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ABSTRACT
Radio network design (RND) is a fundamental problem in
cellular networks for telecommunications. In these networks,
the terrain must be covered by a set of base stations (or an-
tennae), each of which defines a covered area called cell. The
problem may be reduced to figure out the optimal placement
of antennae out of a list of candidate sites trying to satisfy
two objectives: to maximize the area covered by the radio
signal and to reduce the number of used antennae. Conse-
quently, RND is a bi-objective optimization problem. Previ-
ous works have solved the problem by using single-objective
techniques which combine the values of both objectives. The
used techniques have allowed to find optimal solutions ac-
cording to the defined objective, thus yielding a unique so-
lution instead of the set of Pareto optimal solutions. In this
paper, we solve the RND problem using a multi-objective
version of the algorithm CHC, which is the metaheuristic
having reported the best results when solving the single-
objective formulation of RND. This new algorithm, called
MOCHC, is compared against a binary-coded NSGA-II al-
gorithm and also against the provided results in the liter-
ature. Our experiments indicate that MOCHC outperfoms
NSGA-II and, more importantly, it is more efficient finding
the optimal solutions than single-objectives techniques.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods; G.1.6 [Numerical
Analysis]: Optimization—Global optimization
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1. INTRODUCTION
Deciding base station (or antenna) locations is a basic task

in the design and deployment of cellular networks as those
used in mobile telecommunication systems. The placement
of an antenna determines the area it covers (also called cell),
therefore taking the decision of where to deploy all the an-
tennae of a network influences the covered area, the cover-
age degree (the number of antennae covering a given region),
and the number of required antennae. Consequently, an ap-
propriate decision making affects directly the quality of the
provided service and the system cost. The problem of find-
ing optimal antenna location is known as Radio Network
Design or RND.

The use of cellular networks is continuously increasing in
the telecommunications sector: mobile telephony (with suc-
cessive generations), wireless networks and, more recently,
sensor networks. The number and complexity of the incom-
ing networks are also growing, from a few tens of antennae
in the first generations of mobile telephony networks to hun-
dreds and thousands in most modern systems (e.g., sensor
networks). As a consequence, it is necessary to make use
of accurate and fast techniques to assist the design of these
networks, allowing to cope with complex scenarios which
would be unmanageable otherwise.

Among these techniques, metaheuristics [3] appear as pop-
ular tools able to provide satisfactory results to complex op-
timization problems in a reasonable amount of time. Thus,
genetic algorithms [1, 4], simulated annealing [2], and dif-
ferential evolution [12] have been applied to solve the RND
problem. The best results have been reported using CHC
(Cross generational elitist selection, Heterogeneous recom-
bination, and Cataclysmic mutation) [2], a kind of genetic
algorithm.
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RND may be formulated as a bi-objective optimization
problem, in which two contradictory goals have to be opti-
mized: to maximize the area covered by the radio signal and
to reduce the number of used antennae. However, previous
works have solved the problem using a single-objective for-
mulation by combining the values of both objectives; as a
consequence, a unique solution is provided instead of the set
of Pareto optimal solutions. This way, the decision maker is
not provided with a number of solutions allowing to choose
the most adequate one out of them. In this paper we deal
with the bi-objective formulation of the RND and, instead
of just using well-known multi-objective metaheuristics (e.g.
NSGA-II [6] or SPEA2 [14]), we design a new multi-objective
variant of CHC algorithm called MOCHC. The motivation
driving us is to study whether MOCHC reports the best re-
sults when solving the RND in the multi-objective domain
in the same way as CHC obtains the best results in the
single-objective formulation of the problem. We are also in-
terested in comparing both versions of CHC, to determine
if reformulating the problem from single to bi-objective in-
troduces any benefits. The contributions of our work can be
summarized in the following:

• We propose a new multi-objective metaheuristic called
MOCHC, and we apply it to the RND problem.

• To assess the performance of MOCHC in the multi-
objective domain, we compare it against NSGA-II.

• We compare the results obtained by MOCHC with
those previously published in the literature related to
the single-objective formulation of RND.

The paper is structured as follows. In the next section, we
detail the RND problem and its single-objective formulation.
Section 3 describes the multi-objective formulation of the
problem. The proposed multi-objective CHC algorithm is
briefly described in Section 4. The results of the experiments
are analyzed in Section 5. Finally, some conclusions and
future lines of research are discussed in the last section.

2. THE CLASSIC RND PROBLEM
Let us assume that we intend to provide radio coverage to

an urban scenario. The covered area is a key factor; ideally,
we want to cover all the surface, but the available resources
are limited and have a cost, so we would like to place as
few antennae as possible. The telecommunication company
carries out a preliminary study to get a set of suitable an-
tenna locations: roofs of high buildings and places with good
visibility (with no nearby obstacles) and far from restricted
zones (e.g., hospitals or police stations). In our example,
let us suppose that there are one hundred of available sites,
which are distributed more or less uniformly on the area to
cover. The RND problem considered in this work consists
of selecting a subset of locations among the set of available
locations to place antennae on them. The goal is twofold,
since on the one hand we want to maximize the covered area
and, on the other hand, the number of antennae should be
minimized. Both objectives are clearly in conflict.

To manage the problem information, Calégari et al. [4]
used a terrain discretization according to a square grid model
to represent the area to cover. This model was used in latter
works, and it is the one we use here. The grid used to model
the terrain has a square shape and it contains 287 × 287

squares, which we call target points, each of them represent-
ing an atomic portion of the surface which is either abso-
lutely covered or not. Figure 1 illustrates a simplified model
of terrain discretization using a 10 × 7 grid. The consid-
ered problem is similar to the unicost set covering problem
(USCP), which is known to be NP-hard.

The set of available location sites (ALS) to deploy the
antennae is represented by means of a list of coordinates,
indicating the squares of the grid containing the sites. A
network design consists of a subset of coordinates of the
ALS. Any valid subset is a solution to the RND problem.
The solutions are coded using binary strings having a length
equal to the cardinality of the ALS. Each bit in the string
represents a site of the ALS. A ‘1’ indicates the placement
of an antenna in the corresponding site, while a ‘0’ indicates
an empty site.

The solution space of the problem is the set of possible
values that the solution string can have, and its size, which
depends on the number of available locations, is 2|ALS|. We
define the size of an instance of the problem as the size of
the ALS.

When an antenna is deployed in a site, it offers full cov-
erage to a set of target points centered around the antenna
(cell). In this work we consider the same model used in
previous works: all the antennae have associated the same
cell shape, independently of their location, and the shape is
a square region of 41 × 41 target points. The shape of the
cell was chosen in such a way that full coverage (100% of the
area) could be achieved using 49 antennae arranged in a 7×7
grid (7×41 = 287). See Figure 2 for the graphical represen-
tation of a partial coverage (left) and a full coverage (right)
for the RND problem. This problem admits numerous ex-
tensions, like defining different types of antennae, finding
their 3D orientation, or estimating signal propagation ac-
cording to physical simulation of radio waves, what really
transform the problem in a hard real world optimization
problem [11, 13].

In the design of a cellular network, it is generally prefer-
able to increment the covered area instead of using fewer
antennae. In [4] a function measuring the quality of the so-
lutions (fitness function) was defined (Equation (1)). This
fitness function, which has to be maximized, combines both
factors, coverage and number of antennae, into a unique
value, so that single-objective techniques can be applied:

f(�x) =
Coverage(�x)α

Number of antennae(�x)
(1)

where Coverage is the ratio (in percentage) between the
covered target points and the total number of target points
(287×287 in our problem instance). In this formulation, pa-
rameter α allows to adjust the ratio of importance between
coverage and number of antennae. In Calégari et al. [4] a
value α = 2 is suggested.

3. MULTI-OBJECTIVE FORMULATION
The RND problem previously described follows a single-

objective formulation: there are two parameters to optimize,
and they are combined in a unique fitness value. A multi-
objective approach raises naturally by considering each ob-
jective as a separate goal. This way, we can define two
functions to optimize, which are detailed in Equations (2)
and (3). These two functions are to be minimized.
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Figure 1: True antenna coverage (left). Discretized coverage using a grid model (right)

Figure 2: Graphical representation of a partial covered solution (left) and a full covered solution (right)

f1(�x) = Number of antennae(�x) (2)

f2(�x) = 100 − Coverage(�x) (3)

Switching from a single-objective to a multi-objective per-
spective has a strong influence in the search process. Given
that we do not intend to find a unique optimal solution but
the Pareto optimal set, the search diversification must be in-
creased. This is interesting when employing metaheuristics,
but it can be harmful if it produces an imbalance in the
trade off diversification/intensification. The consequences
can be serious if there exist subsets of solutions which are
non-dominated but they are not very useful to the decision
maker. In the case of the RND problem, solutions hav-
ing few antennae are not interesting because the resulting
coverage is poor, and they are implicitly penalized in the
single-objective formulation (see Equation (1)) using a value
of α > 1, which makes the coverage to be the main objec-
tive instead of the number of antennae. In the proposed
multi-objective formulation, we restrict the search including
constraints indicating the range of desired values by defin-
ing two side constraints: a maximum of 60 antennae must

be used (Equation (4)), and the solutions must achieve at
least a 90% of coverage (Equation (5)). This way, we avoid
wasting time exploring unpromising regions of the search
space.

c1(�x) =

j
f1(�x) − 60 (f1(�x) > 60)
0 (f1(�x) ≤ 60)

(4)

c2(�x) =

j
f2(�x) − 10 (f2(�x) > 10)
0 (f2(�x) ≤ 10)

(5)

These constraints must be taken into account by the meta-
heuristic used to solve the problem. A foreseeable conse-
quence of these constraints is that the feasible region of the
search space is reduced, with a positive effect on the results.

The Pareto front of the RND problem studied in this work
can be obtained analytically. Let us consider the following
proposition:

Proposition 1. The Pareto front of the instances we use
in this work is composed of points

(x, y) =
“
n, 100 ·

“
1 − n

49

””
(6)
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Figure 3: Pareto front of the considered RND in-
stance problem

where n ∈ [0, 49] is the number of antennae (first objective)
and the second component is the percentage of uncovered ter-
rain (second objective).

Proof. For any given number n of antennae, the maxi-
mum coverage that can be achieved ideally by placing those
antennae is n times the coverage of a single antenna. This
happens if all the cells associated to these antennae are com-
pletely included inside the terrain area, and no overlap ex-
ists between any two of those cells. In our instances of the
problem, the coverage of a single antenna consist of 41 × 41
target points, i.e., 1/49 (or 2.04%) of the total terrain area
(287 × 287 points). Complete coverage can be achieved op-
timally using 49 antennae by placing them in the 49 prede-
fined locations (included in the ALS) such that all the cover-
age regions are included inside the terrain, and no overlap is
produced. By definition, if we place antennae in any subset
of locations selected from those 49, all the coverage regions
will still be included in the terrain and no overlap will be
produced. Therefore, the Pareto front contains the solutions
having (n antennae, 100 · n/49 coverage). Or, if we express
it in terms of uncoverage (terrain without coverage) rather
than coverage, we get Equation (6).

The resulting Pareto front is shown in Figure 3. The point
consisting of 49 antennae and 0% of terrain without cover-
age is the optimal solution produced by the single-objective
algorithms, and it achieves a fitness value of 204.082 using
Equation 1. The figure also includes the lines represent-
ing the side constraints (coverage of 90%, a maximum of 60
antennae).

4. MOCHC: A MULTI-OBJECTIVE CHC
ALGORITHM

The algorithm CHC was proposed by Eshelman in 1991 [8].
It is an evolutionary algorithm which has not been widely
used in the literature, although it has reported very good
results [2, 5]. CHC works with a population of solutions,
and follows a typical iterative behavior, producing in every
step new solutions which are incorporated into the popu-
lation replacing existing ones. The pseudocode of CHC is
shown in Algorithm 1.

Algorithm 1 CHC

t← 0
Initialize(Pa, convergence count, k) // Pa: population
while not ending condition(t, Pa) do

Parents← Selection parents(Pa, convergence count)
Offspring ← HUX(Parents)
Evaluate(Offspring)
Pn← Elitist selection(Offspring, Pa) // Pn: new pop.
if not modified(Pa,Pn) then

convergence count← convergence count− 1
if convergence count ≤ −k then

Pn← Restart(Pa)
Initialize(convergence count)

end if
end if
t← t + 1
Pa← Pn

end while

4.1 Classic CHC Algorithm
CHC was designed to work with binary-coded solutions.

The algorithm works with a population of individuals (Pa
in Algorithm 1). In every step, a new set of solutions (Pn) is
produced by selecting pairs of solutions from the population
(the parents) and recombining them. This selection is made
in such a way that individuals which are too similar cannot
mate each other.

CHC can be viewed as a kind of genetic algorithm which
does not apply mutation to produce new solutions, but only
a recombination mechanism called HUX. This procedure
copies first the common information of both parents into
both offspring, then copies half of the diverging information
from each parent to each of the offspring, so that the Ham-
ming distance among offspring and parents is the maximum.
This is done in order to preserve the maximum amount of
diversity in the population, as no new diversity is introduced
during the iteration since there is no mutation operator. The
next population is selected according to an elitist criterion,
based on picking the best individuals among the old popu-
lation and the new set of solutions Pn.

The absence of mutation and the elitist selection crite-
rion make the population to converge. To delay this pro-
cess, CHC applies an incest prevention mechanism: parent
selection is carried out choosing individuals randomly, but
the recombination is only performed if the parents are not
very similar, i.e., if the Hamming distance between them
is greater than a given threshold value (convergence count
in Algorithm 1). As the execution of the algorithm pro-
gresses, the population becomes more homogeneous and the
number of solutions fulfilling the incest condition augments;
as a consequence, the incest threshold has to be progres-
sively decreased. Whenever an iteration has finished and
the population remains unchanged, the convergence count
is decreased in one unit.

When the incest threshold gets to 0 (the minimum dis-
tance to combine two solutions is 0), after k iterations with
no new individuals in the population it is assumed that the
population has converged and the algorithm is stalled. A
mechanism is then used to generate new diversity in the
population: a restart. When restarting, the best solutions
remain unchanged, and the rest are significantly (cataclysmi-
cally) modified using a bit-flip mutation with very high prob-
ability (in [8] a probability of 35% is suggested).
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Table 1: Parameter settings of MOCHC
Population size 100
Crossover HUX
Cataclysmic mutation Bit flip, Pm = 35%
Preserved population 5%
Initial convergence count 25% of the problem instance size
Convergence value k 1
Parent selection Random with incest threshold
New generation selection Elitist selection
Ordering criterion Ranking and crowding distance

Table 2: Parameter settings of NSGA-II
Population size 100
Mutation Bit flip, Pm = 1/L

(L = string length)
Crossover SPX, Pc = 0.95
Parent selection Binary tournament
New generation selection Elitist selection
Ordering criterion Ranking and crowding distance

4.2 Multi-Objective CHC
The multi-objective version of the CHC algorithm that we

propose, called MOCHC, is based on the algorithm previ-
ously described. The most important modification concerns
the elitist selection mechanism; instead of ordering the so-
lutions according to a single scalar value, in MOCHC the
solutions are ordered using a ranking and a crowding dis-
tance estimator similar to those used in NSGA-II [6]. Thus,
the non-dominated solutions in the population are selected
and removed from it, constituting the subset of rank 1. This
process is iteratively repeated on the remaining individuals
to obtain the subsets of rank 2, 3, and so on; the stopping
condition is that the sum of the individuals in the obtained
subsets is equal or greater than the population size. In the
second case, the crowding distance estimator is applied to
the solutions in the last subset to choose among them those
having the biggest distance values.

When the population is stalled the restarting mechanism
is applied by using a high disruptive mutation to all the
solutions except to the best ones. In the single-objective
CHC the solutions having best fitness were selected; in the
multi-objective version this would mean to preserve the non-
dominated solutions. Our approach to the restart process is
to keep a percentage of the population which is selected after
ordering it by ranking and crowding distance. The number
of preserved solutions is a parameter of the algorithm; after
performing a number of preliminary experiments, we choose
a value of 5%. We include in Table 1 the parameter settings
of MOCHC in this work.

To cope with the constraints presented in our formulation
of the RND problem, we apply the same mechanism used
in NSGA-II: in this algorithm, when two solutions are to be
compared, the one having less overall constraint violation is
preferred; otherwise, a Pareto dominance test is applied to
choose the best solution.

5. EXPERIMENTS
The RND instances solved in this work are the same used

previously in [1] and [2]. All of them are RND instances
using antennae providing a square coverage, as it was de-
scribed in Section 2. The smaller instance has 149 available
locations, and additional random transmitter locations are
added to get four new instances with 199, 249, 299, and
349 locations. In all the instances the optimum solution is

the same as for the canonical 149 problem, and the random
transmitters are added to deceive the solvers.

For each experiment, 50 independent runs have been exe-
cuted to ensure statistical confidence. We include the mean
and standard deviation in the tables (Tables 3 and 4), and
the best result has a grey color background. Since we are
dealing with stochastic algorithms, the following statistical
analysis has been performed in all this work [7]. Firstly,
a Kolmogorov-Smirnov test is performed in order to check
whether the values of the results follow a normal (gaussian)
distribution or not. If so, an ANOVA test is done, other-
wise we perform a Kruskal-Wallis test. We always consider
in this work a confidence level of 95% (p-value under 0.05)
in the statistical tests, which means that the differences in
the results cannot have occurred by chance with a probabil-
ity of 95%. Successful tests are marked with “+” symbols
in the last column in the tables; conversely, “−” means that
no statistical confidence was found (p-value > 0.05).

The stopping condition is to find the optimal solution de-
scribed in [1] (100% coverage with 49 antennae) or to per-
form one million function evaluations; this way, we can make
a comparison among the results obtained by MOCHC and
those presented in [1] and [2].

All the instances include the coordinates of the 49 loca-
tions allowing a coverage of 100% with the minimum num-
ber of antennae. As it was previously commented, these
locations provide the optimal solution found in previous
works, and they allow us to decide that the problem has
been solved. The fitness function defined in Equation (1)
applied to these solutions produces a value of 204.082.

To determine how competitive the proposed multi-objective
CHC algorithm is, we have made two types of studies. On
the one hand, we compare MOCHC against NSGA-II [6], a
state-of-the-art multi-objective optimization algorithm. We
have used a binary-coded NSGA-II with the parameter set-
tings shown in Table 2. The mutation and crossover opera-
tors are, respectively, bit flip and SPX (single point crossover).
The mutation probability Pm is 1/L, where L is the chro-
mosome length (the length of the ALS in the case of RND),
and the crossover probability Pc is 0.95. On the other hand,
we compare the results obtained by MOCHC against those
obtained by single-objective metaheuristics in [1]: classic
CHC, simulated annealing (SA), and dssGA8 (an eight is-
land distributed genetic algorithm).

5.1 Metrics
To compare MOCHC and NSGA-II we use the hypervol-

ume metric. This metric calculates the volume (in the ob-
jective space) covered by members of a non-dominated set of
solutions Q (the region enclosed into the discontinuous line
in Fig. 4, Q = {A,B, C}) for problems where all objectives
are to be minimized [15].

Mathematically, for each solution i ∈ Q, a hypercube vi is
constructed with a reference point W and the solution i as
the diagonal corners of the hypercube. The reference point
can simply be found by constructing a vector of worst objec-
tive function values. Thereafter, a union of all hypercubes
is found and its hypervolume (HV ) is calculated:

HV = volume

0
@ |Q|[

i=1

vi

1
A . (7)

880



f1

f2

Pareto-optimal front

W

A

B

C

Figure 4: The hypervolume enclosed by the non-
dominated solutions.

Algorithms with larger values of HV are desirable. Since
this metric is not free from arbitrary scaling of objectives,
we have evaluated the metric by using normalized objective
function values.

The second metric we use is the computational effort (CE),
which will allow us to compare MOCHC (and NSGA-II)
against single-objective metaheuristics. This metric is de-
fined as the number of solutions that have to be evaluated
to solve the problem (to find the optimal solution). Lower
values of CE are desirable: when comparing different tech-
niques, the one having the lowest CE value is the most
efficient one. Although were are dealing with two differ-
ent types of techniques, single and multi-objective, we can
compare them using CE because all of them use the same
stopping condition (to find the optimal configuration defined
in [1]).

5.2 Results
We analyze first the results obtained with the CE metric

by all the algorithms, which are included in Table 3. At a
first glance, it can be observed that the multi-objective al-
gorithms are more efficient than the single-objective ones.
MOCHC achieves a CE reduction compared against the
classic CHC between 40% (149-size instance) and 59% (349-
size instance). If we compare MOCHC against SA, the
improvements are between 75% and 80%. If we take into
account NSGA-II, this algorithm performs worse than the
classic CHC in the 149-size instance (24% worse), but in
the rest of the instances the improvements oscillate between
5% (199-size instance) and 24% (349-size instance). The
comparison against SA is clearly favorable (improvements
between 57% and 69%). In general, it can be observed that
the larger the instance size (and, consequently, the problem
complexity) the better the results obtained by the multi-
objective metaheuristics.

We proceed now to analyze the two multi-objective meta-
heuristics. Considering the CE metric, MOCHC achieves
better results than NSGA-II with statistical confidence: its
CE values are better than the ones of NSGA-II in a range
between 43% and 52%. The HV metric (see Table 4) in-
dicates also that the non-dominated solution sets obtained
by MOCHC produce statistically better Pareto fronts than
NSGA-II.

In Figure 5 we include an execution trace of the two multi-
objective metaheuristics. In both cases, we represent the
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Table 3: Computation effort (CE) metric values (number of evaluations)
Instance size Single-objective techniques Multi-objective techniques

SA [2] CHC [2] dssGA8 [1] MOCHC NSGA-II
149 8, 676e+4 5,12e+4 3, 032e+4 2,84e+4 7, 859e+5 1, 814e+4 6,50e+3 3, 745e+4 8,17e+3 +
199 1, 970e+5 8,54e+4 7, 862e+4 5,95e+3 1, 467e+6 3, 998e+4 1,07e+5 7, 479e+4 1,55e+4 +
249 3, 341e+5 1,13e+5 1, 486e+5 9,67e+4 2, 481e+6 7, 723e+4 2,29e+4 1, 418e+5 5,95e+4 +
299 6, 380e+5 1,80e+5 2, 289e+5 1,85e+5 2, 998e+6 1, 136e+5 3,24e+4 1, 987e+5 4,46e+4 +
349 8, 108e+5 2,75e+5 3, 802e+5 2,03e+5 4, 710e+6 1, 574e+5 4,68e+4 2, 871e+5 8,15e+4 +

Table 4: Hypervolume (HV ) metric values
Instance Size MOCHC NSGA-II

149 4, 672e-1 1,90e−2 4, 605e-1 2,16e−2 +
199 4, 726e-1 1,00e−2 4, 669e-1 2,11e−2 +
249 4, 699e-1 1,54e−2 4, 701e-1 1,17e−2 –
299 4, 730e-1 1,00e−2 4, 726e-1 6,20e−3 +
349 4, 731e-1 8,40e−3 4, 714e-1 9,60e−3 +

populations in the objective space in different phases of the
execution of the algorithms, corresponding to the initial pop-
ulation and the solutions obtained after 2000, 6000, 14000,
and 30000 (only NSGA-II) evaluations.

We can observe that the behavior of the two algorithms
is similar: first, the populations concentrate inside the non-
penalized search region and then, once inside it, they expand
to explore the search space, converging progressively to the
Pareto front. As it can be seen in Figure 5, MOCHC con-
verges faster than NSGA-II, approaching the Pareto front
after computing about 14000 function evaluations, while
NSGA-II requires around 30000. We also observe that, when
the non-penalized region has been reached, MOCHC main-
tains a more diversified population while NSGA-II tends to
concentrate all the population in a front of solutions.

5.3 Discussion
The CHC algorithm was the best technique to solve the

single-objective RND problem in [2], where other four meta-
heuristic algorithms were studied (a simulated annealing,
a steady-state genetic algorithm, a generational genetic al-
gorithm, and a distributed steady-state genetic algorithm).
The results presented in the previous section have shown
that the multi-objective version of CHC is even better, re-
quiring less computational effort than the classic CHC algo-
rithm to find the same optimal solution in all the considered
problem instances.

This better performance of MOCHC can be explained ac-
cording to several facts. First, the inclusion of two side con-
straints in the multi-objective formulation certainly restricts
the search space, which works in favor of the multi-objective
algorithms. Second, we have to consider the concept of
multi-objectivization, introduced by Knowles, Watson, and
Corne in [10]. The idea is that defining a multi-objective
formulation of a single-objective optimization problem can
implicitly reinforce diversification, so the search for the op-
timal solution is less likely of becoming trapped in a local
minimum. Multi-objectivization was studied in [10] in the
context of hill-climbing solvers; our experiences in this pa-
per with CHC indicate that this behavior may possibly be
extended to other metaheuristics. Finally, we have to con-
sider that we implemented MOCHC from scratch, instead
of taking as starting point the CHC implementation used

in [2], so there may be some differences in the behavior of
the two algorithms.

Deeping in the concept of multi-objectivization, we have
to consider that the RND problem is multi-objective in na-
ture, so there is no need of finding artificial or helper objec-
tives [9]. Furthermore, in [10] it was stated that the relation
expressed in Equation (8) should hold:

∀�xopt ∈ �Xopt,∃�x∗ ∈ �X∗/�x∗ = �xopt (8)

where �xopt is an optimal solution to the single-objective
problem, �Xopt is the set of such solutions, and �x∗ and �X∗

have the same meaning considering the multi-objective for-
mulation of the problem. This expression implies that the
global optimum of the single-objective problem is one of the
solutions of the Pareto optimal set in the multi-objective
problem. This condition holds in the case of RND; in fact,
the stopping condition of the multi-objective algorithms is
to reach a solution fulfilling Equation (8).

6. CONCLUSIONS AND FUTURE WORK
In this paper we solve the RND problem using a multi-

objective formulation of the problem. Our main contribu-
tion is MOCHC, a multi-objective version of CHC, a kind
of genetic algorithm. We have evaluated MOCHC against
NSGA-II, a state-of-the-art algorithm for multi-objective
optimization, and the obtained results have been compared
with those reported in the literature using single-objective
metaheuristics.

The experiments carried out reveal that the multi-objective
formulation of the RND is particularly adequate, because
the existing results have been improved. The profit of us-
ing this approach is twofold: first, the optimal solutions are
obtained using a lower number of function evaluations; sec-
ond, instead of a single solution, the Pareto optimal set is
obtained, thus allowing the decision maker to choose the
best coverage/cost tradeoff solution.

MOCHC has proven to be more efficient than NSGA-II,
requiring about a 50% less computation effort to get the
Pareto front. Furthermore, the accuracy of MOCHC is also
better than that of NSGA-II in four out of the five instances
solved (with statistical confidence).
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Some lines of future work include solving more complex
formulations of the RND, considering different types of an-
tennae, as well as comparing MOCHC against other state-
of-the-arts metaheuristics to study whether the feature of
fast convergence shown in this work also holds when solving
other multi-objective optimization problems different from
RND.
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[7] J. Demšar. Statistical comparisons of classifiers over
multiple data sets. Journal of Machine Learning
Research, 7:1 30, 2006.

[8] L. J. Eshelman. The CHC Adaptive Search
Algorithm: How to Have Safe Search When Engaging
in Nontraditional Genetic Recombination. pages
265–283. Morgan Kaufmann, 1991.

[9] Mikkel T. Jensen. Guiding Single-Objective
Optimization Using Multi-objective Methods. In
Günther Raidl et al., editor, Applications of
Evolutionary Computing. Evoworkshops 2003:
EvoBIO, EvoCOP, EvoIASP, EvoMUSART,
EvoROB, and EvoSTIM, pages 199–210, Essex, UK,
April 2003. Springer. Lecture Notes in Computer
Science Vol. 2611.

[10] Joshua D. Knowles, Richard A. Watson, and David W.
Corne. Reducing Local Optima in Single-Objective
Problems by Multi-objectivization. In Eckart Zitzler,
Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello
Coello, and David Corne, editors, First International
Conference on Evolutionary Multi-Criterion
Optimization, pages 268–282. Springer-Verlag. Lecture
Notes in Computer Science No. 1993, 2001.

[11] Herv Meunier, El-Ghazali Talbi, and Philippe
Reininger. A multiobjective genetic algorithm for
radio network optimization. In Proceedings of the 2000
Congress on Evolutionary Computation CEC00, pages
317–324, La Jolla Marriott Hotel La Jolla, California,
USA, 6-9 2000. IEEE Press.

[12] Silvio Priem Mendes, Juan A. Gómez Pulido,
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Juan M. Sánchez Pérez. Proceedings of the Second
IEEE International Conference on e Science, and Grid
Computing. A differential evolution based algorithm
to optimize the radio network design problem. In
Proceedings of the Second IEEE International
Conference on e-Science and Grid Computing., 2006.

[13] Larry Raisanen and Roger Whitaker. Comparison and
evaluation of multiple objective genetic algorithms for
the antenna placement problem. Mobile Networks and
Applications, 10:79–88, 2005.

[14] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2:
Improving the strength pareto evolutionary algorithm.
Technical Report 103, Computer Engineering and
Networks Laboratory (TIK), Swiss Federal Institute of
Technology (ETH), Zurich, Switzerland, 2001.

[15] E. Zitzler and L. Thiele. Multiobjective Evolutionary
Algorithms: A Comparative Case Study and the
Strength Pareto Approach. IEEE Transactions on
Evolutionary Computation, 3(4):257–271, 1999.

883



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


