Tomassini. Parallelism and evolutionary
algorithms. IEEE Transactions on Evolutionary
Computation, 6(5):443–461, 2002.

874

case 1

case 2

case3

case4

CMOPSO

HMOPSO(homo)

HMOPSO(het)

1.85 1.9 1.95 2 2.05 2.1

x 10
4Hypervolume

case 1

case 2

case 3

case 4

CMOPSO

HMOPSO(homo)

HMOPSO(het)

2.65 2.7 2.75 2.8 2.85 2.9 2.95

x 10
4Hypervolume

Figure 6: Hypervolume values for the FF (top) and OKABE
(bottom) test functions. ’het’ and ’homo’ indicate the heteroge-
neous and homogeneous scenarios.

[4] J. E. Alvarez-Benitez, R. M. Everson, and J. E. Fieldsend. A
MOPSO algorithm based exclusively on pareto dominance
concepts. In C. Coello-Coello et al., editor, Evolutionary
Multi-Criterion Optimization, volume 3410, pages 459–73.
Springer, 2005.

[5] M. Bonn, F. Toussaint, and H. Schmeck. Joschka:
Job-scheduling in heterogenen systemen. In Erik Maehle,
editor, PARS Mitteilungen 2005, pages 99–106. 20. PARS
Workshop, 2005.

[6] J. Branke, A. Kamper, and H. Schmeck. Distribution of
evolutionary algorithms in heterogeneous networks. In
Genetic and Evolutionary Computation Conference, volume
3102 of LNCS, pages 923–934. Springer, 2004.

[7] J. Branke, T. Kaußler, and H. Schmeck. Guidance in
evolutionary multi-objective optimization. Advances in
Engineering Software, 32:499–507, 2001.

[8] J. Branke and S. Mostaghim. About selecting the personal
best in multi-objective particle swarm optimization. In
T. P. Runarsson et al., editor, Parallel Problem Solving from
Nature, LNCS, pages 523–532. Springer, 2006.

[9] J. Branke, H. Schmeck, K. Deb, and M. Reddy. Parallelizing
multi-objective evolutionary algorithms: cone separation. In
Congress on Evolutionary Computation, pages 1952–1957,
Portland, USA, 2004.

[10] S. Cahon, N. Melab, and E.-G. Talbi. ParadisEO: A
framework for the reusable design of parallel and distributed
metaheuristics. Journal of Heuristics, 10(3):357–380, 2004.

[11] E. Cantu-Paz. Efficient and Accurate Parallel Genetic
Algorithms. Kluwer, 2000.

[12] J.-F. Chang, S.-C. Chu, F. F. Roddick, and J.-S. Pan. A
parallel particle swarm optimization algorithm with
communication strategies. Journal of Information Science
and Engineering, 21(4):809–818, 2005.

[13] C. A. Coello Coello and M. S. Lechuga. Mopso: A proposal
for multiple objective particle swarm optimization. In
Congress on Evolutionary Computation, pages 1051–1056,
2002.

[14] C. A. Coello Coello, D. A. Van Veldhuizen, and G. B.
Lamont. Evolutionary Algorithms for Solving
Multi-Objective Problems. Kluwer Academic, 2002.

[15] K. Deb, P. Zope, and A. Jain. Distributed computing of
pareto-optimal solutions with evolutionary algorithms. In
Proceedings International Conference on Evolutionary
Multi-Criterion Optimization (EMO03), pages 534–549,
2003.

[16] A. Hey, G. Fox, and F. Berman. Grid Computing: Making
The Global Infrastructure a Reality. Wiley, 2003.

[17] S. Janson and D. Merkle. A new multi-objective particle
swarm optimization algorithm using clustering applied to
automated docking. In Hybrid Metaheuristics, pages
128–141, Springer-Verlag, 2005.

[18] J. Kennedy and R.C. Eberhart. Particle swarm optimization.
In IEEE International Conference on Neural Networks,
pages 1942–1948, 1995.

[19] J. Knowles and D. Corne. Approximating the nondominated
front using the Pareto archived evolution strategy.
Evolutionary Computation, 8(2):149–172, 2000.

[20] F. Luna, A. J. Nebro, and E. Alba. Observations in using
grid-enabled technologies for solving multi-objective
optimization problems. Parallel Computing, 32:377–393,
2006.

[21] S. Mostaghim and J. Teich. Strategies for finding good local
guides in multi-objective particle swarm optimization. In
IEEE Swarm Intelligence Symposium, pages 26–33,
Indianapolis, USA, 2003.

[22] S. Mostaghim and J. Teich. Covering pareto-optimal fronts
by subswarms in multi-objective particle swarm
optimization. In Congress on Evolutionary Computation,
pages 1404–1411, Portland, USA, 2004.

[23] K. E. Parsopoulos, D. K. Tasoulis, and M. N. Vrahatis.
Multiobjective optimization using parallel vector evaluated
particle swarm optimization. In M. H. Hamza, editor,
IASTED International Conference on Artificial Intelligence
and Applications, pages 823–828, 2004.

[24] K.E. Parsopoulos and M.N. Vrahatis. Recent approaches to
global optimization problems through particle swarm
optimization. Natural Computing, 1(2-3):235–306, 2002.

[25] M. Reyes-Sierra and C. Coello Coello. Multi-objective
particle swarm optimizers: A survey of the state-of-the-art.
International Journal of Computational Intelligence
Research, 2(3):287–308, 2006.

[26] H. Schmeck, U. Kohlmorgen, and J. Branke. Parallel
implementations of evolutionary algorithms. In A. Zomaya,
F. Ercal, and S. Olariu, editors, Solutions to Parallel and
Distributed Computing Problems, pages 47–66. Wiley, 2001.

[27] F. Streichert, H. Ulmer, and A. Zell. Parallelization of
multi-objective evolutionary algorithms using clustering
algorithms. In Proceedings of Third International
Conference on Evolutionary Multi-Criterion Optimization
(EMO05), pages 92–107, 2005.

[28] E. Zitzler. Evolutionary Algorithms for Multiobjective
Optimization: Methods and Applications. Shaker, 1999.

875

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

