
Using Feedback to Regulate Gene Expression in a
Developmental Control Architecture

Kester Clegg
Dept. of Computer Science

University of York
York, UK. YO10 5DD

kester@cs.york.ac.uk

Susan Stepney
Dept. of Computer Science

University of York
York, UK. YO10 5DD

susan@cs.york.ac.uk

Tim Clarke
Dept. of Electronics
University of York

York, UK. YO10 5DD
tim@ohm.york.ac.uk

ABSTRACT

We present what we believe is the first attempt to physically
reconstruct the exploratory mechanism of genetic regulatory
networks. Feedback plays a crucial role during developmen-
tal processes and its mechanisms have recently become much
clearer due to evidence from evolutionary developmental bi-
ology. We believe that without similar mechanisms of in-
teraction and feedback, digital genomes cannot guide them-
selves across functional search spaces in a way that fully
exploits a domain’s resources, particularly in the complex
search domains of real-world physics. Our architecture is
designed to let evolution utilise feedback as part of its mech-
anism of exploration.

Categories and Subject Descriptors

B.7 [Hardware]: Integrated Circuits

General Terms

Design

Keywords

Evolvable hardware, adaptation/self-adaptation, signal pro-
cessing, gene regulatory networks, developmental processes

1. INTRODUCTION
A research agenda calling for evolutionary computation to

abandon its “restricted and dated understanding of natural
evolution” has recently appeared [1]. That article asks the
field to challenge its long held assumption that there is a
“one-way flow of information, from DNA to proteins” that
forms the basis of solution discovery by evolutionary search
algorithms. The view prevalent among practitioners of evo-
lutionary computation is that genetic material is essentially
symbolic rather than physical. But ignoring the physical
aspects of gene translation may have led the field to un-
derestimate the importance of developmental processes on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

issues like scalability and re-use. Advances in developmen-
tal biology have given us fresh insights into how evolution
explores a functional domain and the constraints it operates
under. Criticisms of this nature have appeared elsewhere [9]
but have had little impact on the field, which continues to
be dominated by efforts to optimise evolutionary search.

One agenda to investigate how evolutionary algorithms
find solutions and what they are capable of finding was set
in motion by Adrian Thompson in the mid 1990s [14]. His
in silico experiments were designed to encourage as much
innovation from the evolutionary process as possible. By
allowing free access to the physical nature of the search do-
main, Thompson discovered that evolution was capable of
finding solutions in areas that humans would find difficult
or impossible to operate (see discussions in [5, 10, 6]). An
outstanding task for evolutionary computation — for those
who want to pursue Thompson’s aims — is to find ways of
introducing the equivalent richness of real world physics into
virtual environments.

However, the introduction of richer resources does not
guarantee their accessibility. We propose that in order to
access interesting physical properties in evolved solutions,
we need a physical embodiment of the developmental mech-
anisms employed by nature. This requires a two-way flow of
information that allows a genotype to explore a functional
domain in a manner controlled by the genome.

A crucial ability of the developmental process is to sense
environmental inputs and respond. Things grow in accor-
dance with their surroundings, using a feedback mechanism
that tells cells when to start producing certain proteins or
inhibit the production of others. Evidence from the study
of gene regulatory networks suggests that evolution has ex-
ploited developmental mechanisms to allow the re-use of
“useful” genes in different contexts [2, 3].

The issue of re-use prompts another criticism of current
models of evolutionary computation, namely the “single so-
lution genome”. This artifact results from of the proxim-
ity between genotype and phenotype, the translation pro-
cess between them being so direct a mapping as to make
them often indistinguishable. In nature, a genome control-
ling the developmental process selects from many potential
responses, according to the developmental context. A gene
used in one place will have a different role somewhere else,
roles that are separated by time and space. The repeated
morphological features we witness throughout nature are the
product of developmental processes. By contrast, in evolu-
tionary computation, selection is carried out on “instant”
phenotypic solutions, randomly mutating from one genera-

966

tion to the next, in a process that has no natural mechanism
for exploring the search space, or conserving and re-using
useful genes (see discussion in §2.2). Such solutions are sin-
gle, fixed answers to static environments.

Our proposed architecture addresses some of these issues
by reproducing the physical exploration of genetic regula-
tory networks. It uses feedback to enable a developmental
control system. In the following sections, we explain the bio-
logical inspiration for our architecture. We then discuss the
components of our “evo-devo” platform and detail how we
bind a digital genome to the physical complexity of the real
world to enable developmental exploration. Finally we look
at progress and issues with the platform, and its potential
for future work.

2. BACKGROUND BIOLOGY
The biological inspiration for our developmental platform

is based on the cis-regulatory regions or “switches” em-
ployed by gene regulatory networks (GRNs) that determine
the contexts in which a particular gene is expressed or inhib-
ited from producing proteins in the nucleus of a cell. These
“switches” allow a gene to be re-used in a variety of contexts,
which means that the protein a gene encodes will have the
opportunity of interacting with different sets of proteins ac-
cording to the cell’s location in the organism. For example,
the different bones in our body are not created by different
genes encoding separate proteins for particular bones, but
by the same gene being used in different contexts to create
the bone material protein for a rib, a sinus, an outer ear and
so on (see Fig. 1).

Figure 1: Different switches cause a gene for bone
material to be expressed in different locations in a
mouse embryo.

Image taken (with permission) from [2]

Gene switches work by certain proteins being able to bind
to small sections of DNA material upstream of where the
gene is located. These transcription factors or “binding pro-
teins” act on DNA to inhibit or promote gene expression,
and whether a transcription factor is present or not in a par-
ticular cell type is determined by that cell’s location in the
embryo. For example, in Fig. 2, a promoter for a gene is
distributed in vertical stripes that extend to the horizontal
axis of an embryo. However, the presence of inhibiting tran-
scription factors for the same gene in the lower third and
back half of the embryo results in a net expression of the
gene as a series of dots along the horizontal axis.

Figure 2: Gene switches acting on a drosophila em-
bryo results in the gene being expressed as a series
of dots extending halfway along the horizontal axis.

Image taken (with permission) from [2]

2.1 Gene Expression and Re-use
Pattern formation is the basis of all gene re-use: the same

gene is turned on or off according to the presence of the tran-
scription factors that occur in cells distributed throughout
the embryo. Research suggests that hardly any morpholog-
ical features are created de novo from new genes [2, 19],
instead different morphological features between species are
the result of the same genes (usually one of the four Hox
clusters) being employed in different contexts. The Distal-
less gene, essential for the formation of appendages, such
as limbs or wings, is one example. In butterflies, this gene
has evolved an additional “switch”. The switch provides a
new context for the Distal-less gene to be expressed — in
this case, the location is on the wing. In this new context,
rather than forming a limb bud, the gene results in an en-
tirely different morphological feature and creates a spot of
colour (see Fig. 3).

The gene switch mechanism allows re-usable, configurable
instances of a gene to be expressed in the different contexts
of embryo development. Repeated use of a gene in different
contexts is called modularity by biologists, and gives rise to
repetitive morphological structures such as vertebrate back-
bones, thorax segmentation, rib cages, leaf and wing vena-
tion, limbs, etc. Such structures are common in nature, but
it has taken researchers a long time to understand the link
between switches and gene expression. An important part
of this interaction is how the switches work to allow the
binding process some degree of flexibility.

2.2 Binding Signatures
Transcription factors attach to stretches of DNA by recog-

nising signature sequences of base pairs. For example, a sin-
gle switch for a gene may consist of several hundred base
pairs (bp), lying perhaps several thousand bp upstream of
the gene. Within the gene switch, there are usually 6–20
signature sequences (each ∼6–9 bp in length) that affect the
expression of the gene concerned (a gene contains ∼1000 or
so bp, and a chromosome contains thousands of genes, so

967

Figure 3: Switches in the Distal-less gene control
expression in the embryo, larval legs and wing in
both flies and butterflies, but butterflies evolved an
additional switch to control expression of eye spots.

Image and text taken (with permission) from [2]

millions of bp). Even a short signature length has a huge
number of possible combinations [2].

Signature sequences sometimes require exact matches for
every position, sometimes they contain wildcards. Wild-
card positions can be filled by all four nucleic acids (Cy-
tosine, Thymine, Adenosine, and Guanine) but are more
often limited to pairs of alternatives (e.g T or A, C or G,
etc.). For example, Tinman, a gene related to heart devel-
opment in most species, is highly specific. However, Pax-6
(the gene supposedly controlling the development of sight
across species) and the gene Dorsal use wildcards in their
binding signatures, represented by K (G or T), Y (C or T),
M (C or A), W, etc. (this example is taken from [2]):

Tinman TCAAGTG

Pax-6(eyeless) KKYMCGCWTSATKMNY

Dorsal GGGWWWWCCM

Thus Pax-6 has a signature with only 6 specific sites out of
16 possible bp combinations, indicating that it could bind
at a variety of locations. This is borne out by experimental
evidence that shows eyes can be “grown” in other contexts
— such as on wings or legs — by altering the transcription
factors present at those locations [2].

Binding signatures and proteins permit the genome to
maintain a set of solutions from which it selects how to
explore its functional domain. The action of “binding” is
one of feedback: the information fed back to the DNA de-
termines which genes will be expressed in that context. By
exploring the functional search space in this way, develop-
mental processes have a fundamental impact on which genes
are conserved (see discussion on Hox-gene clusters in [18]).
The most highly conserved genes turn out be a handful of
“super” genes that evolved early on and have since been
maintained across species [2]. Mutation of these genes is
usually fatal, forcing evolution to preserve them. But their
continued presence means that they are also more likely to
be re-used by evolution during developmental processes.

3. OUR ARCHITECTURE
Our approach similarly uses a set of solutions that can be

exploited by a phenotype in different contexts. The explo-

ration of the functional domain is governed by interaction
with the genome.

3.1 Overview
In order to pursue Thompson’s aims for in materio evo-

lution [15], we want to look at systems that incorporate
a sufficient degree of complexity or “richness” that human
engineers find challenging to design. An area that has tradi-
tionally provided this is analogue electronics. Evolutionary
computation has a long track record in this area, with no-
table success by John Koza and his colleagues [8]. Physical
implementation of analogue circuits is slow, and has meant
that the evolutionary design process and fitness evaluations
have run as software simulations. Although testing software
simulations of analogue circuits is generally several factors
slower than testing the same circuit in real-time on hard-
ware, simulations have the advantage of being able to test
many circuit configurations without having to physically im-
plement any of them. Another drawback with software sim-
ulations of analogue hardware is the accuracy of simulated
behaviour. Software is constrained to work within certain
limits (e.g. number of components or parameter ranges).
Outside those parameters, the accuracy of predictable be-
haviour goes down. This immediately hampers one of the
most interesting capabilities of in materio evolutionary com-
putation — which is to exploit parts of the design space that
are too difficult or complex for human engineers. A software
simulation has had these removed by necessity.

Recent integrated circuits (ICs) based on switched capac-
itor technology offer the opportunity to implement hard-
ware based analogue circuits via software configured silicon.
These ICs are similar in operation to Field Programmable
Gate Arrays (FPGA), where logic functions can be down-
loaded onto the IC to run natively in hardware. Analogue
ICs called Field Programmable Analogue Arrays (FPAA)1

offer the convenience of implementing an analogue circuit
by downloading its design onto an IC. This makes the im-
plementation of analogue circuits fast enough to consider
testing the circuits in hardware. Anadigm, a manufacturer
of these ICs, has produced an FPAA capable of dynamic re-
configuration: changes to part of a circuit or to an entirely
new circuit can be made within a single clock cycle without
a full IC reset. The combination of dynamic reconfigura-
bility, within the complex design space of analogue circuits,
provides us with a good platform to see if there are benefits
attached to introducing developmental control mechanisms
into in materio evolutionary exploration.

3.2 The FPAA technology
A typical FPAA application might be described as a set

of analogue circuits, with some host application controlling
when the IC should reconfigure to a new circuit. Rather
than evolve a single solution, this gives us the opportunity
to evolve a set of solutions, specified and controlled by the
genome.

The Anadigm AN221E04 FPAA is capable of implement-
ing dynamically reconfigurable analogue circuits. Its archi-
tecture is split into 4 CABs (Configurable Analogue Blocks).
Each CAB can support one or more Configurable Analogue

1There is a variety of these ICs with alternative names,
such as Field Programmable Transistor Arrays (FPTA)
or Dynamically Programmable Analogue Signal Processors
(dpASP).

968

Modules (CAMs). Anadigm supplies a range of about 40
CAMs with various configuration options. CAMs can con-
tain circuits functioning as filters, multipliers, integrators,
differentiators and so on. The CAMs are configured by set-
ting specific options, floating point parameters and clock
speeds using the AnadigmDesigner2 software2.

The software allows analogue circuit designers to create
and test circuits (either in simulation or by downloading
onto the FPAA) using a “drag-and-drop” graphical user in-
terface. The software can also be controlled by an API
“wrapper” referencing the ad2.dll file. The build up of
circuits and the reconfiguration process can then be con-
trolled by an external application. The low-level commands
(i.e. the bitstream) to trigger reconfiguration are not pro-
vided by the API interface. Instead, circuits can built up
via software and saved as AHF (Ascii Hex Format) config-
uration files, which can be downloaded onto the FPAA as
needed.

3.3 Gene Expression

Gene expression

Binding
process

DNA

CAM expression

Binding
process

Digital
genome

Binding
proteins

Analogue
signal

 Protein
translation in
phenotype

Circuit
generation in

FPAA

Environment
signals

a)

b)

Environment
signals

Figure 4: Diagram (a) shows natural gene expres-
sion where expression is affected by the presence of
binding proteins in the cell. (b) shows our imple-
mentation of the analogous process.

In our architecture, the configuration of CAMs in a cir-
cuit is specified by the corresponding genes in a genome,
and the context in which a CAM is deployed is determined
by the “binding signature” for that gene (see Fig. 4). As
CAM behaviour depends on the context of its deployment
(i.e. its placement and connections within the circuit), one
of our aims is to demonstrate that evolution will re-deploy
“useful” genes in different contexts. What dictates whether
a CAM is expressed or not depends on evolution being able
to manipulate the binding signatures to its advantage. This
ability is tied to the need to have a feedback mechanism as
part of the genome. Finally, despite the fact that a genome
contains the specifications and signatures for many CAMs,

2This software is free to download from www.anadigm.com.

only a few are likely to be expressed in a phenotype “stage”
of development.

3.4 Encoding the genome
The genomes and circuit specifications they encode are an

adapted form of Cartesian Genetic Programming (CGP),
developed by Miller and associates [11]. The genotype in
CGP is represented as a list of integers that encode the
function and connection of each node in a feed-foward, di-
rected graph. In our version, we allow feedback loops be-
tween nodes as these provide interesting physical behaviour
for analogue circuits. The genotypes are of fixed length but
the numbers of nodes that can be realised in a circuit is de-
pendent on what is expressed in the circuit at runtime, how
the connections wire up the nodes and what the nodes rep-
resent. Fig. 5 shows the process of decoding the genome and
the expression of developmental “stages” in the phenotype.

The genome representation is the part subject to mutation
and its length is defined by the number of nodes. As in CGP,
the number of inputs to each node is fixed. In our case, as
the maximum number of inputs on any of the pre-configured
CAMs supplied by Anadigm is 5, we use this and later trim
the excess inputs (Fig. 5 shows only 4 inputs for clarity).
The encoding links each input to an output (either from
another node or itself). It is possible that one output on a
node is linked many times and another not at all. In this
case, the unlinked output is simply left “open”. However,
the process ensures that every input is connected and no
inputs are left open.

Each node has an ID that specifies its CAM type and con-
figuration. There are almost 200 CAM “primitives” if differ-
ent configuration options are taken into account.3 Within
each primitive configuration, a large range of behaviour is
possible as most CAMs take floating point parameter val-
ues. We encode a maximum of 4 of these, with those that
are unused being ignored. Parameter values in CAMs are
dynamic, i.e. setting certain options, or changing the values
of other parameters, can affect the range of values accept-
able to the CAM in that configuration. The encoding is
interpreted as a percentage value, which is then applied as a
function of the parameter range when the configured CAM
is added during the circuit translation.

The final part of a gene specification is the binding sig-
nature for each CAM. This is a string representing the 4
nucleic acids in DNA. A single FPAA can fit around four
to seven CAMs depending on their resource usage, there-
fore the signature length is generally proportional to the
expected expression rates, i.e. choosing a very short binding
signature might result in the expression of too many CAMs
for most contexts. We will allow evolution to choose the
signature length, but in our current prototype this is fixed.

Once the directed graph is generated, it is necessary to
translate the node IDs into the specifications of the cor-
responding CAM. This means that most nodes have their
inputs trimmed to the number on the corresponding CAM.
For example, in Fig. 5, node 2 has 4 inputs and 1 output,
but the CAM corresponding to its ID has 2 inputs and 2
outputs. Both of node 2’s inputs (shown in the specification
as 3:2, 3:1, etc) are linked to the first and second outputs of
node 3. However, the CAM that node 3 represents has itself

3The actual number is larger. However, for reasons involving
the design of the API it easier to build up the CAM library
omitting some of the option configurations.

969

CAM 47
2:1

Bilinear Filter

2nd
input

1st
input

CAM ID

3rd
input

4th
input

Input requests
Feeder node : Output Index

Floating point
parameters

Node 1 Node 2 Node 3 Node 4

Binding
signature

CAM 47
2:1

Bilinear

CAM 81
2:2

Hold Voltage

CAM 116
2:1

Divider

CAM 3
1:1

Differentiator

Fully
expressed

circuit

Node 1: Gene specification

{(47, 4:1, 2:2, 3:1, 1:3, 42, 86, 7, CCTG), (81, 3:2, …etc)}

Node 2: Gene specification

Genome

Directed
graph

Circuit output signature = CC(TC)(AG)

CCTG CCCA CCAAAATT

CAM 116 fails to
match binding

condition

Gene
expression

Developmental
stage in

phenotype

CAM 81 CAM 3
2:2 1:1

Differentiator Hold Voltage

Circuit
output

CAM 81
2:2

Hold Voltage

Circuit
input

CAM 47
2:1

Bilinear Filter

Figure 5: Genome to phenotype: decoding a genome
into a developmental stage of the circuit phenotype.
When implemented with a changing input signal,
circuit output is fed back to the genome which reacts
by expressing those CAMs that match the binding
signature, allowing the genome to respond to dy-
namic conditions.

only one output, therefore this output is used to feed both
of node 2’s inputs. For node 2’s outputs on the other hand,
while node 1 requests the second output, no other node links
to the first output, and so that output is left “open”. The
process of re-aligning inputs and outputs to the actual val-
ues of the CAMs concerned means that although all inputs
will be connected, some outputs are likely to be left open
(the figure averages around 20% of the number of nodes).

The next part of the process involves the expression of
subsets from the genome. A subset could contain any com-
bination of CAMs and each subset is turned into a cir-
cuit configuration (using the wiring connections of the fully
expressed circuit). The total number of potential subsets
quickly gets large as the number of nodes in the genome in-
creases (see issues, §6). As each subset is generated, many
with missing CAMs, the circuit wiring specification from the
genome no longer holds good for all inputs. For example,
Fig. 5 shows a binding condition in which node 3 fails to be
expressed. This leaves nodes 1, 2 and 4 to create a circuit

configuration. However, node 1 has only one output con-
nected to node 3. As node 3 has not been expressed in this
stage of the phenotype, the circuit is split in two.

In cases such as these, the wiring algorithm defaults to
using the first CAM as the circuit input, even if that means
that much of the circuit that has been expressed cannot be
used. The wiring algorithm then traces through the circuit
to the first “open” output that will enable the circuit to have
both an input and output. In this case, the first open output
it finds happens to be on the first CAM, and so the other
CAMs (2 and 4) fail to have any impact on the circuit. The
final developmental stage of the phenotype circuit is shown
with only node 1 making up the circuit. Node 2 has been
left in as a connection can still be made to the first input
and although no input goes to node 2, the connection may
still affect the fitness for this developmental stage and we do
not make any judgement on how “sensible” a circuit is from
the viewpoint of conventional design.

Maintaining the fully expressed circuit wiring specifica-
tion allows a context in which all CAMs in a genome can
be expressed. If this is the case, at least all inputs for that
expression will be satisfied and some form of circuit utilising
all of the CAMs can be realised. However, it also allows us
to investigate the influence of evolution on the interaction
between the context of an expression and the binding signa-
tures of individual CAMs. If a CAM has connections spec-
ified as coming from another CAM that is never expressed
in the same context, then evolution is forced to work on
the binding signatures that could allow those connections to
be realised. A later mutation to a binding signature may
allow expression of the missing CAM in that context, it
may re-wire connections or it may even change the CAM
completely. What is important is that having a genome
containing a particular CAM does not result in a predeter-
mined circuit behaviour. Rather like the re-use of genes in
different developmental contexts, under our schema differ-
ent signal contexts are likely to result in a CAM behaving
differently as its environment changes.

This indirect mapping from genotype to phenotype allows
us to investigate phenotypic stages of development, as a phe-
notype may get high fitness in one context, low in another.
We can assign progressively difficult tasks for contexts, and
look to see what “useful” genes are conserved to allow the
genome to “bootstrap” over generations. We can also al-
ter fitness criteria for a particular context after a genome
has already achieved good fitness for other contexts and see
what impact this has on the re-organisation of the genome.
This aspect of the architecture is discussed further in §7. A
broader overview of the architecture is shown in Fig. 6.

4. DIGITISING THE SIGNAL
To access the complexity and richness of the physics within

analogue hardware, we need some means of processing that
environment digitally so that it can interact with evolution-
ary processes on the host application. The first part of this
is the decoding of the genome into phenotype circuits. The
second part is the binding process that allows the genome to
receive feedback from its functional domain. Translating the
physical complexity of the analogue output signal from the
FPAA into a digital form is done via a wavelet transform.
The process of matching this signal (i.e. the “context”) to a
set of a binding signatures in the genome circuit specification
is done separately and is covered in §4.2.

970

Application software matches signal to

binding sites on evolved genome

Binding sites determine which

circuit configuration gets

uploaded

Analogue signal in circuit

input captured via DAQ

Change in signal

occurs

Initial circuit configuration is evolved using

CGP, with each node representing a CAM

primitive with random parameter values.

The circuit is tested against a task involving a

re-configuration on changing inputs. Fittest

selected for next generation.

Circuit

reconfigured

in continuous

real-time

Wavelet transform via Matlab

Figure 6: The developmental FPAA architecture, showing how feedback from conditions in the circuit wiring
“bind” onto parts of a digital genome. When binding occurs the CAMs selected are expressed as a new
circuit configuration.

4.1 An Overview of Wavelets
Wavelets grew out of the requirements of a group inves-

tigating new techniques for locating oil from the return of
impulses applied to the ground [7]. The return signal was
cluttered. To process it properly required the ability to re-
solve simultaneously in time and frequency. The Fourier
Transform [13] defined in (1) provides excellent resolution
in the frequency domain, but time domain information is
lost. Truncation of the signal produces conflicting artifacts
(spectral spreading and leakage) related to the length and
shape of the time window over which the signal is expressed.

F (ω) =

Z

∞

−∞

f(t)e−iωt
dt (1)

There are methods for improving this trade-off between
frequency and time. One such method is the Short Time
Fourier Transform (STFT) [12], given in (2):

STFT f (ω, τ, γ) =

Z

∞

−∞

f(t)γ(t− τ)e−iωt
dt (2)

The STFT gives the frequency components within dif-
ferent windows defined by the windowing function γ(t− τ).
This function allows the frequency distribution within a time
band to be measured. Whilst this is an improvement on the
time-frequency resolution of the Fourier transform, it is still
limited because of the window size. The smaller a window
is, the better a high frequency component can be located
in time. However, with smaller windows few cycles of low
frequency components will be observed and so there is a loss
of resolution [7]. Wavelets are designed to remove these ar-
tifacts. We can use them to analyse the output from our

analogue circuit without distortion. The continuous wavelet
transform, Wf (a, τ, t), effectively “cuts up data or functions
or operators into different frequency components, and then
studies each component with a resolution matched to its
scale” [4]:

Wf (a, τ, ψ) =
1

p

|a|

Z

∞

−∞

f(t)ψ

„

t− τ

a

«

dt (3)

The wavelet transform provides a time-frequency localisa-
tion that is not available using the STFT. By calculating the
correlation between the desired signal and a wavelet func-
tion then scaling, dilating and shifting the wavelet function
before repeating the process, an accurate representation of
the frequency variability with time can be built up. The
transform repeatedly compares the similarity between the
wavelet and the signal under inspection at different dilations
and shifting positions.

In general, the energy contained within a signal, the av-
erage of the square of the signal, will be preserved by the
wavelet transform and so the original signal can be recov-
ered. The function ψ(t), the “mother wavelet”, is unscaled,
undilated and unshifted. The dilation is inversely linked to
the frequency band that the wavelet will detect. At a high
dilation the wavelet is stretched over a wide time period and
so is more suited to low frequency signals. At low dilations
the wavelet is compressed into a smaller time frame and so
will pick up high frequency signals. The term, a, in the
wavelet transform is the dilation. In addition the a factor
ensures that the energy in the transform is normalised [12].
There is a wide range of wavelets that have been created and
each has varied properties. When performing the wavelet

971

Figure 7: The circuit output behaviour analysed
as a wavelet using Mathworks’ Wavelet Toolbox.
A grid is placed over the transform that matches
the signal to the evolved binding sequence in the
genome. Here, the binding signature would be
ATGG{ACG}A, with a wildcard position in column
5.

transform a critical factor in obtaining an adequate result
is that the appropriate wavelet function is selected. For
simplicity, we next give an idealised example of a wavelet
transform and how we would use it in the binding process.

4.2 The binding process
We take the wavelet transform of a signal, such as that

shown in Fig. 7. This plots time (shifting) along the x-
axis, frequency (dilation) along the y-axis, and the degree
of correlation between the dilated and shifted wavelet and
the signal at that time as an intensity value. Onto this we
overlay a grid representing the 4 bases (A,C, T, G) as 4 rows.
The grid works almost as a truth table, in that we inspect
the average of the correlation values (wavelet coefficients) in
a grid cell to see if it falls above a threshold or not. If the
answer is positive, that square equates to that base being
present at that position in the signature. The grid is read
column by column. More than one value in a column means
that this signature has a wildcard at that position. If no
square in a column is above the threshold, then that position
is ignored. As many positions are read as required to match
a signature. The grid can thus be extended to meet the total
number of CAMs / nodes in the genome as needed. Fig. 7
indicates (figuratively) how the scheme works — the exact
details of the threshold values and which wavelet transform
to use are still being worked on.

5. APPLICATION AREAS
Evolving a control system capable of responding to many

circuit states is an interesting task and there are potentially
many application areas. However, the notion of a dynam-
ically reconfigurable analogue circuit is relatively new and

therefore alien to most analogue engineers. When looking at
traditional domains for signal processing for example, most
applications have tried to put the “intelligence” into the dig-
ital signal processing after the sensor. However, there are
occasions where analogue processing could bring benefits.

Analogue processing is fast, requires no processing over-
head and works with low power. Areas such as robotics and
ubiquitous computing would benefit from adaptable ana-
logue circuits. An important aspect of analogue signal pro-
cessing is filters. Analogue filters are used mainly for signal
conditioning and for discriminating wanted from unwanted
signal frequencies. In communications, filters are used to
reduce or eliminate adjacent channel interference and re-
duce inter-symbol interference. In the interfacing of the real
world (analogue) with computers (digital), analogue filters
are used to eliminate aliasing. Traditional approaches to
designing analogue systems involves conventional analogue
circuit design methods, followed by circuit simulation, proto-
typing and fabrication. Reconfigurability significantly eases
that aspect of the design when an application requires filter
characteristics to change in response to changes in system
operating condition.

One issue holding the take up of this technology is that
analogue signal processing is still a specialist design domain.
It is conceivable that the FPAA will have a similar impact as
the FPGA has had in industrial control engineering [17]. For
many years, the programmable logic controller (PLC) has
dominated industrial automation. The FPGA-based pro-
grammable automation controller (PAC) is challenging this
stronghold. One important factor that has stimulated this
is the availability of graphics-based rapid prototyping tools
that eliminate the need for “esoteric” VHDL hand-coding.
We hope that bringing in evolutionary search algorithms to
the domain could automate design to a degree.

6. PROTOTYPE AND FUTURE WORK
We have implemented the key concepts of our architec-

ture in a working prototype system, which automatically
reconfigures the FPAA in response to environmental changes
through the feedback expression process. A host PC genome
application implements binding and genome expression, and
downloads configurations to the FPAA. An environmental
signal is fed into the FPAA; the FPAA’s output is sent to
the host PC, where it is transformed before being passed to
the genome application to see if binding can occur.

Our prototype implements a simple behaviour that de-
pends on the frequency of the input signal (here alternating
between two different frequency sine waves). The single ge-
nome can be expressed in two ways, as a low band pass
or as a high band pass filter. The output from the FPAA
circuit is continuously Fourier transformed (in this simple
case), resulting in one of two peaks. When the genome ap-
plication detects a change in frequency, it triggers a different
genome binding (analogous in this case to a change between
an AT and a TA site, in the terms of Fig. 7). This results in
a change in circuit expression, and the genome application
downloads the appropriate newly expressed filter, thereby
reconfiguring the FPAA. The cycle repeats when the next
input signal frequency change occurs.

This prototype demonstrates both a proof of concept of
many of the components of the architecture, and that the
chosen FPAA is a suitable implementation platform. The
FPAA configuration software was not designed to be used in

972

this way, with gross changes to unknown configurations, and
Anadigm have been very helpful with our implementation.

Our next step is to replace the Fourier transform of the
output signal with a wavelet transform, and integrate it into
the binding algorithm. We will then embed the genome ap-
plication in an evolutionary harness, and evolve (rather than
handcode) suitable genomes and bindings. This will require
the design of fitness functions evaluated over multiple con-
texts.

There is a practical constraint on genome length, due
to the limited number of CAMs that can fit onto a single
FPAA. This could be increased by daisy-chaining a series
of FPAAs: for example, with 4 FPAAs, genomes could have
lengths of 16–30 nodes. One issue that may arise with longer
genomes is the large number of different possible expressions
(subsets of CAMs) that they support. With so many sub-
set expressions possible, care needs to be taken to ensure
that the circuit’s output signal after wavelet transform has
sufficient complexity and richness to achieve the fine dis-
crimination necessary to explore the different subsets.

7. CONCLUSIONS
Biological evolution has come up with a neat trick: DNA

encodes for proteins, and those proteins can govern the pro-
duction of other proteins. Thus it encodes for the rules that
dictate how it explores a particular functional domain. Not
only that, but a tiny fraction of what could be expressed is
ever realised in a phenotype. A genome contains solutions
for sets of contexts. Change the contexts and the genome
still has room for developmental exploration. This flexi-
bility and redundancy of solutions has an impact on the
re-use and conservation of genes during developmental pro-
cesses. We believe that without similar mechanisms of in-
teraction and feedback, digital genomes cannot guide them-
selves across functional search spaces in a way that fully
exploits a domain’s resources, and this is particularly true
where that domain includes the complexity provided by real-
world physics.

Our feedback architecture is a first attempt to physically
reconstruct the exploratory mechanism of genetic regulatory
networks. Our future work will use this platform as a basis
from which to evolve developmental control systems.

8. ACKNOWLEDGEMENTS
Special thanks to Dave Lovell at Anadigm for helping

us with reconfiguration of the FPAA and host application.
Equipment was granted from the University of York from
start up funding for the York Centre for Complex Systems
Analysis. The research is funded by the EPSRC and Mi-
crosoft Research UK.

9. REFERENCES
[1] W. Banzhaf, G. Beslon, S. Christensen, J. Foster,

F. Kepes, V. Lefort, J. Miller, M. Radman, and
J. Ramsden. Guidelines: From artificial evolution to
computational evolution: a research agenda. Nature
Reviews Genetics, 7(9):729, September 2006.

[2] S. Carroll. Endless Forms Most Beautiful: The New
Science of Evo Devo and the Making of the Animal
Kingdom. Weidenfeld & Nicolson, 2006.

[3] S. B. Carroll, J. K. Grenier, and S. D. Weatherbee.
From DNA to Diversity. Blackwell, 2001.

[4] I. Daubechies. Ten Lectures on Wavelets. Capital City
Press, Montpelier, Vermont., 1992.

[5] T. G. Gordon. Book review of Hardware Evolution by
Adrian Thompson. In Genetic Programming and
Evolvable Machines, 2(4). Kluwer Academic
Publishers, 2001.

[6] S. Harding and J. F. Miller. Evolution in materio : A
real-time robot controller in liquid crystal. In J. Lohn,
D. Gwaltney, G. Hornby, R. Zebulum, D. Keymeulen,
and A. Stoica, editors, Proceedings of the 2005
NASA/DoD Conference on Evolvable Hardware, pages
229–238. IEEE Press, 2005.

[7] B. Hubbard. The World According to Wavelets — The
Story of a Mathematical Technique in the Making. A
K Peters, Natick, MA, 1998.

[8] J. R. Koza, L. Jones, M. Keane, and M. Streeter.
Towards industrial strength automated design of
analog electrical circuits by means of genetic
programming. In U.-M. O’Reilly, T. Yu, R. L. Riolo,
and B. Worzel, editors, Genetic Programming Theory
and Practice II, chapter 8. Kluwer, 2004.

[9] S. Kumar and P. Bentley, editors. On Growth, Form
and Computers. Elsevier Academic Press, 2003.

[10] J. F. Miller and K. Downing. Evolution in materio:
Looking beyond the silicon box. In A. Stoica, J. Lohn,
R. Katz, D. Keymeulen, and R. S. Zebulum, editors,
The 2002 NASA/DoD Conference on Evolvable
Hardware, pages 167–176. IEEE Computer Society,
2002.

[11] J. F. Miller and P. Thomson. Cartesian genetic
programming. In R. Poli, W. Banzhaf, W. B.
Langdon, J. F. Miller, P. Nordin, and T. C. Fogarty,
editors, Genetic Programming, Proceedings of
EuroGP’2000, volume 1802 of LNCS, pages 121–132,
Edinburgh, 15-16 Apr. 2000. Springer-Verlag.

[12] A. Poularikas. The Transforms and Applications
Handbook. CRC Press, Boca Raton, FL, 1995.

[13] S. Soliman and M. Srinath. Continuous and Discrete
Signals and Systems. Prentice Hall International,
Upper Saddle River NJ, 1998.

[14] A. Thompson. Silicon evolution. In J. R. Koza, D. E.
Goldberg, D. B. Fogel, and R. L. Riolo, editors,
Genetic Programming 1996: Proceedings of the First
Annual Conference, pages 444–452. MIT Press, 1996.

[15] A. Thompson. Notes on design through artificial
evolution: Opportunities and algorithms. In I. C.
Parmee, editor, Adaptive computing in design and
manufacture V, pages 17–26. Springer-Verlag, 2002.

[16] G. Tufte. Cellular Development: A Search for
Functionality. Evolutionary Computation, 2006. CEC
2006. IEEE Congress on, pages 2669–2676, 2006.

[17] T. Walter and I. Bell. Where others fear to tread.
Computing and Control Engineering Journal, pages
26–29, April/May 2006.

[18] L. Wolpert. Relationships between development and
evolution. In P. Bentley and S. Kumar, editors, On
Growth, Form and Computers. Elsevier, 2003.

[19] L. Wolpert, R. Beddington, and T. Jessell. Principles
of Development. Oxford University Press, 2002.

973

