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ABSTRACT
In the longest common subsequence problem the task is to
find the longest sequence of letters that can be found as sub-
sequence in all members of a given finite set of sequences.
The problem is one of the fundamental problems in com-
puter science with the task of finding a given pattern in a
text as an important special case. It has applications in
bioinformatics, problem-specific algorithms and facts about
its complexity are known. Motivated by reports about good
performance of evolutionary algorithms for some instances of
this problem a theoretical analysis of a generic evolutionary
algorithm is performed. The general algorithmic framework
encompasses EAs as different as steady state GAs with uni-
form crossover and randomized hill-climbers. For all these
algorithms it is proved that even rather simple special cases
of the longest common subsequence problem can neither be
solved to optimality nor approximately solved up to an ap-
proximation factor arbitrarily close to 2.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Pattern
Matching ; G.3 [Probability and Statistics]: Probabilistic
Algorithms

General Terms
Algorithms, Performance, Theory

Keywords
longest common subsequence problem, run time analysis,
crossover

1. INTRODUCTION
Evolutionary algorithms are robust general search heuris-

tics that are applied in many different contexts. One par-
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ticularly important area of application is optimization, typ-
ically for problems that are poorly understood and where
no problem-specific algorithms are known. There is a wide
variety of different kinds of evolutionary algorithms and it
is common practice to enhance and tune the algorithms
in order to improve their empirical performance leading to
very sophisticated and sometimes rather complicated heuris-
tics. In comparison, theoretical analysis of evolutionary al-
gorithms is way behind. One branch of evolutionary algo-
rithm theory is concerned with the analysis of the expected
time needed to solve some problem either to optimality or
approximately up to some specified approximation factor.
This corresponds to the classical field of design and analysis
of algorithms where one is concerned with the (expected)
run time of algorithms. Such analyses for evolutionary al-
gorithms are often concerned with very simple evolutionary
algorithms dealing with very simple fitness functions artifi-
cially designed to serve as example. This field started off
15 years ago with the analysis of a simple randomized hill-
climber, called the (1+1) evolutionary algorithm, on a toy
problem called OneMax [11]. Since then an arsenal of pow-
erful tools and methods for the analysis of evolutionary algo-
rithms has been developed [1]. Today, analyses of evolution-
ary algorithms’ run time are no longer restricted to artifi-
cial example functions. They are also concerned with “real”
problems, often classical combinatorial optimization prob-
lems. Concrete examples include the maximum matching
problem [5], computation of an Eulerian cycle [12], compu-
tation of minimum spanning trees [13], the maximum clique
problem [15], the single source shortest paths problem, and
sorting [14]. In addition to these analytical studies empiri-
cal investigations provide helpful information [2]. One com-
binatorial optimization problem where results of empirical
investigations are known [7, 9] but theoretical analysis has
not yet been performed is the longest common subsequence
problem (LCS). There the task is to find the longest se-
quence of letters from some finite alphabet Σ that can be
found as subsequence in all members of a given finite set
of sequences over the same alphabet Σ. The problem is
one of the fundamental problems in computer science and
has applications in bioinformatics. Note that the task of
finding a given pattern in a text is included as an impor-
tant special case. There is a problem-specific algorithm
(implementing a dynamic programming approach) solving
the problem for a fixed number of n sequences of lengths l1,

l2, . . . , ln in time O

„
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[9] present a coding of this problem suitable for evolution-
ary algorithms. Using genetic algorithms they report good
results, even in comparison with the problem-specific dy-
namic programming approach. However, these empirically
convincing results are not accompanied by an analysis ac-
tually proving that some evolutionary algorithm is to some
degree efficient on some kinds of instances of LCS in some
coding. Here, such an analysis is performed. We investi-
gate a general framework for evolutionary algorithms using
an elitist selection (known as plus-selection from evolution
strategies), uniform crossover, and standard bit mutation.
Setting the parent and offspring population size as well as
the crossover probability a wide range of different evolu-
tionary algorithms can be obtained as instances of this EA
framework. This includes a steady state genetic algorithm
as well as the so-called (1+1) EA. We use the same cod-
ing for LCS as described by Julstrom and Hinkemeyer [9]
and consider the fitness function proposed there together
with two different fitness functions. In this general setting,
we prove a couple of lower bounds on the performance of
these evolutionary algorithms by considering specific LCS
instances and analyzing the EAs’ performance on these in-
stances. This is in accordance with the usual worst case
perspective used when analyzing the (expected) run time of
(randomized) algorithms [3].

We begin with precise formal definitions of the problem,
the specific coding we consider and the fitness functions we
use in Section 2. After that we give a precise definition of
the kind of evolutionary algorithms investigated (Section 3).
Using this framework we prove several lower bounds on the
performance showing that these evolutionary algorithms are
not at all efficient for this LCS coding in the worst case
(Section 4). Reconsidering the LCS instances used in that
section, we discuss restricted classes of LCS instances and
show that these restrictions do not imply much improved
worst case performance (Section 5). We discuss our findings
and point out open problems in Section 6.

2. DEFINITION OF THE PROBLEM
The longest common subsequence problem (LCS) is de-

fined over some finite alphabet Σ. In computer science, the
binary alphabet Σ = {0, 1} is commonly used. In bioin-
formatics, the alphabet Σ = {A, C, G, T} for DNA coding
is of particular interest. We consider sequences of letters
from Σ of finite lengths. For such a sequence s we write
|s| for the length of s, i. e., the number of letters from Σ
in s. Moreover, we write |s|l for a sequence s and a letter
l ∈ Σ to refer to the number of occurrences of l in s. For
example, for the sequence 0001010 we have |0001010| = 7,
|0001010|0 = 5, |0001010|1 = 2, and |0001010|2 = 0. We
write s(i) with i ∈ N0 for the prefix of length i of s, e. g.,
0001010(3) = 000. We use ε as symbol for the empty se-
quence of length 0, i. e., |ε| = 0. For convenience, we use
the notion si for a sequence s and i ∈ N0 for a repetition
of s for i times. Thus, 03 = 000 and (01)2 = 0101. Using
this notation and writing concatenations of sequences with-
out any special symbol, we have 0001010 = 03(10)2. For an
alphabet Σ, we refer to the set of all sequences of lengths
exactly i as Σi. The set of all sequences of finite length over
Σ is called Σ∗, i. e., Σ∗ =

S
i≥0

Σi.

For two sequence Y = y1 · · · ym ∈ Σm and X = x1 · · ·xn ∈
Σn (with m ≤ n) we call Y a subsequence of X if there is

a sequence of indices 0 < i1 < i2 < · · · < im ≤ n such that
yj = xij holds for all j ∈ {1, 2, . . . , m}. For example, 00100
is a subsequence of 0001010 while 001100 is no subsequence
of 0001010. Note that the sequence of indices need not be
unique, for our first example the sequences 1, 2, 4, 5, 7 and
1, 3, 4, 5, 7 are both valid sequences that prove that 00100
is a subsequence of 0001010.

For m sequences X1, X2, . . . , Xm over the same alpha-
bet Σ, a sequence Y over the same alphabet Σ is called
a common subsequence, if Y is a subsequence of Xi for all
i ∈ {1, 2, . . . , m}. It is called a longest common subsequence,
if all other Y ′ ∈ Σ∗ that are common subsequences do not
have greater length, i. e., |Y | ≥ |Y ′| for all common subse-
quences Y ′.

In the longest common subsequence problem, one is given
m sequences X1, X2, . . . , Xm ∈ Σ∗. The objective is to find
a sequence Y ∈ Σ∗ that is a longest common subsequence.
Note that there need not be a uniquely determined solution.
For example, considering X1 = 100011, X2 = 01110000,
and X3 = 001100, we see that 011 and 100 are both longest
common subsequences.

When using evolutionary algorithms for this problem, a
coding is needed. Clearly, there are countless possible ways
of defining a search space and mappings from points in the
search space to candidate solutions. We consider a simple
binary encoding here that is used by Julstrom and Hinke-
meyer, too [9]. For m sequences X1, X2, . . . , Xm ∈ Σ∗, let
X1 be a shortest sequence, i. e., we assume |X1| ≤ |Xi| for
all i ∈ {1, 2, . . . , n} without loss of generality. Let |X1| = n
be this length. Clearly, the length of a longest common
subsequence is bounded above by the length of the shortest
sequence n. Therefore, we can represent a candidate solu-
tion Y ∈ Σ∗ by some s ∈ {0, 1}n, i. e., a bit string of fixed
length n where the bits set to 1 indicate letters in X1 in the
candidate solution while bits set to 0 indicate letters left out.
For example, for X1 = ACGTA, 00010 represents T , 11101
represents ACGA. The all 1-string 1n represents X1, the all
0-string 0n represents ε. Note that this way s ∈ {0, 1}n may
represent sequences that are not common subsequences. We
will have to take care of such infeasible solutions when we
define a fitness function. Note that with the all 0-string 0n a
trivial feasible candidate solution is known. We use a func-
tion c : {0, 1}n → Σ∗ that maps bit strings to the candidate
solutions they represent.

Julstrom and Hinkemeyer [9] define a fitness function
fJH : {0, 1}n → Z that maps feasible points to positive fit-
ness values and infeasible points to negative values.

Definition 1. For sequences X1, X2, . . . , Xm ∈ Σ∗ with
|X1| ≤ |Xi| for all i ∈ {2, . . . , m}, let n = |X1|. For
s ∈ {0, 1}n let c(s) be the candidate solution represented
by s and let k(s) be the number of sequences X1, X2, . . . , Xm

such that c(s) is a subsequence. The function fJH : {0, 1}n →
Z is defined in the following way:

fJH(s) =

8>>>>>>>>>>>><>>>>>>>>>>>>:

3000(|c(s)|+ 30k(s) + 50)

if |c(s)| = n and k(s) = m

3000(|c(s)|+ 30k(s))

if |c(s)| < n and k(s) = m

−1000(|c(s)|+ 30k(s) + 50)(m− k(s))

if |c(s)| = n and k(s) < m

−1000(|c(s)|+ 30k(s))(m− k(s))

if |c(s)| < n and k(s) < m
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While it is reported that this fitness function leads to good
results we consider it to be somewhat contrived. In partic-
ular, it is unclear why the special case |c(s)| = n gets extra
reward and extra attention: in general, no feasible solution
with |c(s)| = n need to exist. We propose a simpler fitness
function based on the following idea. We map the letters
in c(s) to letters in the sequences X1, X2, . . . , Xm from left
to right. Each letter that can be mapped leads to a reward
of +1, letters that cannot be mapped lead to a decrease by
−1. The formal definition follows.

Definition 2. For sequences X1, X2, . . . , Xm ∈ Σ∗ with
|X1| ≤ |Xi| for all i ∈ {2, . . . , m}, let n = |X1|. For s ∈
{0, 1}n let c(s) be the candidate solution represented by s
and let a function MAX be defined by MAX(c(s), X1, X2,
. . . , Xm) = min{max{k | c(s)(k) is subsequence of Xi} |
i ∈ {1, . . . , m}}.

The function fmax : {0, 1}n → Z is defined in the follow-
ing way: fmax(s) = MAX(c(s), X1, X2, . . . , Xm) −(|c(s)| −
MAX(c(s), X1, X2, . . . , Xm))

It is easy to see that fmax(c) = 2MAX(c(s), X1, X2, . . . ,
Xm})− |c(s)| holds. While fmax also has the property that
feasible solutions are mapped to non-negative values (with
fmax(ε) = 0), it is not the case that infeasible solutions nec-
essarily have negative fitness values. It is, however, the case
that for infeasible solutions removing a letter that cannot be
mapped, i. e., setting the corresponding bit to 0, increases
the function value.

Since the mapping done in fmax is a very simple left-to-
right mapping, one may speculate that a more clever map-
ping could yield more valuable information for an evolution-
ary algorithm and lead to a better performance. Clearly, an
optimal mapping would compute the longest common subse-
quence of the sequences X1, X2, . . . , Xn and the candidate
solution c(s). Since for such a mapping LCS needs to be
solved, such a fitness function makes no sense at all with
respect to practical applications. Since, on the other hand,
it is the best possible mapping and allows to investigate of
how much use this information is for an evolutionary algo-
rithm, it is an interesting fitness function from a theoretical
point of view. Therefore, we give a formal definition here
and include it in our considerations.

Definition 3. For sequences X1, X2, . . . , Xm ∈ Σ∗ with
|X1| ≤ |Xi| for all i ∈ {2, . . . , m}, let n = |X1|. For
s ∈ {0, 1}n let c(s) be the candidate solution represented by
s and let a function LCS be defined that yields as LCS(c(s),
X1, X2, . . . , Xm) the length of a longest common subse-
quence of c(s), X1, X2, . . . , Xn.

The function fLCS : {0, 1}n → Z is defined in the follow-
ing way: fLCS(s) = LCS(c(s), X1, X2, . . . , Xm) −(|c(s)| −
LCS(c(s), X1, X2, . . . , Xm))

Again, it is easy to see that fLCS(c) = 2LCS(c(s), X1, X2,
. . . , Xm}) − |c(s)| holds. Since fLCS is similar in spirit to
fmax, it comes as no surprise that it has similar properties.

3. DEFINITION OF THE EVOLUTIONARY
ALGORITHMS

There is a large variety of evolutionary algorithms that
can have very different properties. For theoretical analyses,
it is of course necessary to specify exactly what evolution-
ary algorithm is analyzed. While in practical applications it

makes sense to improve an evolutionary algorithm by adding
more heuristic ideas such advanced evolutionary algorithms
are typically almost impossible to analyze theoretically, at
least for non-trivial fitness functions. For theoretical analy-
ses it makes therefore sense to concentrate on rather simple
evolutionary algorithms that are close to the more basic vari-
ants [4]. For the development of analytical tools, it makes
even sense to restrict the analysis to extremely simple search
heuristics like randomized mutation hillclimbers (also known
as (1+1) EA). While such analyses provide valuable insights,
they have the drawback to tell the practitioner not so much
about the variants she usually applies. Here, we try to find
some middle ground by considering a class of simple evolu-
tionary algorithms that is rather general and encompasses
typical steady state genetic algorithms.

The evolutionary algorithms we consider make use of two
variation operators, namely standard bit mutation and uni-
form crossover. Standard bit mutation creates an offspring
y as a copy of its one parent x and, independently for each
bit in y, changes the value of this bit with probability 1/n.
While it is known that mutation probabilities different from
1/n can be useful, 1/n is the most common and most rec-
ommended choice. Uniform crossover creates an offspring
y from two parents x1 and x2, by copying, independently
for each bit in y, the value of the bit with equal proba-
bility either from x1 or x2. These two variation operators
are embedded in an evolutionary algorithm following the
(µ+λ)-selection paradigm from evolution strategies: The
parent population size is µ, the offspring population size is
λ. In each generation, λ offspring are created independently
and identically distributed by selecting parents uniformly at
random and applying variation operators to those parents.
Then, the next population is selected from both, the par-
ents and the offspring, selecting the µ best. If there are ties,
offspring are preferred over parents. If there are still ties,
those are broken randomly. We give a precise definition in
pseudo-code.

Definition 4. Generic Evolutionary Algorithm

1. For i ∈ {1, 2, . . . , µ}
Select xi ∈ {0, 1}n uniformly at random.

2. For i ∈ {1, 2, . . . , λ}
Select z1 ∈ {x1, . . . , xµ} uniformly at random.
With probability pc

Select z2 ∈ {x1, . . . , xµ} uniformly at random.
y := uniform crossover(z1, z2)
yi := mutation(y)

Else (with the remaining prob. of 1− pc)
yi := mutation(z1)

3. Sort x1, . . . , xµ, y1, . . . , yλ descending according to fitness
breaking ties by sorting offspring in front of parents
breaking remaining ties randomly.

4. Replace x1, . . . , xµ by the first µ elements
from this sorted sequence.

5. Continue at line 2.

The setting µ = λ = 1 and pc = 0 yields the well-known
(1+1) EA as already analyzed by Mühlenbein [11] and many
others. With µ > 1, λ = 1 and pc > 0 we get some typical
steady state genetic algorithm with uniform crossover.

When concerned with exact optimization, we investigate
the time an evolutionary algorithm as defined in Definition 4
needs to find a longest common subsequence. As is common
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practice in theoretical analyses of evolutionary algorithms
we assume that time can be measured by counting the num-
ber of function evaluations. This can easily be connected
to the number of iterations of the main loop (lines 2–5),
also called generations. Line 1 is executed only once and
infers µ function evaluations. In each generation it suffices
to evaluate the offspring, so that we get a total of µ + g · λ
function evaluations in g generations. We call the random
number of function evaluations until an optimal solution is
found the optimization time T and are mostly interested
in its expectation E (T ). For lower bounds, we can use
E (T ) ≥ t · Prob (T ≥ t) and concentrate on Prob (T ≥ t).
When concerned with approximation, we investigate the
time until some common subsequence Y is found such that
for all common subsequences Y ′ we have |Y ′|/|Y | ≤ r for
some pre-specified approximation ratio r. Again we use the
number of function evaluations as measure for time. As in
complexity theory, we consider only polynomial optimiza-
tion times to be efficient. Therefore, we restrict our atten-
tion to population sizes that are bounded above by some
polynomial p where p is a polynomial in n, the length of
the shortest sequence in the input. We consider the time
needed as a function of this parameter n. This corresponds
to usual analyses of run times of algorithms where the run
time is described as a function of the input size. Adopting
the usual worst case perspective we are looking for a func-
tion t : N → N such that for any LCS instance where the
shortest sequence has length n the expected time E (T ) is
bounded by O(t(n)).

4. LOWER BOUNDS ON THE EVOLUTION-
ARY ALGORITHM PERFORMANCE

In this section we prove a couple of lower bounds on the
performance of an evolutionary algorithm as defined in Def-
inition 4 for LCS. We consider both, exact optimization and
approximation. For a lower bound, it suffices to define a spe-
cific instance of the longest common subsequence problem
and analyze the EA for this specific instance.

Before we begin with a concrete lower bound, we bring
structure to LCS by characterizing instances according to
some of their properties. One of the obvious properties of
an LCS instance is the number of sequences in the input.
Clearly, the problem becomes trivial if this number equals
1 since each sequence is the longest subsequence of itself.
For larger numbers of sequences, the problem difficulty can
only increase with an increasing number of sequences. In
particular, by copying a sequence we can obviously increase
the number of sequences without increasing the difficulty
of the instance. We see that instances with exactly two
sequences are the easiest non-trivial LCS instances. Note
that the problem-specific LCS algorithm using a dynamic
programming approach has polynomial worst case run time
for such instances [3].

Another obvious property is the number of letters in the
alphabet Σ. We may assume w. l. o. g. that Σ does not con-
tain any letters that appear in none of the input sequences,
otherwise Σ can easily be made smaller. Clearly, the prob-
lem becomes trivial if this number |Σ| equals 1 since then
the longest common subsequence is given by the shortest
sequence of the instance. For larger numbers of letters, the
problem difficulty can only increase with an increasing |Σ|.
Thus the instances with |Σ| = 2 are the easiest non-trivial
LCS instances.

We restrict ourselves in the following to problem instances
with Σ = {0, 1} and exactly two sequences in each instance.
Thus, we are dealing with a simple sub-class of all LCS
instances. In particular, optimal solutions to all our in-
stances can be found deterministically in polynomial time.
Large lower bounds for these simple instances are therefore
a strong indication that the kind of evolutionary algorithms
we consider is not an efficient heuristic for LCS.

Our worst case instances and our proofs will all follow the
same pattern. The two sequences define a fitness landscape
with a local optimum with a huge basin of attraction and a
global optimum that is due to this structure of the local op-
timum difficult to find. In particular, we partition the search
space into three disjoint sets S0, S1, S2, such that with prob-
ability very close to 1 the initial population is completely
within S1. The optimal solution is in S2 and all points in S2

have large Hamming distance from all points in S1. All other
points belong to S0 and have worse fitness in comparison to
all points in S1. Due to the strict plus-selection employed
in the evolutionary algorithms we consider, the population
cannot enter S0 and thus has to find a way from S1 to S2

directly. Due to the large Hamming distance this is unlikely
to happen due to mutation. And since the strings in S1 are
either sufficiently similar or S2 is sufficiently small, this is
unlikely to happen due to uniform crossover, either.

Detailed proofs for the results we present a quite lengthy.
Since all our proofs follow basically the same structure, we
will present a proof for the first statement in full detail. For
the other statements, the proof ideas and differences to this
first proof are outlined. We invite the reader to fill in the
missing details.

Theorem 1. The probability that an evolutionary algo-
rithm as defined in Definition 4 finds an optimal solution
to a worst case instance of LCS X, Y ∈ {0, 1}∗ with X ∈
{0, 1}n using the fitness function fJH, fmax, or fLCS within

t function evaluations is bounded above by t · e−Ω(n) for all
settings of pc, µ = nO(1), and λ = nO(1).

Proof. We begin with the proof for the fitness function
fJH. For each value of n we present an LCS instance with
two sequences over the alphabet {0, 1} where the shorter
sequence has length n. We assume that n is a multiple of
32. If this is not the case, we replace in the following n by
n′ := 32 · bn/32c and append a sequence of n − n′ letters
to the two sequences we define. This does not change our
results if n is sufficiently large. Since we are proving an
asymptotic result (using O- and Ω-notation) we can assume
that n is sufficiently large.

Consider the two sequences

X = 0(1/4)n1(3/4)n

and

Y = 1(3/4)n0(5/32)n1(13/32)n

where the shorter sequence, X, obviously has length n. We
partition the evolutionary algorithm’s search space S = {0, 1}n

in three disjoint sets S0, S1, S2 in the following way (with
γ := 180, 000 + 3, 000 · (14/32)n):

S0 := {s | (fJH(s) < γ)}
S1 :=

˘
s | (fJH(s) ≥ γ) ∧

`
|c(s)|0 > 0

´¯
S2 :=

˘
s | (fJH(s) ≥ γ) ∧

`
|c(s)|0 = 0

´¯
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Note that we have fJH(s) = γ for s ∈ {0, 1} that represents a
common subsequence of X and Y of length (14/32)n. Thus,
S0 contains all s representing infeasible solutions and feasi-
ble solutions of length less than (14/32)n. The other feasible
solutions are divided into S1 and S2. The set S1 contains all
s representing solutions with at least one letter 0 ∈ Σ, the
set S2 contains all other solutions. Observe that all common
subsequences are of the form 0i1j (with i, j ∈ N0) as enforced
by X. Thus, a common subsequence containing the letter
0 can have length at most (5/32)n + (13/32)n = (9/16)n:
this is the longest such sequence in Y . We conclude that
the length of all solutions represented by bit strings in S1

have length at least (14/32)n and at most (9/16)n. Now
consider sequences 1j with (9/16)n < j ≤ (3/4)n. Clearly,
these sequences are all common subsequences of X and Y .
Due to the definition of the partition, bit strings represent-
ing these sequences are all in S2. Since the fitness increases
with length, the global optimum of fJH is a string represent-
ing 1(3/4)n, the longest common subsequence.

Now we prove that the initial population is completely
within S1 with probability exponentially close to 1. Our
main tool in the proof are Chernoff bounds [10]. Cher-
noff bounds are so-called tail estimations, they give upper
bounds for the probability that the sum of a number of in-
dependent 0-1-valued random variables deviates from its ex-
pected value. We make use of the following result. For m
independent 0-1-valued random variables that all take value
1 with probability p (0 < p < 1) and, thus, the value 0 with
probability 1 − p, the probability that the sum of these m
random variables deviates from its expected value pm by
a constant factor is at least e−Ω(pm). Chernoff bounds are
in fact slightly more general than this. Moreover, for the
special case we consider slightly stronger bounds are known
[6]. For our purpose, however, these results are sufficiently
strong.

The initial population consists of µ independently and
identically distributed bit strings from {0, 1}n, where each
bit string is independently selected according to the uniform
distribution. We identify a bit string s ∈ {0, 1}n with the
candidate solution it represents, c(s). We see that the num-
ber of occurrences of the letter 0 is binomially distributed
with parameters (1/4)n and 1/2, since we have a letter 0 for
each of the left-most (1/4)n bits that are set to 1. In the
same way we see that the number of occurrences of the letter
1 is binomially distributed with parameters (3/4)n and 1/2.
We can apply Chernoff bounds to bound the probability for
deviations from the expected number of 0s and 1s in the fol-
lowing way. For the i-th bit, we define a 0-1-valued random
variable Bi. This way, the number of occurrences of the let-
ter 0 is the sum of (1/4)n independent 0-1-valued random
variables that all take value 0 with probability 1/2. We con-
sider one initial individual and see that it has the form 0i1j

with (3/32)n < i < (5/32)n and (11/32)n < j < (13/32)n

with probability 1 − e−Ω(n). Thus, this initial individual
has length greater than (14/32)n and therefore cannot be-
long to S0. Since it contains more than (3/32)n occurrences
of the letter 0, it cannot belong to S2. Thus, an initial
individual belongs to S1 with probability 1 − e−Ω(n). We
are dealing with a population of size µ where µ is polyno-
mially bounded. Thus, using the simple union bound, we
see that the probability that there is an individual not be-
longing to S1 in the initial population is bounded above by
µ · e−Ω(n) = eln µ−Ω(n) = e−Ω(n).

We see that the initial population is completely contained
in S1 with probability 1 − e−Ω(n). Due to the strict plus-
selection employed in lines 3–4 of Definition 4, the popu-
lation can never contain an element of S0. Thus, the time
needed to reach the longest common subsequence is bounded
below by the time needed to reach a solution in S2 based on
a population consisting of solutions from S1, only.

In each generation, λ offspring are created independently
and identically distributed. We assume that the current
population is completely contained in S1. Let A denote the
event to produce an offspring that belongs to S2 given that
mutation is used to produce the offspring. Let B denote
the event to produce an offspring that belongs to S2 given
that uniform crossover (with subsequent mutation) is used
to produce the offspring. Then the probability to produce
an offspring belonging to S2 is given by (1− pc) ·Prob (A)+
pc · Prob (B) ≤ Prob (A) + Prob (B). We give bounds on
Prob (A) and Prob (B).

First we deal with the case that the offspring is produced
by a mutation. We claim that for each s ∈ S1 we have
|c(s)|0 ≥ (1/32)n. By definition of S1, s ∈ S1 implies
fJH(s) ≥ γ (with γ = 180, 000 + 3, 000 · (14/32)n) and
|c(s)|0 ≥ 1. As we have seen above, fJH(s) ≥ γ implies
|c(s)| ≥ (14/32). On the other hand, |c(s)|0 ≥ 1 implies
|c(s)|1 ≤ (13/32)n, otherwise c(s) is not a subsequence of
Y . Thus, |c(s)|0 ≥ (1/32)n follows as claimed. These obser-
vations imply the following for mutations leading from S1

to S2. In such a mutation, all |c(s)|0 bits set to 1 in s and
leading to the letter 0 in c(s) have to be flipped to 0 making
the letter 0 in c(s) vanishing. The probability to mutate b
specific bits in a single mutation is bounded above by (1/n)b.
Since we have |c(s)|0 ≥ (1/32)n, such a mutation has prob-

ability ≤ n−(1/32)n = e−Ω(n log n). Since we create λ off-
spring in each generation (and λ is polynomially bounded),
the probability to create such an offspring in one genera-
tion is bounded above by λ · e−Ω(n log n) = eln(λ)−Ω(n log n) =
e−Ω(n log n) (again simply making use of the union bound).

Clearly, this is sufficiently small to have the bound t ·e−Ω(n)

for t generations claimed in the theorem.
We are left with the case where the offspring is produced

by uniform crossover. As we know from our considerations
for offspring created by mutation, it is the 1-bits in s ∈ S1

leading to the letter 0 in c(s) that all need to be changed
to 0 in the offspring y ∈ {0, 1}n that make the step from S1

to S2 difficult. Consider the two parents z1 and z2 selected
from the current population for crossover (see Definition 4).
Since the complete population is contained in S1, we have
|c(z1)|0 ≥ n/32 and |c(z2)|0 ≥ n/32. Consider the i-th posi-
tion in both, z1 and z2. If both parents have the same value
b at this position, then the offspring (after uniform crossover
prior to mutation) has value b at this i-th position, too. If
the parents have different values at this position, then the
offspring (after uniform crossover and prior to mutation) has
value 0 or value 1 with equal probability 1/2. This is due to
the definition of uniform crossover and holds independently
for all positions. Now we consider the at least n/32 posi-
tions in z1 and the at least n/32 positions in z2 where criti-
cal 1-bits are. We call a position a common position if both
parents, z1 and z2, have a critical 1-bit there. Let C be the
number of such common positions. We distinguish two cases
with respect to C. First, assume C ≥ n/64. In this case the
offspring y (after uniform crossover and prior to mutation)
is guaranteed to have at least n/64 positions set to 1, thus
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|c(y)|0 ≥ n/64 holds. The final offspring after mutation may
still belong to S2, but to this end a mutation of these |c(y)|0
bits is necessary. We know that such a mutation has proba-
bility at most n−|c(y)|0 ≤ n−n/64 = n−Ω(n log n). Thus, as in
the case where the offspring is created by mutation alone,
the probability to create an offspring in S2 is sufficiently
small. Now we are only left with the case that C < n/64
holds. Then there are |c(z1)|0 − C + |c(z2)|0 − C positions
in y where the bit value is 0 or 1 with equal probability 1/2.
Since we have C < n/64 and |c(zi)|0 ≥ n/32 for i ∈ {1, 2},
we have that this number of positions is bounded below by
n/32 + n/32− 2 · n/64 = n/32. Clearly, the number of bits
with value 1 is bounded below by a random variable that is
binomially distributed with parameters n/32 and 1/2. We
can apply Chernoff bounds as above and see that with prob-
ability 1 − e−Ω(n) we have |c(y)|0 ≥ n/128. Clearly, this
offspring y is subject to mutation and may be mutated to
some point in S2. However, such a mutation has probabil-
ity at most n−n/128 = e−Ω(n log n). Thus, together we have
Prob (B) = e−Ω(n).

Since we have Prob (A) = e−Ω(n log n) and Prob (B) =

e−Ω(n), we see that in each generation an optimal solution
is found with probability e−Ω(n). This completes the proof
for fJH.

For fmax, we can use the same LCS instance given by

X = 0n/41(3/4)n

and

Y = 1(3/4)n0(5/32)n1(13/32)n

as for fJH. We define a partition S0, S1, S2 of the search
space S = {0, 1}n by

S0 := {s | (fmax(s) < (14/32)n)}
S1 :=

˘
s | (fmax(s) ≥ (14/32)n) ∧

`
|c(s)|0 > 0

´¯
S2 :=

˘
s | (fmax(s) ≥ (14/32)n) ∧

`
|c(s)|0 = 0

´¯
and see that this coincides with the partition we defined
for fJH. Therefore, the rest of the proof follows the same
way. This demonstrates that for plus-selection the rather
contrived fitness function fJH and the more natural fitness
function fmax do not differ essentially.

For fLCS, the proof does not carry over that easily. We
define a different LCS instance, here. This time, we assume
that n is a multiple of 40. As above, if this is not the case,
we replace in the following n by n′ := 40·bn/40c and append
a sequence of n − n′ letters to the two sequences we define.
This does not change our results if n is sufficiently large. We
define the LCS instance

X = 0(3/5)n1(2/5)n

and

Y = 1n0(13/40)n

and observe that the shorter sequence X has length n as
desired. Clearly, common subsequences are either of the
form 0i with 0 ≤ i ≤ (13/40)n or of the form 1i with 0 ≤
i ≤ (3/5)n. Again, we define a partition S0, S1, S2 of the
search space S = {0, 1}n, this time in the following way:

S0 := {s | (fLCS(s) < n/20)}
S1 :=

˘
s | (fLCS(s) ≥ n/20) ∧

`
|c(s)|0 ≥ |c(s)|1

´¯
S2 :=

˘
s | (fLCS(s) ≥ n/20) ∧

`
|c(s)|0 < |c(s)|1

´¯

Consider the short sequence X = 0(3/5)n1(2/5)n. Since (3/5)n
is significantly larger than (2/5)n, we can expect to have
|c(s)|0 > |c(s)|1 for all individuals in the initial population.
Since the population size µ is polynomially bounded appli-
cation of Chernoff bounds yields that this is the case for
the complete initial population with probability 1− e−Ω(n).
Moreover, with the same probability each member of the ini-
tial population represents a candidate solution with |c(s)|0−
|c(s)|1 ≥ n/20 and a fitness value of at least n/20. Thus,

with probability 1 − e−Ω(n) the initial population is com-
pletely contained in S1. Due to the strict plus-selection no
member of the population can ever belong to S0 in this case.
Thus, we only have to estimate the probability that S2 is
reached via mutation or uniform crossover from S1.

The crucial observation is that for s ∈ {0, 1}n the fol-
lowing holds. If we have |c(s)|0 ≥ |c(s)|1, then fLCS(s) =
|c(s)|0−|c(s)|1 holds. Otherwise, for |c(s)|0 < |c(s)|1, fLCS(s) =
|c(s)|1−|c(s)|0 holds. We know that the current population
belongs completely to S1. This implies that |c(s)|0 ≥ |c(s)|1
and fLCS(s) ≥ n/20 both hold. We conclude that we have
|c(s)|0 − |c(s)|1 ≥ n/20. In the same way we see that for all
s ∈ S2, |c(s)|1 − |c(s)|0 ≥ n/20 holds. Thus, for a mutation
leading from S1 to S2, at least n/10 bits need to flip in a sin-

gle mutation. Such a mutation has probability e−Ω(n log n).
Thus, optimization by means of mutations is sufficiently un-
likely. Using a reasoning similar to the one above (with a
slightly different distinction of cases) we can show that the
probability to reach S2 from S1 via uniform crossover and
a subsequent mutation is bounded above by e−Ω(n). This
completes the proof for fLCS.

We remark that we can prove stronger bounds when we
consider specific parameterizations of the generic evolution-
ary algorithms. We remark that it is also not difficult to
prove stronger bounds when willing to invest more work in
the proofs. Since we have proved that the worst case run
time is exponential with probability exponentially close to
1, we do not consider such improvements worth the effort.

Often, it is easier to find solutions that are only approxi-
mations of optimal solutions. For example, for the maximum
matching problem, it is known that the simple (1+1) EA
can find an (1 + ε)-approximation to a maximum matching
for any constant ε > 0 on average in polynomial time while
there are instances known where finding an optimal solution
takes on average an exponential number of steps [5]. There-
fore, it makes sense to investigate if the difficulty of LCS
for evolutionary algorithms is significantly reduced if we are
satisfied with solutions that are only slightly worse than op-
timal solutions. For LCS, however, we can prove that this is
not the case. Even finding common subsequences that are
only slightly longer than half as long as a longest common
subsequence is not significantly simpler than finding longest
common subsequences — using the worst case perspective
as usual.

Theorem 2. For any constant ε > 0, the probability that
an evolutionary algorithm as defined in Definition 4 finds
an (2− ε)-approximation to an optimal solution for a worst
case instance of LCS X, Y ∈ {0, 1}∗ with X ∈ {0, 1}n us-
ing the fitness function fJH, fmax, or fLCS within t function
evaluations is bounded above by t · e−Ω(n) for all settings of
pc, µ = nO(1), and λ = nO(1).

Proof. The proof is structurally identical to the proof
of Theorem 1. Note that there we did not only prove a
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lower bound on the time needed to find a longest common
subsequence. In fact we proved that on average it takes
very long to find any candidate solution from S2. We can
use the same proof technique if our LCS instance and the
partition of the search space S = {0, 1}n into disjoint sets
S0, S1, S2 ensures that only bit strings in S2 represent (2−ε)-
approximations.

Due to the structural similarity of fmax and fJH, we can
consider the same LCS instance for these two fitness func-
tions. Here we have some constant ε > 0 and have to
define instances for sufficiently large n where “sufficiently
large” may depend on ε (since this is a constant). We define
l := d(3/ε) − 1/2e and assume that n is a multiple of 8l.
Since 8l only depends on ε, we can use the same technique
as in the proof of Theorem 1 if this is not the case.

Consider the LCS instance1

X = 0n/l1((l−1)/l)n and Y = 1((l−1)/l)n0(5/(8l))n1((4l−3)/(8l))n

where, clearly, the shorter sequence X has length n. Defin-
ing the partition (with γ := 180, 000+3, 000·((4l−2)/(8l))n)

S0 := {s | (fJH(s) < γ)}
S1 :=

˘
s | (fJH(s) ≥ γ) ∧

`
|c(s)|0 > 0

´¯
S2 :=

˘
s | (fJH(s) ≥ γ) ∧

`
|c(s)|0 = 0

´¯
for fJH and the partition

S0 := {s | (fmax(s) < ((4l − 2)/(8l))n)}
S1 :=

˘
s | (fmax(s) ≥ ((4l − 2)/(8l))n) ∧

`
|c(s)|0 > 0

´¯
S2 :=

˘
s | (fmax(s) ≥ ((4l − 2)/(8l))n) ∧

`
|c(s)|0 = 0

´¯
for fmax, we can show analogously to the proof of Theo-
rem 1 that S2 is reached with probability t · e−Ω(n) in t
generations. For s ∈ S1, we have |c(s)| ≤ (5/(8l))n + ((4l −
3)/(8l))n while the longest common subsequence has length

((l− 1)/l)n. Thus, without reaching S2, only a ((l−1)/l)n
((4l−3)/(8l))

-

approximation can be found. We observe that ((l−1)/l)n
((4l−3)/(8l))

=
4l−4
2l+1

holds. We have l ≥ (3/ε)− 1/2, so (4l − 4)/(2l + 1) ≥
2− ε follows as claimed.

As in the proof of Theorem 1, we consider a different
instance for fLCS. We set l := d(5/(2ε)) − 5/4e assume
that n is a multiple of 16l + 8. If this is not the case we
can proceed as usual. For the proof we consider the LCS
instance

X = 0((l+1)/(2l+1))n1(l/(2l+1))n and Y = 1n0((4l+5)/(16l+8))n

and define the partition

S0 := {s | (fLCS(s) < (2/(16l + 8))n)}
S1 :=

˘
s | (fmax(s) ≥ (2/(16l + 8))n) ∧

`
|c(s)|0 ≥ |c(s)|1

´¯
S2 :=

˘
s | (fmax(s) ≥ (2/(16l + 8))n) ∧

`
|c(s)|0 < |c(s)|1

´¯
as partition of the search space S = {0, 1}n. Using argu-
ments of the kind used above we see that without reaching

S2 at best a (l/(2l+1))n
((4l+6)/(16l+8))

-approximation is possible. Due

to our definition of l, this completes the proof.

1The given instance works for approximation factors 2 − ε
with 0 < ε < 6/7. For even larger ε, the simpler instance

X = 0n/41(3/4)n, Y = 1(3/4)n0(5/32)n1(13/32)n works. Due to
space restrictions, we skip the proof for this simpler case.

5. RESTRICTED NUMBERS OF REPETI-
TIONS

In the previous section, we argued that we considered a
quite restricted and rather simple class of LCS instances. We
restricted ourselves to instances over the alphabet Σ = {0, 1}
consisting of only two sequences. Reconsidering our worst-
case instances, we recognize that all our instances are struc-
tured similarly. The most prominent feature are long series
consisting of the same letter without any interruption. One
may speculate that it is this property that makes these in-
stances difficult for evolutionary algorithms. We can classify
LCS instances according to the longest sequence of a single
letter occurring in the shortest sequence. In our examples,
we always have linear length Θ(n) of these subsequences.
Here, we restrict our interest to instances where this length
of a longest sequence of a single letter is restricted quite
drastically. In particular, we consider only instances where
this length is O(1), i. e., restricted by some constant inde-
pendent of n. It turns out that this further restriction is
still not sufficient to make LCS easy for the kind of evolu-
tionary algorithms we consider. We do make use, however,
of a slightly larger alphabet. We use two additional letters
(leading us to Σ = {0, 1, 3, 4}) that enable us to extend the
instances discussed in the previous section such that they
fit the restriction imposed here. We do not claim that there
are no other ways showing similar results for even smaller
alphabet sizes |Σ|. It should be noted that |Σ| = 4 is not
at all large, in particular, it coincides with the well-known
alphabet ΣDNA = {A, C, G, T}.

Theorem 3. The probability that an evolutionary algo-
rithm as defined in Definition 4 finds an optimal solution
to a worst case instance of LCS X, Y ∈ {0, 1, 2, 3}∗ with
X ∈ {0, 1}n using the fitness function fJH, fmax, or fLCS

within t function evaluations is bounded above by t · e−Ω(n)

for all settings of pc, µ = nO(1), and λ = nO(1), even if in
each sequence the length of subsequences of the same letter
is bounded above by O(1).

Proof (Sketch). In the proof of Theorem 1, we consid-
ered the instance

X = 0n/41(3/4)n and Y = 1(3/4)n0(5/32)n1(13/32)n

for fJH and fmax. Let k ∈ N0 be some constant with k > 17.
For fJH and fmax, we consider the instance

X =
“
0k2

”(n/4)/(k+1) “
1k2

”((3/4)n)/(k+1)

,

Y =
“
1(23)

n
k+1

” k(3/4)n
k+1

“
0(23)

n
k+1

” k(5/32)n
k+1

“
1(23)

n
k+1

” (13/32)n
k+1

.

We see that the structure of the LCS instance from the proof
of Theorem 1 is preserved while the length of uninterrupted
sequences of the same letter is reduced to k. A lengthy
proof without significant new ideas shows that the desired
properties are preserved, too. For fLCS, again, a different
LCS instance is used to show an analogous result using

X =
“
0k2

”((3/5)n)/(k+1) “
1k2

”((2/5)n)/(k+1)

,

Y =
“
1k3

”n/(k+1) “
0k3

”((13/40)n)/(k+1)

instead of

X = 0(3/5)n1(2/5)n and Y = 1n0(13/40)n.
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6. CONCLUSIONS
We considered the performance of evolutionary algorithms

for the longest common subsequence problem from a theo-
retical point of view. Using a coding of the problem due to
Julstrom and Hinkemeyer [9] who reported good EA perfor-
mance and considering two additional fitness functions we
proved that a rather large class of evolutionary algorithms
is not at all efficient for this problem. This evolutionary
algorithms make use of plus-selection, standard bit muta-
tion, and uniform crossover. Very different evolutionary
algorithms, simple ones like the (1+1) EA and more ad-
vanced ones like steady-state genetic algorithms with uni-
form crossover, belong to this class of evolutionary algo-
rithms. We proved exponential lower bounds on the ex-
pected optimization time for these evolutionary algorithms.
This holds even when we restrict the LCS instances to in-
stances over the alphabet Σ = {0, 1}, containing exactly two
sequences. We can even prove such results for instances hav-
ing uninterrupted sequences of single letters of length only
O(1) if we increase the alphabet size to 4. Furthermore, we
proved that the worst case run time is still exponential if
we do not ask for optimal solutions but are satisfied with
(2− ε)-approximations of a longest common subsequence.

Clearly, this contribution lacks any positive results. We
have not identified non-trivial classes of LCS instances where
some evolutionary algorithm fitting within Definition 4 has
polynomial expected run time. It would also be interesting
to prove positive results on approximations. We have ruled
(2 − ε)-approximations. We doubt that the approximation
factor 2− ε is in any sense tight. Thus, even positive results
for approximation factors growing with n are of interest. A
different sensible route for future research is the identifica-
tion of evolutionary algorithms that perform better on this
problem. We doubt that the use of a less strict selection
or the use of a different general purpose crossover opera-
tor (like 1-point crossover) alone are sufficient to achieve
this. When considering other evolutionary algorithms one
has to be careful not to start to design problem-specific evo-
lutionary algorithms: problem-specific algorithms for LCS
are already known. The point is not to prove for a very spe-
cific evolutionary algorithm that it performs well on LCS.
The point is to identify a rather “standard” evolutionary
algorithm that performs well on LCS without much tuning.

The most obvious open question clearly is related with our
starting point, the work by Julstrom and Hinkemeyer [7, 9].
Our results are strongly negative and in clear contradiction
with the positive empirical results reported. Unfortunately,
the documentation given is insufficient to allow for repro-
ducing the good results. It is not even clear what problem
instances have been successfully solved by the evolutionary
algorithm. This is not an uncommon problem within the
evolutionary computation community [8]. We hope that ei-
ther from the side of practitioners or the side of theoreti-
cians, perhaps following the route outlined above, the gap
between these contradictory results can be closed.
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