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ABSTRACT
Recently, a convergence proof of stochastic search algorithms
toward finite size Pareto set approximations of continuous
multi-objective optimization problems has been given. The
focus was on obtaining a finite approximation that captures
the entire solution set in some suitable sense, which was
defined by the concept of ε-dominance. Though bounds
on the quality of the limit approximation – which are en-
tirely determined by the archiving strategy and the value of
ε – have been obtained, the strategies do not guarantee to
obtain a gap-free Pareto front approximation. Since such
approximations are desirable in certain applications, and
the related archiving strategies can be advantageous when
memetic strategies are included into the search process, we
are aiming in this work for such methods. We present two
novel strategies that accomplish this task in the probabilistic
sense and under mild assumptions on the stochastic search
algorithm. In addition to the convergence proofs we give
some numerical results to visualize the behavior of the dif-
ferent archiving strategies.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization; F.2.1 [Ana-
lysis of Algorithms and Problem Complexity]: Nu-
merical Algorithms and Problems

General Terms
Algorithms, Performance
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1. INTRODUCTION
One interesting application of multi-objective optimiza-

tion and its related tools is the online-optimization of mecha-
tronical systems. One approach to this problem is as follows:
first, all relevant (conflicting) objectives of the underlying
system are collected and used to formulate a multi-objective
optimization problem. This problem is then solved numeri-
cally by approximating the efficient set, the so-called Pareto
set (denote the approximation by P) offline. This set serves
further on as the basis for the online control by providing a
repository of reference operating points: the ‘optimal’ point
(or optimal compromise) p(λ) ∈ P is determined online –
i.e., while running the system – according to the current sit-
uation or demand λ of the system and is used as the actual
operating point. Since λ = λ(t) varies with the time, this
‘optimal’ point has to be updated over and over again, ac-
cording to the sensitivity of the system. See [8, 14] for an
operating point assignment strategy of a linear drive, and
[4] for an online-adjustment of an active suspension system.
Crucial for the stability of the system is that the switch from
one point or system setting p(λ1) to the next one p(λ2) can
not be done arbitrarily, but has to be carried out as smoothly
as possible. That is, large and abrupt qualitative changes –
(amongst others) in terms of the changes in the influential
objective values – have to be avoided. Thus, it is required
in these applications – and certainly in others as well – to
obtain a gap-free (and preferably uniformly spread) Pareto
front approximation.1

Here we extend the work of [13] and present new archiving
strategies for the storage of the ‘essential’ solutions found by

1In case the Pareto front falls into different connected com-
ponents, further techniques (e.g., interpolation strategies
among ‘neighboring’ system settings) have in addition to
be considered, but such cases are not part of this work.
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a stochastic search algorithm. The strategy used in [13] is
entirely based on the concept of ε-dominance, which does
not consider the distances between solutions in the archive.
This can lead to gaps in the approximation set, in partic-
ular when some portion of the front is flat or contains a
dent (see Figure 1). Though we agree that these phenom-
ena do not occur too often in practice, it is desirable, from a
theoretical viewpoint, to have a search algorithm – includ-
ing a suitable archiving strategy – which can exclude these
unwanted gaps in the approximation. Another important
aspect is that the sole usage of the concept of ε-dominance
in the archiving strategy can cause inefficiencies for the re-
sulting search algorithm, in particular when hybridized with
a local search procedure. For instance, when using multi-
objective continuation methods (see [11] for a combination
of this technique with evolutionary strategies), where the
underlying idea is to move along the efficient set, an un-
suited archiving strategy as the one proposed in [13] could
lead to difficulties, although these methods are (in principle)
very effective locally. For this, consider a Pareto front such
as the one displayed in Figure 1 (left) and assume that the
archive is given by A = {a1}. If the continuation method
is started with {a1} and merely the concept of ε-dominance
is used for the archiving strategy this could lead to the fact
that no points p on the front with f1(p) > f1(a1) are kept
by the archiver. The reason is that there is a relatively
large portion of the front near F (a1), where all points are
ε-dominated by a1 – a ‘barrier’ which is hard or impossi-
ble to overcome by this (or any other) local search strategy.
Figure 1 (right) shows a situation which is more extreme.

In this work we propose two different archiving strategies
and prove convergence with probability one to gap-free (and
thus ‘tight’) Pareto front approximations. The limit set of
the first strategy is a tight ε-approximate Pareto set which
provides a guaranteed uniformity level, while the limit set
of the second strategy forms a tight ε-Pareto set, which,
however, lacks the uniformity.

Despite the existence of suitable approximation concepts,
investigations on the convergence of particular algorithms
towards such approximation sets, that is, their ability to ob-
tain a suitable Pareto set approximation in the limit, have
remained rare. Several studies, such as [3, 9], consider only
the convergence to the entire Pareto set, or to a certain sub-
set without considering the approximation quality. Most no-
tably, the archiving/selection strategies of the state-of-the-
art multiobjective evolutionary algorithms, such as NSGA-
II [2], SPEA2 [15], or the adaptive grid archiving used in
PAES and PESA-II [6], which focus on obtaining well-spread
Pareto front approximations, do not guarantee convergence.

In [7] the issue of convergence towards a finite-size Pareto
set approximation was finally addressed for a general class of
iterative search algorithms. Two archiving algorithms were
proposed that provably maintain a finite-size approximation
of all points ever generated during the search process. This
led to the claim that these archiving strategies will ensure
convergence to a Pareto set approximation of given quality
for any iterative search algorithm that fulfills certain mild as-
sumptions about the process to generate new search points.
While this claim holds trivially in the case of discrete (or
discretized) search spaces, its extension to the continuous
case is not straightforward, and was only recently given in
[13].

The remainder of this article is organized as follows: Sec-
tion 2 states the required background for the algorithms,
which are presented in Section 3. In Section 4 we present
some numerical results. Then, we demonstrate the poten-
tial for a possible hybridization with continuation methods
in Section 5. Finally, we present our conclusions in Section 6.

Figure 1: Examples of two ε-approximate Pareto
sets. Dents or ‘flat’ regions in the Pareto front can
lead to (possibly unwanted) gaps in the approxima-
tion. In the left figure there is a gap in the approx-
imation between F (a1) and F (a2) both in the f1- as
well as in the f2-direction.

2. BACKGROUND
In the following we consider continuous unconstrained multi-

objective optimization problems

min
x∈�n

{F (x)}, (MOP)

where the function F is defined as the vector of the objec-
tive functions

F : �n → �
k, F (x) = (f1(x), . . . , fk(x)),

and where each fi : �n → � is continuous.

Definition 2.1 (a) Let v, w ∈ �k. Then the vector v is
less than w (v <p w), if vi < wi for all i ∈ {1, . . . , k}.
The relation ≤p is defined analogously.

(b) A vector x ∈ �n dominates a vector y ∈ �n (in short:
x ≺ y) with respect to (MOP) if F (x) ≤p F (y) and
F (x) �= F (y) (i.e., there exists a j ∈ {1, . . . , k} such
that fj(x) < fj(y)).

(c) A point x ∈ �n is called Pareto optimal or a Pareto
point if there is no y ∈ �n which dominates x.

In the following we will define a weaker concept of domi-
nance, so-called (absolute) ε-dominance, as well as two ap-
proximation concepts which will be used in the sequel.

Definition 2.2 Let ε = (ε1, . . . , εk) ∈ �k
+ and x, y ∈ �n.

x is said to ε-dominate y (in short: x ≺ε y) with respect to
(MOP) if F (x) − ε ≤p F (y) and F (x) − ε �= F (y).

Denote by d(·, ·) any distance and by || · || any norm. Fur-
ther, let Bδ(x0) := {x ∈ �n : ‖x − x0‖ < δ} be the open
ball with center x0 ∈ �n and radius δ ∈ �+.
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Definition 2.3 [7]

(a) Let ε ∈ �k
+. A set Aε ⊂ �n is called an ε-approximate

Pareto set of (MOP) if every point x ∈ �n is ε-dominated
by at least one a ∈ Aε, i.e.,

∀x ∈ �n : ∃a ∈ Aε : a ≺ε x.

(b) A set A∗
ε ⊂ �

n is called an ε-Pareto set if A∗
ε is an

ε-approximate Pareto set and if every point a ∈ A∗
ε is

a Pareto point of (MOP).

Definition 2.4 [10]

(a) Let ε > 0 and let D ⊂ Z be a discrete set. D is called
a dε-representation of Z if for any z ∈ Z, there exists
y ∈ D such that d(z, y) ≤ ε.

(b) Let Z ⊂ �n be any set and let D be a dε-representation
of Z. Then D is called a δ-uniform dε-representation
if

min
x,y∈D,x �=y

d(x, y) ≥ δ.

δ is called the uniformity level.

Next, we define some distances between points as well as
between different sets.

Definition 2.5 Let u, v ∈ �n and A,B ⊂ �n. The maxi-
mum norm distance d∞, the semi-distance dist(·, ·) and the
Hausdorff distance dH(·, ·) are defined as follows:

(a) d∞(u, v) := max
i=1,...,n

|ui − vi|

(b) dist(u, A) := inf
v∈A

d∞(u, v)

(c) dist(B, A) := sup
u∈B

dist(u, A)

(d) dH(A,B) := max {dist(A, B), dist(B, A)}

Motivated by the need for gap-free Pareto front approxi-
mations and inspired by Definitions 2.3 and 2.4 we introduce
the following objects:

Definition 2.6 Let ε ∈ �k
+ and ΔM , Δm > 0 and denote

by P the Pareto set of (MOP).

(a) A set Aε ⊂ �
n is called a ΔM -tight ε-approximate

Pareto set of (MOP) if Aε is an ε-approximate Pareto
set of (MOP) and dist(F (P), F (Aε)) ≤ ΔM .

(b) A set A∗
ε ⊂ �n is called a ΔM -tight ε-Pareto set if A∗

ε

is an ε-Pareto set of (MOP) and dH(F (P), F (A∗
ε)) ≤

ΔM .

(c) A set Aε ⊂ �
n with |Aε| ≥ 2 is called a (ΔM , Δm)-

tight ε-approximate Pareto set if A∗
ε is an ΔM -tight

ε-approximate Pareto set of (MOP) and

dist(F (a), F (A\{a})) ≥ Δm, ∀a ∈ A.

A (ΔM , Δm)-tight ε-Pareto set is defined analogously.

Note that Aε ⊂ PQ is not postulated for ε-approximate
Pareto sets.

Algorithm 1 gives a framework of a generic stochastic
multi-objective optimization algorithm, which will be con-
sidered in this work. Theorems 2.7 and 2.8 state conver-
gence results which are closely related to the present work,
but which cannot guarantee that the limit archives do not
reveal gaps in their Pareto front approximation.

Algorithm 1 Generic Stochastic Search Algorithm

1: P0 ⊂ Q drawn at random
2: A0 = ArchiveUpdate(P0, ∅)
3: for j = 0, 1, 2, . . . do
4: Pj+1 = Generate(Pj)
5: Aj+1 = ArchiveUpdate(Pj+1, Aj)
6: end for

Algorithm 2 A := ArchiveUpdateEps1ε (P, A0)

1: A := A0

2: for all p ∈ P do
3: if ∃a ∈ A : a ≺ε/3 p then
4: CONTINUE � do not execute lines 6 – 11
5: end if
6: for all a ∈ A do
7: if p ≺ a then
8: A := A\{a}
9: end if

10: end for
11: A := A ∪ {p}
12: end for

Theorem 2.7 [13] Let an MOP F : �n → �
k be given,

where F is continuous, let Q ⊂ �
n be a compact set and

ε ∈ �k
+. Further let

∀x ∈ Q and ∀δ > 0 : P (∃l ∈ � : Pl ∩ Bδ(x) ∩ Q �= ∅) = 1
(1)

Then, an application of Algorithm 1, where ArchiveUp-
dateEps1ε is used to update the archive, leads to a sequence
of archives Al, l ∈ �, such that there exists with probability
one an l0 ∈ � such that Al is an ε-approximate Pareto set
w.r.t. F

˛̨
Q

for all l ≥ l0.

Algorithm 3 A := ArchiveUpdateEps2ε (P, A0)

1: A := A0

2: for all p ∈ P do
3: if � ∃a ∈ A : a ≺ε/3 p then
4: A := A ∪ {p}
5: end if
6: for all a ∈ A do
7: if p ≺ a then
8: A := A ∪ {p}\{a}
9: end if

10: end for
11: end for
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Theorem 2.8 [13] Let (MOP) be given and Q ⊂ �
n be

compact, and let there be no weak Pareto points in Q\PQ

(where PQ denotes the set of Pareto points of F
˛̨
Q
). Further,

let F be injective and

∀x ∈ Q and ∀δ > 0 : P (∃l ∈ � : Pl ∩ Bδ(x) ∩ Q �= ∅) = 1
(2)

Then, an application of Algorithm 1, where ArchiveUpda-
teEps2ε is used to update the archive, leads to a sequence of
archives Al, l ∈ �, where the following holds:

(a) There exists with probability one a l1 ∈ � such that
Al is an ε-approximate Pareto set w.r.t. F

˛̨
Q

for all

l ≥ l1.

(b) There exists with probability one a l2 ∈ � such that

|Al+1| = |Al|, ∀l ≥ l2.

(c) The limit archive

A∞ := lim
l→∞

Al

is an ε-Pareto set w.r.t. F
˛̨
Q

with probability one.

3. THE ALGORITHMS
In the following we investigate two different strategies for

the archiving of the solutions found by the algorithm leading
to different limit behaviors of the sequence of archives (under
certain additional conditions).

Algorithm 4 A := ArchiveUpdateT ight1ε,Δ̃ (P, A0)

1: A := A0

2: for all p ∈ P do
3: if (∃a ∈ A : a ≺ p) or (∃a1 ∈ A : a1 ≺ε/3

p and ∃a2 ∈ A : d∞(F (a2), F (p)) ≤ Δ̃) then
4: CONTINUE � do not execute lines 6 – 11
5: end if
6: for all a ∈ A do
7: if p ≺ a then
8: A := A\{a}
9: end if

10: end for
11: A := A ∪ {p}
12: end for

Theorem 3.1 Let an MOP F : �n → �
k be given, where

F is continuous, let Q ⊂ �n be a compact set and ε ∈ �k
+.

Let εm := mini=1,...,k εi, εM := maxi=1,...,k εi, further let

Δ, Δ̃ ∈ �+ be given such that εM < Δ̃ < Δ, and

∀x ∈ Q and ∀δ > 0 : P (∃l ∈ � : Pl ∩ Bδ(x) ∩ Q �= ∅) = 1
(3)

Then an application of Algorithm 1, where
ArchiveUpdateT ight1ε,Δ̃ is used to update the archive, leads
to a sequence of archives, such that there exists with prob-
ability one an l1 ∈ � such that Al1 is a (Δ, εm

3
)-tight ε-

approximate Pareto set and Al = Al+1 ∀l ≥ l1.

Proof. First, we turn our attention to the question of
which elements are added to the archive. The crucial ex-

pression E (line 3 of Algorithm 4) reads as follows:

(∃a ∈ A : a ≺ p)| {z }
A

or

(∃a1 ∈ A : a1 ≺ε/3 p| {z }
B1

and ∃a2 ∈ A : d∞(F (a2), F (p)) ≤ Δ̃| {z }
B2

)

Since ¬E = (¬A and¬B1) or (¬A and¬B2) and since ¬B1

implies ¬A it follows that points p ∈ �n are added to a
given archive A if (and only if) one of the two following
expressions is true

(E1) � ∃a ∈ A : a ≺ε/3 p, or

(E2) � ∃a ∈ A : a ≺ p and ∀a ∈ A : d∞(F (a), F (p)) > Δ̃.

(4)

Now we are in the position to prove the theorem. By E1 it
follows that all points, which are added by ArchiveUpdate-
Eps1 to the archive are also added by ArchiveUpdateT ight1.
Thus, by Theorem 2.7 it follows that there exists with prob-
ability one a l0 ∈ � such that Al is an ε-approximate Pareto
set w.r.t. F

˛̨
Q

for all l ≥ l0, since points a ∈ Al are only

removed from the archive if in turn another point ã is added
which dominates a (if x ≺ y and y ≺ε z it follows that
x ≺ε z).
It remains to show the ‘tightness’ of the limit archive. The
uniformity level εm follows directly by an inductive argu-
ment and using the ‘exclusion strategy’ (4). Further, since
F (PQ) is compact and Al, l ∈ �, is finite it follows that

dist(F (PQ), F (Al)) = max
y∈F (PQ)

min
a∈Al

d∞(y, F (a))

That is, the claim is right for an archive Al if for every y ∈
F (PQ) there exists an element a ∈ Al such that d∞(y, F (a))
≤ Δ. That is, F (PQ) must be contained in CAl,Δ, where

CA,Δ :=
[

a∈A

B∞
Δ (F (a)),

and B∞
Δ (x) := {y ∈ �k : d∞(x, y) < Δ}. Assume that Al

is an ε-approximate Pareto set for all l ≥ l0 and let l ≥ l0.
By construction of ArchiveUpdateT ight1 it follows that if
F (PQ) ⊂ CAl1 ,Δ this inclusion holds for all l ≥ l1 since in

this case no further point will be added to the archive (since
the expressions E1 and E2 in (4) will be false for all further
candidates). That is, it is sufficient to show the existence of
such a number l1. In the following we will do this by contra-
diction: first we show that by using ArchiveUpdateT ight1
and under the assumptions made above only finitely many
replacements can be done during the run of the algorithm.
Then – under the assumption that there exists no number l1
with the above property – we construct a contradiction by
showing that infinitely many replacements have to be done
during the run of the algorithm with the given setting.
Let a finite archive A0 with |A0| = n0 be given. If a point
p ∈ �n replaces a point a ∈ A0 (see lines 8 and 11 of Algo-
rithm 4) it follows by construction of ArchiveUpdateT ight1
(see also (4)) that

∃i ∈ 1, . . . , k : fi(p) < fi(a) − εi

3
. (5)

Note that εi in (5) can be replaced by Δ̃ in case A is an ε-
approximate Pareto set. Since the relation ‘≺’ is transitive,
there exists for every a ∈ A a ‘history’ of replaced points
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ai ∈ Ali where equation (5) holds for ai and ai−1. Since
F (Q) is bounded there exist li, ui ∈ �, i = 1, . . . , k, such
that F (Q) ⊂ [l1, u1] × . . . × [lk, uk]. After r replacements
there exists at least one a ∈ Al(r) such that the length h of
the history of a is at least h ≥ �r/n0�. Denote by a0 ∈ A0

the root of the history. For a, a0 it follows that

∃i ∈ 1, . . . , k : fi(a) < fi(a0) − s
εi

3
,

where s ≥ �h/k�. For s̃ > dmax := 3maxi=1,...,k
ui−li

εi

(which is given for r̃ > n0kdmax+n0+1) we obtain a contra-
diction since in that case fi(a) < li and thus F (a) �∈ F (Q).
Hence it follows that there can be done only finitely many
such replacements during the run of an algorithm.

Assume that such an l1 as claimed above does not exist,
that is, that F (PQ) �⊂ CAl,Δ for all l ∈ �. Hence there
exists a sequence of image points

yi ∈ F (PQ)\CAi,Δ ∀i ∈ �. (6)

Since F (Q) is compact there exists an accumulation point
y∗ ∈ F (PQ), that is, there exists a subsequence {ij}j∈�
with

yij → y∗ for j → ∞. (7)

Since y∗ ∈ F (PQ) there exists a neighborhood U1 of y∗

such that the following holds

∀(y, ỹ) ∈ F (Q) × U1 : y ≤p ỹ ⇒ d∞(y, ỹ) ≤ Δ̃ (8)

Let Ũ1 := U1∩B∞
(Δ−Δ̃)/2

(y∗). By (3) it follows that there ex-

ists with probability one an l1 ∈ � and an x̃1 ∈ Pl0+l1 with

ỹ1 = F (x̃1) ∈ Ũ1. By construction of ArchiveUpdateT ight1
there exists an element a1 ∈ Al0+l1 such that d∞(F (a1), ỹ1)

< Δ̃ (due to (4) there are three possibilities: E2 is false and
thus there already exists an a1 ∈ Al0+l1 which (a) domi-
nates x̃ – in this case the claim follows with (8) – or (b)

where d∞(F (a1), ỹ1) ≤ Δ̃, or E2 is true and thus (c) a1 = x̃1

is added to the archive). Thus we have

d∞(F (a1), ỹ) ≤ d∞(F (a1), ỹ1) + d∞(ỹ1, ỹ)

< Δ̃ + 2
Δ − Δ̃

2
= Δ ∀ỹ ∈ Ũ1.

(9)

By (6) and (7) there exist j1, l̃1 ∈ � with

yij1
∈ Ũ1\Cl0+l1+l̃1,Δ.

Since by (9) it holds that d∞(yij1
, F (a1)) < Δ it follows that

a1 �∈ Al0+l1+l̃1
, which is only possible via a replacement in

Algorithm 4 (lines 8 and 11).
In an analogous way a sequence {ai}i∈� of elements can be
constructed which have to be replaced by other elements.
Since this leads to a sequence of infinitely many replace-
ments this is a contradiction to the assumption, and the
proof is complete.

Remarks 3.2 (a) We have chosen an archiving strategy
to obtain a uniform spread of the Pareto front as mo-
tivated in Section 1. There exist on the other hand
certainly reasons to aim for a uniform approximation
of the Pareto set. The following little example shows,
however, that in that case in addition the injectivity of
F has to be postulated, at least when keeping only non-
dominated solutions in the archive. For a given Δ > 0

−1
0

2Δ0

fΔ

Figure 2: Example of a function fΔ with two isolated
global minima m1 = 0 and m2 = 2Δ.

let fΔ be as shown in Figure 2. That is, let fΔ have
two isolated global minima m1 and m2 with m1 < m2

and with d∞(m1, m2) > Δ. Define F := (fΔ, fΔ +C),
where C ∈ � is a constant. If the domain is e.g. cho-
sen as A := [m1 − Δ, m2 + Δ], the Pareto set of the
resulting MOP is given by P = {m1, m2}. Since the
probability to find a point p2 ∈ A which has the same
objective values F (p2) = F (p1) of a given point p1 ∈ A
is zero in the underlying setting, it follows that the
set of nondominated points of a given population con-
sists, with probability one, of one single point. Thus,
an approximation A with dist(PQ, A) ≤ Δ can in gen-
eral not be obtained when only nondominated points
are kept in the archive.

(b) The archive size can be bounded in analogy to the mag-
nitudes of the archives which are maintained by using
ArchiveUpdateEps1 by (see [13])

|Al| ≤
kX

i1,...,ik−1=1
i1>...>kk−1

k−1Y
j=1

‰
3
Mij − mij

εij

ı
, (10)

where mi = minx∈Q fi(x), Mi = maxx∈Q fi(x), 1 ≤
i ≤ k, and |A0| = 1. Note that the magnitude can
only be influenced by the value of ε. The existence of
this bound is due to the ‘exclusion strategy’ (4), which
makes it possible that the sequence of archives con-
verges after finitely many steps. On the other hand,
exactly this feature prevents that we can guarantee
dist(F (A), F (PQ)) and thus dH(F (A), F (PQ)) to be
small (say ≤ Δ), as the following example shows (com-
pare to Figure 3): assume that the elements a3, a2, a1

are inserted into the archive in this order. By construc-
tion of ArchiveUpdateT ight1, these points will not
be removed in the subsequent steps since there exists
no point p with F (p) ∈ F (A)\CA,Δ which dominates
ai, i ∈ {1, 2, 3}. In such a manner an example can be
constructed with dist(F (A), F (PQ)) = maxi=1,..,k(Mi

− mi). However, we have never observed this (bad)
theoretical value in our computational experiments.

Algorithm 5 shows an archiving strategy which overcomes
the problem of Algorithm 4 described above but which in
turn lacks the uniformity.

Theorem 3.3 Let (MOP) be given and Q ⊂ �
n be com-

pact, and let there be no weak Pareto points in Q\PQ. Fur-
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Figure 3: Possible example of a set A which
could be generated by ArchiveUpdateT ight1 with
dist(F (A), F (PQ)) > Δ.

Algorithm 5 A := ArchiveUpdateT ight2ε,Δ̃ (P, A0)

1: A := A0

2: for all p ∈ P do
3: if E1 is true or E2 is true then � see (4)
4: A := A ∪ {p}
5: end if
6: for all a ∈ A do
7: if p ≺ a then
8: A := A ∪ {p}\{a}
9: end if

10: end for
11: end for

ther, let F be injective and

∀x ∈ Q and ∀δ > 0 : P (∃l ∈ � : Pl ∩ Bδ(x) ∩ Q �= ∅) = 1
(11)

Then an application of Algorithm 1, where
ArchiveUpdateT ight2ε,Δ̃ is used to update the archive, leads
to a sequence of archives Al, l ∈ �, where the following
holds:

(a) There exists with probability one a l1 ∈ � such that Al

is a Δ-tight ε-approximate Pareto set w.r.t. F
˛̨
Q

for

all l ≥ l1.

(b) There exists with probability one a l2 ∈ � such that

|Al+1| = |Al|, ∀l ≥ l2.

(c) The limit archive

A∞ := lim
l→∞

Al

is a Δ-tight ε-Pareto set w.r.t. F
˛̨
Q

with probability
one.

Proof. All parts of the proof are analogue to parts in
proofs of Theorem 2.8 and Theorem 3.1.

Remark 3.4 The archive size obtained by
ArchiveUpdateT ight2 can be bounded analogously to the one
obtained by ArchiveUpdateEps2 [13] by

|Al| ≤
kY

i=1

‰
3
Mi − mi

εi

ı
.

The lower bound of |A∞| for both new archiving strategies
is obviously given by 1. For this, consider e.g. f1 = f2 =
. . . = fk to be a convex function which takes its (unique)
minimum inside Q. Though desired, it is hardly possible to
provide meaningful lower bounds for general MOPs since (a)
the archive size is in practice mainly determined by the value
of ε, in particular when ε � Δ, and (b) the Pareto front can
fall into different connected components. However, if this is
not the case, one can obtain the following result, which we
state without the (obvious) proof.

Lemma 3.5 Let m̃i = minx∈PQ fi(x) and M̃i =
maxx∈PQ fi(x), 1 ≤ i ≤ k. Then, when using Archive-
UpdateT ight1ε,Δ̃ or ArchiveUpdateT ight2ε,Δ̃, the archive
size maintained in Algorithm 1 for the limit archive A∞ =
liml→∞ Al is bounded by

|A∞| ≥ max
i=1,...,k

‰
M̃i − m̃i

2Δ

ı
(12)

An analogous statement for k > 2 – e.g., by estimating
the Pareto front by a k-Simplex in objective space where the
vertices are the minima of the objectives –, however, does
not hold since the (k− 1)-dimensional volume of the Pareto
front can be arbitrarily small.

4. NUMERICAL RESULTS
In this section we compare three different archving strate-

gies on the following example:

f1, f2 : �n → �

fi(x) =
nX

j=1
j �=i

(xj − ai
j)

2 + (xi − ai
i)

4, (13)

where

a1 = (1, 1, 1, 1, . . .) ∈ �n

a2 = (−1,−1,−1,−1, . . .) ∈ �n,

To obtain a fair comparison of the different archivers we
have decided to take a random search operator for the gener-
ation process (the same sequence of points for all settings).
Figure 4 shows examples for resulting limit sets. Hereby
we have taken N = 200, 000 randomly chosen points in
Q = [−1.5, 1.5]3 using the following archiving strategies:

(ND) all nondominated points are kept,
(Eps1) ArchiveUpdateEps1, and
(Tight1) ArchiveUpdateT ight1,

and using the values ε = (1, . . . , 1) and Δ = 2. The
set obtained by ArchiveUpdateEps1 forms probably (or is
near to) an ε-approximate Pareto set, but reveals huge gaps,
which is not the case in Figure 4 (c), where ArchiveUpda-
teT ight1 has been used. The ‘tightest’ approximation in
this case study is certainly obtained when all nondominated
points are kept in the archive (see Figure 4 (b)). However,
in that case the time which had to be spent to update the
archive2 was huge compared to both other strategies (see
Table 4).
An implementation of all the archiving strategies discussed
in this work including this example can be found in [1].

2The elements of the all archives were stored using a linear
list.
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Figure 4: Three limit achives obtained by different archiving strategies.

Table 1: Comparison of the magnitudes of the fi-
nal archive (|AN |, rounded) and the corresponding
update times (T , in seconds) for different archiving
strategies (see text). We have taken the average
result of 100 test runs.

ND Eps1 Tight1

|AN | 267 27 34
T 36.46 0.29 0.36

5. OUTLOOK: HYBRIDIZING WITH MULTI-
OBJECTIVE CONTINUATION METHODS

In order to increase the overall computational performance,
it is often desired to combine the (global) stochastic search
algorithm with a local search strategy. Here we want to
show that in the underlying context a hybridization with
multi-objective continuation methods (e.g., [5, 12]) could be
advantageous since these methods are very effective locally
and can be used to compute uniformly spread solutions. In
the following we construct a step size strategy for our pur-
pose and show numerical results on one (easy) example, in-
dicating the possible benefit of such a hybridization. For
more details and examples see [13].

The basic idea of multi-objective continuation methods
is, roughly speaking, to move along the set of (local) Pareto
points. To be more precise, in the course of the algorithm
one is faced with the following setting: given a point x0 ∈
PQ, Δ ∈ �+, and a search direction v ∈ �n with ‖v‖ = 1,
the task is to find a step size h ∈ �+ such that for the next
guess y0 = x0 + hv it holds

‖F (x0) − F (y0)‖∞ = ΘΔ, (14)

where Θ ∈ (0, 1) is a safety factor. In case F is Lipschitz
continuous there exists an L ≥ 0 such that

‖F (x) − F (y)‖ ≤ L‖x − y‖, ∀x, y ∈ Q. (15)

The Lipschitz constant around x0 (i.e., locally) can be esti-
mated by

Lx0 := ‖DF (x0)‖∞ = max
i=1,...,k

‖∇fi(x0)‖1.

Combining (14) and (15), using ‖x0−y0‖ = h, and assuming

that h is sufficiently small, we obtain the following estima-
tion

h ≈ ΘΔ

Lx0

. (16)

Note that this estimation only suits for small values of Δ
since in the other case h will be too large, and thus Lx0 can
not serve as a suitable Lipschitz estimation.
In Figure 5 one numerical result for MOP (13) is presented,
where we have used one run of the continuation algorithm
proposed in [12], starting with one single solution. We have
applied the step size control on the distance between the
current solution and the predictor, since this point mainly
determines the distance of two solutions. The resulting set
consists of 23 solutions which clearly represent a uniform
Pareto front approximation. To obtain the result, less than
100 Newton steps on an auxiliary function (which, however,
incorporates the derivatives of the objectives) had to be per-
formed. This result motivates for the further development
of such combinations with evolutionary multiobjective opti-
mization techniques in the future.

6. CONCLUSIONS
We have proposed two archiving strategies for obtaining

gap-free (‘tight’) Pareto front approximations by stochastic
search algorithms and have proven the convergence of the re-
sulting archives. The limit set using the first archiver forms
with probability one a (Δ, εm/3)-tight ε-approximate Pareto
set, that is a gap-free Pareto front approximation which pro-
vides the guaranteed uniformity level εm/3. The limit set
of the second strategy forms a Δ-tight ε-Pareto set, which
offers a better approximation quality in the Hausdorff sense,
but in turn lacks the uniformity. For future work, the devel-
opment of an archiving strategy which produces a sequence
of archives leading to a (Δ, εm)-tight ε-Pareto set would be
of particular interest.
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