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ABSTRACT
The modeling and analysis of large networks of autonomous
agents is an important topic with applications in many dif-
ferent disciplines. One way of modeling the development of
such networks is by means of an evolutionary process. The
autonomous agents are randomly chosen to become active,
may apply some kind of local mutation operators to the
network and decide about accepting these changes via some
fitness-based selection whereas the fitness models the agent’s
preferences. This general framework for the self-organized
evolution of networks can be instantiated in many differ-
ent ways. For interesting instances, one would like to know
whether stable topologies eventually evolve and how long
this process may take. Here, known results for one instan-
tiation are improved. Moreover, a more natural and local
instantiation is presented and analyzed with respect to the
expected time needed to reach a stable state.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-

ity]: Nonnumerical Algorithms and Problems—Computa-

tions on Discrete Structures; G.2.2 [Discrete Mathemat-

ics]: Graph Theory—Network Problems; I.6.5 [Simulation

and Modeling]: Model Development

General Terms
Theory, Algorithms, Performance, Design

Keywords
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1. INTRODUCTION
Large networks of autonomous agents that evolve over

time can be found in many different systems, either natural
(like social networks) or technical (like the Internet). In such
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networks it is often the case that each agent benefits from
having a sufficiently central position in the network while on
the other hand each direct connection draws from its limited
resources. If agents are able to change their direct connec-
tions the network topology evolves over time driven by each
of the agent’s desire to improve its position in the network.
Assuming that the network contains rational agents it is rea-
sonable to ask whether there are stable topologies where the
network’s evolution comes to an halt. Clearly, this depends
on the initial network as well as on the precise rules and cir-
cumstances governing the behavior of the agents. If a stable
topology is eventually reached, then it is near at hand to ask
how long it takes to reach such a stable network topology.

Such ensembles of interacting agents have been investi-
gated under many different perspectives. In mechanism de-
sign [14] one is concerned with the design of protocols that
ensure maximum overall profit in spite of the agents selfish-
ness. When analyzing questions of network design with self-
ish agents one is interested in finding out whether a specific
setting that may involve costs for connections and individ-
ual cost functions for each agent allows for stable solutions
which can be characterized as Nash equilibria. Depending
on the specific setting, such questions may be difficult to
answer [2, 3, 7].

A quite different approach is to model the development of
such a graph as an evolutionary process that is controlled
by the random application of local mutation operators where
the outcome is subject to a selection that is governed by the
preferences of the acting agent. The main advantage of such
a model is that it does not assume the availability of global
information for the agents. Restricting the agent’s access to
local information is obviously appropriate when modeling
huge networks without central control. Such an approach
is taken by Lehmann and Kaufmann [12]. They present a
quite general model for the self-evolution of a graph, instan-
tiate this model, observe that for their instantiations unique
stable topologies exist and provide some upper and lower
bounds for the expected time the evolutionary process needs
to reach such a stable topology. We improve on these results
in several ways. On the one hand, we reconsider the model
discussed by Lehmann and Kaufmann [12] and improve some
of their bounds significantly. On the other hand, and more
importantly, we present a modification of this model that is
in much better accordance with the “spirit” and intentions
connected to the investigation of such evolving networks.
For this model, we discuss stable topologies and prove up-
per and lower bounds on the expected time needed to reach
a stable topology.
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In the following section we give precise definitions of the
considered models and the type of questions we investigate.
Section 3 starts with the consideration of a simple fitness
function. The rather disappointing results motivate the con-
sideration of less obvious fitness functions. For one such
function we derive results for the underlying model (Sec. 4).
In both sections we start with a recapitulation of known re-
sults [12] before presenting our improved bounds. A novel
model that is completely local is discussed in Section 5.
Throughout, we present empirical results that help to build
up a reasonable intuition for questions that our analytical
results do not answer. Finally, in Section 6, we conclude
and discuss possible directions of future research.

2. DEFINITIONS
The model we consider consists of three main components:

the network that evolves over time, the local mutation oper-
ator, and the fitness function that describes the preferences
for each agent. The network consists of the set of agents
that is assumed to be constant over time and the connec-
tions between these agents that evolve over time. A formal
definition follows.

Definition 1. A network evolving over time is defined by
• a finite set of agents V and
• for each time step t ∈ N0, an undirected graph
Gt = (V,Et) with Et ⊆ {{u, v} | u 6= v ∈ V }.

Furthermore, we define
• the set M(v) of potential edges adjacent to v ∈ V ,
M(v) = {{u, v} | u ∈ V \ {v}},

• α(v), the power set of M(v), α(v) = P(M(v)),
• G, the set of all graphs Gt, G = {Gt}.

The fitness function expresses the preferences for each
agent, thus, each agent v ∈ V may have a different fitness
function. Since we are interested in the development of the
complete network, we consider the overall fitness, too.

Definition 2. Fitness is described by a fitness function

f : G × V → R, with f(·, v) expressing the preferences of
agent v ∈ V . The overall fitness F : G → R is given by
F (Gt) :=

P

v∈V f(Gt, v).

The mutation operator defines the kind of changes the
agents are allowed to make. The idea is that an agent can
decide about its own connections and no others. We assign
no costs to connections.

Definition 3. For any time step t ∈ N0, let Nt(v) ∈ α(v)
denote the set of all edges adjacent to v, i. e., Nt(v) =
M(v) ∩ Et. A mutation operator is defined as a random-
ized function C : G×V → α(v) replacing the current neigh-
borhood Nt(v) by a new neighborhood Nt+1(v) = C(Gt, v)
chosen randomly according to some distribution.

We embed these ingredients in an algorithm that deter-
mines how the agents are allowed to apply mutation and
fitness-based selection. Together with concrete fitness func-
tions and mutation operators, this defines the complete model.

Definition 4. Algorithmic Frame

1. t := 0; Randomly choose Gt = (V,Et) according to
some fixed distribution.

2. Select v ∈ V uniformly at random.

3. Create E∗ from Et by applying C(Gt, v).
4. If f((V,E∗), v) � f(Gt, v) then Gt+1 := (V,E∗)

else Gt+1 := Gt.
5. t := t+ 1. Continue at line 2.

The selection in line 4 is based on a relation � defined on
fitness values. Depending on the fitness function either min-
imization or maximization may be appropriate. Moreover,
we may implement either strict selection (using either < or
>) or a selection allowing for random walks on plateaus of
equal fitness (using either ≤ or ≥).

Formally this algorithm consists of an infinite loop but
we already remarked that we are interested in the expected
number of iterations until the graph reaches a stable topol-
ogy, which is true when no node can improve its current
fitness with respect to the chosen fitness function and selec-
tion.

For the definition of concrete fitness functions it is useful
to define some notions for the networks we are dealing with.
Since we consider the evolution of networks, we define all
terms with respect to some concrete current network Gt.

Definition 5.

• For v ∈ V , the degree degt(v) is the number of nodes v
is directly connected to, degt(v) := |{u | {u, v} ∈ Et}|.

• For u, v ∈ V , a path Pt(u, v) is a sequence of nodes v1,
v2, . . . , vk with u = v1, v = vk and {vi, vi+1} ∈ Et for
all i ∈ {1, 2, . . . , k − 1}.

• We call k−1 = |Pt(u, v)| the length of the path Pt(u, v).
• For u, v ∈ V , the distance dt(u, v) between u and v is

defined as the minimal length of a path between u and
v.

• For v ∈ V , the eccentricity e(Gt, v) of v in Gt is defined
by e(Gt, v) := max {dt(u, v) | u ∈ V }.

• The diameter D(Gt) is defined by
D(Gt) := max{e(Gt, v) | v ∈ V }.

• For v ∈ V , the closeness centrality c(Gt, v) of v in Gt
is defined by c(Gt, v) :=

P

u∈V dt(u, v).
• The Wiener Index is defined by

P

v∈V c(Gt, v).

In practice, it may be desirable for an agent to have a
central position in a network. Therefore, we consider fit-
ness functions that aim at expressing the centrality of an
agent’s position. While there are several reasonable ways
defining the centrality of an agent’s position within a net-
work, it is not at all clear how this notion can be defined
with respect to unconnected networks. Thus we restrict our
attention to the case of networks that form one single con-
nected component. Since we do not impose any costs on the
connections of an agent, obviously, the clique becomes the
unique solution where all agents have central positions. As
this trivial solution is not acceptable with respect to costs,
we choose another way of restricting the number of connec-
tions. We concentrate our attention to connected networks
with a minimal number of connections, i. e., spanning trees.
This does not imply a bound on the number of connections
a single agent may have while minimizing the total number
of connections. This may be seen as a compromise between
introducing costs for connections (complicating the analy-
sis considerably) and neglecting connection costs completely
(leading to the clique as trivial and undesirable “solution”).

Our focus on spanning trees implies that we have to con-
sider mutation operators that transform a spanning tree into
another spanning tree. The following mutation operator was
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Figure 1: Application of inner mutation.

introduced by Lehmann and Kaufmann [12]. Remember
that v ∈ V is an agent selected uniformly at random in
line 2 of the main algorithm.

Definition 6. Inner Mutation

N := {u ∈ V | dt(u, v) = 2, degt(u) > 1}
If N 6= ∅ then

Select u ∈ N uniformly at random.
Let w be the unique w ∈ V with {{u, w}, {v, w}} ⊆ Et.
Replace {v, w} by {v, u}.

We call this mutation operator inner mutation since it
only takes agents into account that are not leaves of the
spanning tree, i. e. agents that are inner nodes. In Figure 1,
the application of this mutation is depicted. It is easy to see
that one mutation changes a spanning tree into a different
spanning tree if N 6= ∅. Otherwise, the network remains
unchanged.

While it is intuitively clear to restrict the mutation to
inner nodes (such nodes have the potential of moving the
active agent v closer to the center), it is not strictly neces-
sary in order to mutate spanning trees into spanning trees.
Therefore, we propose a different mutation operator, which
we will use throughout section 4, that is less restrictive and
that we consider to be more natural.

Definition 7. Mutation

N := {u ∈ V | dt(u, v) = 2}
If N 6= ∅ then

Select u ∈ N uniformly at random.
Let w be the unique w ∈ V with {{u, w}, {v, w}} ⊆ Et.
Replace {v, w} by {v, u}.

We close this section by remarking that we will use the
terms with high probability and with overwhelming proba-
bility which we define as random events that happen with
probability (1 − O(1/n)) and with probability (1 − eΩ(nε))
for a constant ε > 0, respectively.

3. RESULTS FOR A SIMPLE FITNESS
FUNCTION

We are interested in modeling selfish agents that aim at
obtaining a central position in the network. Remember that
we restricted our interest to networks forming spanning trees
on the set of agents V . Clearly, we may measure how central
an agent’s position is by the distances to the other agents
in the network. This leads to eccentricity as fitness function
that needs to be minimized. It is easy to see that there is
a unique optimal topology, the graph with diameter 2, i. e.,
the star. As long as the diameter of the graph is greater
than 2 the leaves defining a longest path within the tree can
still reduce their eccentricity. Using ≤ for comparison in
selection together with the inner mutation leads to the al-
gorithm investigated by Lehmann and Kaufmann [12]. For
this model they proved that with probability 1 the opti-
mal topology will be found but that there exists a family
of networks where this takes Ω(2n/n) steps. We improve
this lower bound to Ω(2n) for any network different from
the optimal solution.

vl vr

Figure 2: Network with diameter 3 with k = 5,

n = 10.

Theorem 1. The expected number of steps needed to reach

a stable topology for a network with |V | = n agents different

from the star using inner mutations, eccentricity as fitness

function and ≤ for comparison is Ω(2n).

Proof. The crucial observation is that the mutation can
change the diameter of a network by at most 1. This is easy
to see. There is at least one path in the network with length
D(Gt). If in a mutation the nodes u, v, w are not on such
a path, obviously, the diameter cannot change. Otherwise,
the length of any path including u, v, or w can change in
length by at most 1. We conclude that the unique stable
topology (the star with diameter 2) can only be reached via
some network with diameter 3. Such a network can be seen
in Figure 2. It has two central nodes, vl and vr, and is char-
acterized by the number k of nodes on the left side. Each
mutation leading to a change in the topology can either in-
crease or decrease k by 1. The star is reached if k is either
decreased to 0 or increased to n−2. It is easy to see that the
probability to increase k by 1 is given by (n− k− 2)/n, the
probability to decrease k by 1 is k/n and with probability
2/n k is neither increased nor decreased. We recognize that
this coincides with a pure random walk on the Boolean hy-
percube of dimension N = n−2. For this random walk with
the all 0-string as only absorbing state the expected time to
absorption is 2N · (1+o(1)) [9]. Here we have two absorbing
states, the all 0-string and the all 1-string. Clearly, the situ-
ation is symmetric in the sense that states i and N − i have
equivalent transition probabilities. By combining states i
and N − i we get a grouped Markov chain without absorb-
ing states but rather reflecting states. We can verify that

(π)i with πi =
`

N
i

´

·c with c = 2/
“

2N +
`

N
N/2

´

”

is the unique

stationary distribution. We compare this to the stationary
distribution of the Markov chain describing the original ran-
dom walk that is given by π′

i = 2−N ·
`

N
i

´

. We see that

πi/π
′

i = 2 − O(1/N1/2) holds. Since the stationary distri-
bution of our Markov chain deviates from the stationary
distribution of the random walk with one absorbing state
only by Θ(1)-factor we obtain, using the fundamental theo-
rem of finite Markov chains [13], Ω(2n) as lower bound on
the number of steps needed to reach an absorbing state.

We see that in the final phase when the diameter is already
decreased to 3, an exponential number of steps is needed to
reach the optimal topology. Lehmann and Kaufmann intro-
duce inner mutations arguing that mutations selecting a leaf
cannot lead to changes in the topology due to the selection
employed. While this observation is correct, allowing leaves
to be subject of mutation changes the transition probabili-
ties in the random process. Surprisingly, this is sufficient to
reduce the expected length of this final phase to O(n3).

Theorem 2. The expected number of steps needed to reach

a stable topology for a network with |V | = n agents and di-
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Figure 3: Mutations decreasing F by 1.

ameter 3 using mutations, eccentricity as fitness function
and ≤ for comparison is O(n3).

Proof. Again, we consider a network as shown in Fig-
ure 2. We see that the probability to decrease k by 1 equals
1/n, because with probability (k/n) · (1/k) one of the k
nodes is chosen, which then chooses the right inner node for
a mutation. By the same line of argumentation the prob-
ability to increase k by 1 equals 1/n and, thus, the prob-
ability not to change the topology equals (n − 2)/n. We
can model the situation as a random walk on 0, 1, . . . , n− 2
with 0 and n − 2 as the only absorbing states. We neglect
steps not changing the current state and compensate for this
by taking an additional factor of Θ(n) into account. Since
the probability for changing the current state is Θ(1/n),
this does not affect the order of growth of the expected
number of steps. Then we consider a fair random walk
with transition probabilities 1/2, 1/2 for any non-absorbing
state. It is well known that the expected number of steps
equals i(n− i) when started in state i [18]. Thus, we obtain
O(n · max{i(n − i) | 0 < i < n}) = O(n3) as upper bound
as claimed.

4. RESULTS FOR A MORE COMPLEX
FITNESS FUNCTION

Eccentricity as fitness function leads to a model where
an exponential number of steps is needed to come to a sta-
ble state if inner mutations are employed. Thus it comes
as no surprise that Lehmann and Kaufmann [12] also con-
sider another fitness function. They prove that using close-
ness centrality c(Gt, v) instead of the eccentricity e(Gt, v)
for all agents v ∈ V reduces the time needed to reach a sta-
ble state on average from exponential to some polynomial.
They prove that the expected number of steps needed to
reach a stable topology for a network with |V | = n agents
using inner mutations, closeness centrality as fitness func-
tion and < for comparison is O(n5). They do not prove a
lower bound, though. One way of finding out whether this
upper bound draws a realistic picture is trying to come up
with lower bounds. Before we present a rather simple lower
bound of order Ω(n log n), we need to show that the unique
stable topology is again the star, and we need to define a
distribution for choosing an initial network. In evolutionary
algorithms, using the uniform distribution is most common.
It is well known that spanning trees can easily be selected
uniformly at random using Prüfer numbers [4, 15]. For ran-

dom spanning trees, the expected diameter is Θ(n1/2) and
the variance is known [1, 16]. Thus it is easy to bound the
deviation from the expected diameter with high probability

by a small additive constant by using of Chebyshev’s in-
equality (compare [13]).
We measure the progress of the network’s evolution by the
overall fitness F : G → R with F (Gt) =

P

v∈V c(Gt, v).
Clearly, F can only decrease during a run. Again the unique
network with diameter 2, the star, is the optimal and only
stable network. For the star the F -value is

n − 1
| {z }

center node

+ (n − 1)
| {z }

#other nodes

·

 

1
|{z}

to center node

+ (n − 2)
| {z }

#other nodes

· 2
|{z}

to other nodes

!

= 2n2 − 4n + 2 = Θ(n2).

As long as the diameter of the network is at least 3, there is
always a mutation decreasing F by 1. This can be seen as
follows. Consider some Gt with D(Gt) ≥ 3 and two agents
v1, v2 ∈ V with dt(v1, v2) = D(Gt). Clearly, v1 and v2 are
leaves. We are in a situation as in Figure 3 where u1, u2 ∈ V
are the two nodes subject to mutation and w1, w2 ∈ V the
two “middle nodes” involved (compare Figure 1). We claim
that either selecting v1 as active agent and u1 as node with
distance 2 or v2 as active agent and u2 as node with distance
2 leads to a mutation causing a decrease of the F -value. If
v1 and u1 are selected, {v1, w1} is replaced by {v1, u1}. The
distances to all nodes in the sub-tree Tw1 increases by 1,
the distances to all nodes in the sub-tree Tu1 decreases by
1. All other distances remain unchanged. Let |T | denote
the number of nodes in sub-tree T . If |Tu1 | > |Tw1 | holds,
the F -value is decreased. Otherwise we assume that v2 and
u2 are selected. Due to symmetry, our observations now
hold with respect to u2, v2, w2 and their sub-trees. We have
more nodes in Tu1 than in Tw1 since this is the case con-
sidered. Observe that v1 and v2 are connected via a path
v1, w1, u1, . . . , u2, w2, v2. Thus, Tw1 is included in Tu2 and
Tw2 is included in Tu1 . Using this to relate the sizes of the
sub-trees we see that the F -value is decreased by at least 1.
Knowing the unique stable topology and the diameter after
initialization we can now prove a lower bound.

Theorem 3. The expected number of steps needed to reach
a stable topology for a network with |V | = n agents chosen
uniformly at random using either mutations or inner muta-
tions, closeness centrality as fitness function and either ≤
or < for comparison is Ω(n log n).

Proof. We consider the current diameter D(Gt). Clearly,
there is at least one pair of nodes u, v ∈ V with dt(u, v) =
D(Gt). The diameter can only decrease if a node on such
a longest path between such nodes u and v in Gt is se-
lected. But there may be more than just one longest path
and more such pairs of nodes. In this case, the diameter can
only decrease if all longest paths are decreased in length by
a mutation. This can only occur if nodes on edges common
to all longest paths are selected. We see that in any case
the probability to decrease the diameter by 1 is bounded
above by D(Gt)/n. The expected waiting time for such a
step is therefore bounded below by n/D(Gt). Since the di-
ameter can only decrease by at most 1 in a single mutation,
we obtain

D0X

i=3

n

i
= Ω(n log D0)
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as lower bound on the expected number of steps if D0 de-
notes the initial diameter. As we know, E(D0) = Θ(n1/2)

holds and we have Prob(D0 ≥ cn1/2) ≥ 1 − ε for some con-
stant c > 0 and some constant ε (depending on c) with

0 < ε < 1. Thus, we have Ω(n log n1/2) = Ω(n log n) as
lower bound as claimed.

Clearly, there is a huge gap between this simple lower
bound Ω(n log n) and the upper bound O(n5) due to Lehmann
and Kaufmann [12]. It is, however, not difficult to see that
Lehmann’s and Kaufmann’s bound of O(n5) is far from be-

ing tight. In fact, it can easily be improved to O(n7/2).
We call a successful mutation of the type needed to show

how to come to a stable topology essential when the neigh-
bor w1 of leaf v1 to be activated would itself become a leaf
after removing all of its leaf-nodes. An essential mutation
has probability Ω(1/n) which is established by considering
the two events in the mutation step. Choosing v1 as active
has probability (deg(w1)−1)/n and selecting node u1 for the
edge exchange has probability 1/(deg(w1) − 1). Therefore,
we get an upper bound on the expected number of steps of
O(n ·(F0−2n2 +4n−2)) if F0 is the initial F -value. Clearly,
F (Gt) ≤ n2 · D(Gt) holds. Since we have D(Gt) ≤ n, an
upper bound of O(n4) follows. This holds independent of
the initial distribution of the network. As discussed above,
using the uniform distribution we are confronted with ran-
dom spanning trees having expected diameter Θ(n1/2) and
bounded variance [1, 16]. This leads to an upper bound of

O(n7/2). By proving that the F -value can be decreased by
far more than just 1 in a single mutation this bound can be
improved even further.

Theorem 4. The expected number of steps needed to reach
a stable topology for a network with |V | = n agents using
mutations, closeness centrality as fitness function and < for
comparison is O(n5/2).

Proof. For the proof we need the notion of a centroid.
For a spanning tree on |V | = n nodes let for v ∈ V the deg(v)
different sub-trees that are obtained by removing all but one
edge from v be denoted Ti(v) with i ∈ {1, 2, . . . , deg(v)}.
For v ∈ V we define its weight w(v) := max{|Ti(v)| | i ∈
{1, 2, . . . , deg(v)}. A node v ∈ V with minimal weight is
called centroid. Already Jordan [11] proved that each tree
has one or two unique centroids. We make use of the follow-
ing description of centroids [8]. Either there is some v ∈ V
with w(v) ≤ (n−1)/2 and this is the unique centroid or there
are two adjacent nodes v1, v2 ∈ V with w(v1) = w(v2) = n/2
and these are the only centroids. After the initialization of
the graph it is a priori not known which node is the cen-
troid but it is obvious that the center node of the star is the
unique centroid. This characterization allows us to improve
the analysis of the F -value-decrease for an essential, success-
ful mutation to Ω(n). The active leaf decreases its distance
to the centroid and thus the fitness of at least (n − 1)/2
nodes behind the centroid is decreased by at least 1. The F-
value of any spanning tree is at most O(n3) (the path) which
would be reduced by an essential mutation by at least Ω(n)
in expected waiting time O(n).
This result would already reduce the expected number of
steps to reach a stable topology to O(n3) without any fur-
ther considerations of a probability distribution of spanning
trees. But using the uniform distribution we know that
the diameter of a uniform random labeled spanning tree

is Θ(n1/2) with high probability, leading to an initial F-

value of O(n5/2) with high probability. By the proven F-

value decrease O(n3/2) essential mutations are enough to
produce a stable topology, leading to the expected runtime
of (1 − 1/n) · O(n5/2) + 1/n · O(n3) = O(n5/2).

We believe that this upper bound can still be improved,
if we make use of even more structural properties of uni-
form random labeled spanning trees. We present the ideas
here, as we can only show this improved upper bound of
O(n2) for a family of spanning trees. Since we make use of
properties of spanning trees chosen uniformly at random, we
present the precise algorithm used to define a bijection be-
tween spanning trees on n nodes and strings of length n− 2
of {1, 2, . . . , n}. Note that this algorithm (due to Agnarsson,
Deo, and Micikevicis [1]) defines a bijection different from
the original Prüfer numbers [15].

Given a spanning tree T = (V, E) with V = {1, 2, . . . , n},
the Prüfer number is computed in the following way starting
with an empty string P using a queue Q as data structure.

1. Insert the leaves of T in Q in ascending order.
2. While |V | > 2 do
3. Remove v from the queue Q and from V .
4. Append the number of the neighbor u of v to

the current string P .
5. If u is a leaf now, append u to the queue Q.
6. Output P .

We observe that it is easy to derive the degree of a node
in the spanning tree from the corresponding Prüfer number.
Clearly, its degree is exactly by 1 greater than the number
of times it appears in this Prüfer number. It is easy to see
that the degree of a node is binomially distributed such that
Prob(deg(v) = d) =

`
n−2
d−1

´
n−d+1(1 − 1/n)n−2−d+1 holds.

This allows to derive upper and lower bounds on the num-
ber of nodes of a given degree where upper and lower bounds
fall together for nodes of degree d = o(n1/2). As the maxi-
mal degree of a uniform spanning tree is Θ(log(n)/ log log n)
(compare [13]) with high probability we can use n/(e·(d−1)!)
as the expected number of nodes of degree d, i.e. the ex-
pected number of nodes of degree two is Θ(n). The sce-
nario is also known as the Balls-and-Bins model which is
defined by a number of balls that are thrown to a number
of bins with the location of each ball chosen independently
and at random (compare [13]). We profit from a rich set
of methods which deal with the dependencies of the asso-
ciated random variables that naturally arise. Dubashi and
Ranjan [5] for example show that Chernoff bounds can be
applied when we are interested in the deviations from the
expected number of bins with a certain load. By actually
applying Chernoff bounds we bound the deviation of the ex-
pected value of the random variable Xd, which counts the
number of nodes of degree d = O(log n/ log log n), with over-
whelming probability by a multiplicative constant c, that is
Pr(Xd ≤ c·E[Xd]) ≤ (1−e−Ω(nε)) and Pr(Xd ≥ c·E[Xd]) ≤

(1 − e−Ω(nε)), i.e. there are Θ(n) nodes of degree two with
overwhelming probability.

The family we have in mind follows from the fact that
Entringer et al. [6] prove a value of Θ(n5/2) for the ex-
pected Wiener Index of uniform random labeled spanning
trees, that is the average distance between two nodes in
an average random tree is Θ(n1/2). The family we consider

consists of Ω(n1/2) many disjoint sub-trees of depth Θ(n1/2)
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which is the only possibility to actually construct a labeled
spanning tree with Wiener Index Θ(n5/2). Such a spanning
tree can be constructed by joining all the nodes of degree
two to Ω(n1/2) many paths of length Θ(n1/2) and using all
the other nodes of degree O(log n/ log log n) (which is the
maximal degree with high probability) to join those paths
together to form a spanning tree.
As an essential mutation can occur in each of the disjoint
sub-trees the probability for an essential mutation increases
to Ω(1/n1/2) thus reducing the expected runtime for a span-
ning tree from this family to O(n2).
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Figure 4: Mean Wiener Index of spanning trees gen-

erated uniformly at random.

We believe that it is possible to generalize the result to
improve the expected runtime. Janson [10] proves a value
of Θ(n5) for the variance of the expected Wiener Index of
uniform random labeled trees. This implies that it is not
possible to use standard tools like Chebyshev’s inequality to
bound the deviance from the expected Wiener Index. How-
ever, we have already shown by means of the known first
and second moment of the diameter of a uniform random
labeled tree that the Wiener Index is O(n5/2) with high
probability. This as well as experimental data supports our
believe that it should be possible to find a suitable lower
bound in order to show that the Wiener Index of a uniform
random labeled tree is Θ(n5/2) with high probability. The
experimental data was obtained for n ∈ {100, 200, . . . , 1000}
nodes in 100 independent runs for each value of n. In each
run, a spanning tree of n nodes was generated uniformly at
random and the Wiener Index computed. We plot the mean
values, the first and third quantiles as well as the minimum
and maximum in Figure 4. We fit c · n5/2 to this data (us-
ing gnuplot’s fit, obtaining an error of 1.07595e+11 with the
standard deviation of the fit of 109339 and c = 1.20418).

Clearly, our upper bound of O(n5/2) is much closer to
the truth than the O(n5) upper bound due to Lehmann
and Kaufmann [12]. There is, however, still a gap of or-

der Θ(n3/2/ log n) between this upper bound and the lower
bound of order Ω(n log n). In order to build up an intuition
about the expected number of steps we perform experiments
for not too large values of n. While the results of such ex-
periments cannot deliver any asymptotic results, they enable
us to judge the quality of our bounds for rather small val-
ues of n. We present the results of 100 independent runs
where for each run a new spanning tree is generated uni-
formly at random. We consider different values of n (the
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Figure 5: Experimental data using closeness central-

ity as fitness.

number of vertices), namely n ∈ {100, 200, . . . , 1000}. We
plot the mean value, the first and third quantile as well as
the minimum and maximum of the 100 runs for each value
of n. To get an impression of the quality of our lower bound
Ω(n log n) we plot cn log n where the constant c ∈ R

+ is ob-
tained by a simple regression analysis (using gnuplot’s fit).
The error obtained in this regression analysis is 9.3258e+09
with a standard deviation of 32190.1. Moreover, we fit the
function cn2 to this data. Here, gnuplot’s fit obtained an
error of 2.47344e+08 with a standard deviation of 5242.39
when using 0.323626 as multiplicative constant. The results
can be seen in Figure 5.

5. A LOCAL FITNESS FUNCTION
Closeness centrality is clearly a much better fitness func-

tion than eccentricity with respect to the time needed on
average to find an optimal topology. But it has the dis-
advantage of being less well motivated. While eccentricity
measures the centrality of an agent’s position quite accu-
rately and is in good agreement with our understanding of
selfish agents, closeness centrality is a much more global
measure. But both fitness functions are not at all in ac-
cordance with our idea of agents acting locally leading to a
globally optimal topology as emergent phenomenon. Eccen-
tricity and closeness centrality both require that each agents
knows the distances to all agents in the complete network ex-
actly. This is not very different from knowing the complete
network. Such global knowledge is usually not available in
practical settings. It may therefore be doubted that the
results obtained so far are of much use for a practitioner.
Therefore, we propose a different fitness function that can
be computed by each agent using only local knowledge. We
consider the design and analysis of this fitness function to be
our main contribution and the most important improvement
over the work due to Lehmann and Kaufmann [12].

Clearly, the most direct and most local measure of the
connectedness of a single agent v ∈ V is its current de-
gree degt(v). Clearly, maximization of the current degree
cannot lead to a stable state since in a spanning tree at
most one node may be connected to all other nodes. Con-
sidering the unique globally optimal topology, the star, we
see that the connectedness of each node is very good even
though all nodes that are different from the center node
have only degree 1, since they are connected to the center
node, only. We still consider them to be well connected
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since the distance to any other node is just 2. This moti-
vates the definition of a fitness function that counts for some
agent v ∈ V the number of nodes in distance at most 2. If
Nt(v) := {u ∈ V | {u, v} ∈ Et} denotes the set of direct
neighbors of v, we can express this fitness f : G × V → R as

f(Gt, v) = |{u ∈ V | dt(u, v) ∈ {1, 2}}|

= deg(v) +
X

u∈Nt(v)

(deg(u) − 1) =
X

u∈Nt(v)

deg(u).

Clearly, each agent v ∈ V aims at maximizing f(·, v). While
in the extreme case of the star this fitness function still im-
plies that each agent v ∈ V knows about the distances to all
other agents in the network, it is in general a fitness func-
tion that requires only quite restricted local knowledge to
be computed by any agent.

We consider the algorithmic frame (Definition 4) and this
local fitness function together with our mutation operator
(Definition 7) and > for comparisons in the selection step
(line 4). It is easy to see that again the star is the unique
stable and globally optimal topology. The first question to
be answered is whether this topology can be reached us-
ing an arbitrary network as starting point at all. We give
an affirmative answer by providing an upper bound on the
expected number of steps this takes.

Theorem 5. The expected number of steps needed to reach
a stable topology for a network with |V | = n agents chosen
uniformly at random using mutations, f as fitness function
and > for comparison is O(n3).

Proof. Clearly, the process has reached a stable topol-
ogy when an agent v∗ ∈ V with degree degt(v

∗) = n − 1
exists. For any mutation using some node v ∈ V as active
node and some node u ∈ V with dt(v, u) = 2 as “partner”
we have a trivial lower bound of Ω(1/n2) for the probability
that it occurs: Since there are only n nodes, any node is
selected with probability 1/n as active. Furthermore, each
node has at most n− 2 other nodes with distance exactly 2,
so the probability to select u is bounded below by 1/(n− 2)
leading to 1/(n(n−2)) = Ω(1/n2) as lower bound as claimed.
Since we have degt(v) ≥ 1 for any node v ∈ V at any time
step t ∈ N0 (since the network is connected), it suffices to
prove that (1) the maximal degree in the network cannot
decrease over time and (2) at any time step there exists at
least one node with maximal degree such that a mutation
can increase its degree by 1.

Clearly, the degree of a node z ∈ V can only change if it
participates in a mutation as node u, v, w as seen in Figure 1.
We see that the degree of v does not change, the degree
of u is increased and the degree of w is decreased by this
mutation. Thus, for (1) we only have to consider the case
z = w. Let G∗ := (V, E∗) denote the graph that is created
by mutation prior to selection. Whether the mutation leads
to a change in the network is determined in the selection
step by a comparison of f(Gt, v) and f(G∗, v). Remember
that f(Gt, v) =

P

u∈Nt(v) deg(u) holds if Nt(v) denotes the

set of agents with direct connections to v in Gt. We see that
we have f(G∗, v) = f(Gt, v)−(degt(w)−2)+(degt(u)−1) =
f(Gt, v)−degt(w)+degt(u)+1 by taking into account that
v loses the neighbors of w except for u and v itself and gains
the neighbors of u except for w. Thus, the mutation changes
the network iff degt(u) ≥ degt(w) holds. As a consequence
the degree of a node z can only decrease over time if it

either does not have maximal degree or another node with
maximal degree exists. In the latter case, the degree of this
node is increased so that the maximal degree in the network
is increased. So, the maximal degree in the network cannot
decrease over time as claimed.

For the proof of (2), we reconsider the three nodes u, v, w
involved in a mutation as seen in Figure 1. As we already
discussed the only node with increased degree is u. If the
mutation actually changes the network, however, depends on
the function value of f . As we discussed for (1), the topology
is changed iff degt(u) ≥ degt(w) holds. Thus, selecting a
node v as active node such that a node u with maximal
degree can be selected as node with distance 2 leads to a
mutation that increases the maximal degree. This completes
the proof (2) and thus of the upper bound O(n3).

nu
m

be
r o

f i
te

ra
tio

ns

number of nodes

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 0  100  200  300  400  500  600  700  800  900  1000  1100

Min, Max, Quartiles

Mean

0.52683*n^2

63.1972*n*log(n)

Figure 6: Experimental data using the number of

neighbors with distance ≤ 2 as fitness.

We remark that the lower bound from Theorem 3 carries
over to this fitness function. Therefore, we have a gap of or-
der Θ(n2/ log n) between upper and lower bound. Again, we
conjecture that the lower bound can be improved. Neverthe-
less, we do not believe the upper bound O(n3) to be tight. A
more careful analysis may lead to an improved upper bound
that may even reveal that our local fitness function is with
respect to the average performance not inferior to closeness
centrality as fitness functions in spite of its limited use of
information on the current network’s topology. To support
this point of view we present the results of some experiments
(see Figure 6) consisting of 100 independent runs with a ran-
domly chosen spanning tree for each run. We consider the
same values of the number of nodes n as above and, again,
plot the mean value, the first and third quantile as well as
the minimum and maximum. Moreover, we fit the same
curves to this data, namely c1n log n for a lower and c2n

2

for an upper bound. The errors obtained by gnuplot’s fit
are 2.75368e+10 with a standard deviation of 55314.1 and
constant c1 = 63.1972 and 2.5771e+08 with a standard de-
viation of 5351.11 and constant c2 = 0.52683, respectively.
The results can be seen in Figure 6.

6. CONCLUSIONS AND OUTLOOK
The development of networks of autonomous, selfish agents

is a process that takes place in different areas. It can be
modeled in quite different ways, here the modeling as an
self-evolutionary process has been discussed. This perspec-
tives allows for the formal analysis of emergent behavior like
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the finding of optimal stable topologies and, moreover, for
the analysis of the average time needed to find such a topol-
ogy. Building on results due to Lehmann and Kaufmann [12]
we improved lower and upper bounds on the expected time
needed to find an optimal stable topology. For eccentricity
as fitness function, we proposed a slightly modified mutation
operator that reduces the expected time needed to decrease
the diameter from 3 to 2 from exponential to a polynomial
of small degree. For closeness centrality as fitness function,
we could improve the upper bound from O(n5) to O(n5/2)
and present a lower bound of order Ω(n log n). The main
improvement presented is the design and analysis of a dif-
ferent fitness function that fits with the original ideas of the
analysis of such networks of autonomous agents. It allows
for a purely local computation of the fitness value by each
of the agents and does not require any global knowledge.
For this fitness function an upper bound of O(n3) on the
expected time needed to find the unique globally optimal
topology was shown.

Clearly, many questions are still open. For eccentricity as
fitness function and our mutation operator an upper bound
on the expected time to reach a stable topology is needed.
Our upper bound takes into account the final phase (reduc-
ing the diameter from 3 to 2), only. It is an interesting
question whether our mutation operator leads to an over-
all polynomial expected run time even for arbitrary initial
distributions. For closeness centrality, it would be nice to
close the Θ(n3/2/ log n) gap between the upper and lower
bound. We conjecture that the upper bound for a family of
spanning trees can be generalized and the lower bound can
be improved significantly to Ω(n2). This would also help
with respect to our local fitness function. The lower bound
Ω(n log n) carries over and we speculate that improved lower
bounds would carry over, as well. Moreover, we speculate
that the upper bound O(n3) is not tight and may be further
reduced, perhaps even to O(n2). The results of experiments
reported make both conjectures seem plausible.

Reconsidering the complete model, the algorithmic frame
is quite restrictive. It is assumed that at each time step ex-
actly one agent is selected to become active. Clearly, again,
this requires some kind of global information exchange or
global control. It would be much nicer to have the agents
decide (randomly) themselves when to become active. It is
not difficult to see, however, that the mutation operators
considered here are no longer able to guarantee that the
network remains connected if more than one agent may be-
come active in each time step. Consider for example two
mutations where two nodes which have a distance of two to
each other become active and choose the respectively other
node for an edge exchange. Then the edges to the middle
node will be deleted, leaving a forest of trees. The interest-
ing and non-trivial task which arises here is to find ways of
guaranteeing connectedness on a local level. Connectedness
of a graph seems to be a global property of the network.
This can be made plausible by comparing the difficulty of
deciding connectedness for single perceptrons with bounded
diameter [17]. Design and analysis of appropriate models
and appropriate mutation operators are subject of future
research.
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