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ABSTRACT
This work investigates an intermediate abstraction level,
that of neural groups, for modelling the development of com-
plex artificial neural networks. Based on Neural Darwinism
[5], Displacement Theory [4] and The Neuromeric Model
[18], our DEACANN system avoids the complexities of ax-
onal and dendritic growth while maintaining key aspects of
cell signalling, competition and cooperation that appear to
govern the formation of neural topologies in nature. DEA-
CANN also includes a genetic-algorithm for evolving devel-
opmental recipes, and the mature networks employ several
forms of learning.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Connectionism
and Neural Nets

General Terms
Algorithms

Keywords
Genetic Algorithms, EvoDevo, Neural Networks, Displace-
ment Theory

1. INTRODUCTION
Nervous systems of higher vertebrates have a clearly hier-

archical structure, with sensory inputs translated into motor
outputs in a fast, purely reactive manner at the lowest lev-
els, but with these same inputs propagating to higher neu-
ral structures, whose delayed effects upon motor activity
reflect more advanced processes such as sensory integration,
memory retrieval, prediction and even planning. However,
bi-directional signalling is extremely prevalent among cere-
bral regions, indicating more of a heterarchical than purely
hierarchical organization, as shown in Figure 1.
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Many modern Artificial Intelligence (AI) systems that at-
tempt to mimic aspects of higher intelligence exploit similar
heterarchical organization. Unfortunately, the closest con-
temporary computational analog to cerebral mechanisms,
artificial neural networks (ANNs), are difficult to train on
heterarchical structures. Many researchers have successfully
utilized evolutionary algorithms (EAs) to evolve weight vec-
tors for hierarchical and heterarchical ANNs [12, 21, 14], but
these direct codings (one gene per weight) do not scale well
to the sizes of networks needed for complex, beyond-reactive
tasks.

Developmental approaches, in which EA genomes spec-
ify a recipe, not a blueprint, for ANN formation, arose to
combat the scalability problem [10, 2, 8, 20]. In a semi-
nal article on developmental EAs (DEAs) [17], Stanley and
Miikkulainen attack the standard classification of DEA’s as
too superficial and implementation specific. As an alterna-
tive, they propose a biologically-based set of dimensions for
distinguishing DEAs. Although somewhat orthogonal to the
classic developmental processes cited by Wolpert [19] (cleav-
age division, pattern formation, morphogenesis, differenti-
ation and growth), Stanley and Mikkulainen’s dimensions
(cell fate, targeting, heterochrony, canalization and com-
plexification) also focus on the cellular (and even genetic)
levels.
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Figure 1: Mammalian sensorimotor control hierar-
chy

Unfortunately, the distance between these low levels and
the control heterarchies seen in the brain is great. Even in-
cremental complexification approaches, as in NEAT [9], can-
not achieve the multi-level neural topologies seen in nature.
Although Stanley and Miikkulainen argue for abstractions
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well above the level of cellular migration, chemical signalling
and neuritic growth, this paper argues for yet another step
up from the cellular level.

In [17], Stanley and Miikkulainen discuss heterochrony:
the effects of timing upon developing phenotypes. The
strong adaptability of developing embryos normally prevents
timing changes from being fatal, but instead, allows greater
exploration of phenotypic space via small genotypic (tim-
ing) variations. Exploration via heterochrony is reasonably
safe during early and late development, when intercellular
communication is relatively low. However, the middle, phy-
lotypic stage is much less flexible due to a high level of global
chemical signalling.

Interestingly enough, this phylotypic stage is precisely the
stage during which the embryos of many different species
look alike. In fact, by examining neural structures during
the phylotypic stage, one finds structural similarities that
can form the basis for a general model of the development
of heterarchical ANNs.

This article examines one of the most popular (among
developmental neuroscientists) characterizations of the phy-
lotypic stage, the Neuromeric Model, and describes a DEA
based upon it.

2. GROUP-LEVEL PRINCIPLES OF
NEUROGENESIS

In Principles of Brain Evolution [18], Striedter, a com-
parative neurobiologist, reviews a host of useful principles,
at many abstraction levels, for understanding neurogenesis,
neuroevolution, and their interaction. Two of the key prin-
ciples are the Neuromeric Model and Displacement Theory.
The former addresses the spatial arrangement of brain re-
gions, while the latter explains the topology of connections
between them. Together, they provide a promising inter-
mediate level of abstraction for DEAs that grow artificial
neural networks.

2.1 The Neuromeric Model
In 1953, Bergquist and Kallen [3] noticed that all verte-

brate embryos have a similar elongated, segmented hind-
brain during the phylotypic stage. The ringed segments,
termed neuromeres, are modular zones of high cell division
(to form neurons) and radial migration (of neurons to their
proper layer). Later, Puelles and Rubenstein [16] found
that this pattern encompassed the midbrain and forebrain
as well. They also provided genetic evidence that Hox and
Hox-like genes control this segmentation, just as they con-
trol the subdivisions of the body’s central axis. Hence, this
revised Neuromeric Model views the entire developing brain
as an elongated series of ringed modules, within which de-
velop layers of neuron cell bodies (i.e., gray matter).

Figure 2: The contemporary neuromeric model.

Figure 2 sketches the basic neuromeric structure of the
vertebrate phylotype. The hindbrain neuromeres develop

into brain regions such as the cerebellum and pons, which
are tightly tied to sensory and motor systems, while the mid-
brain and forebrain segments become areas such as the basal
ganglia, hippocampus and prefrontal cortex, all of which are
involved in high-level cognitive processes. Hence, the Neu-
romeric Model provides the perfect developmental scaffold-
ing for the control heterarchy of Figure 1.

2.2 Displacement Theory
The Neuromeric Model provides a useful structural bias

for generating neuron sub-populations in a DEA for ANNs,
while abstracting away many cellular-level details. Deacon’s
[4] Displacement Theory (DT) compliments the Neuromeric
Model by explaining the interactions between the sizes of
neural sub-populations and their inter-connectivity, again,
while remaining above the cellular level of abstraction.

The basis of DT lies in Edelman’s [5] Darwinistic view
of neurogenesis, known as The Theory of Neural Group Se-
lection (TNGS). In this view, neurons undergo a selective
process wherein only those that grow axons to, and receive
axons from, other neurons will reach maturity. Essentially,
neurons are involved in a survival of the best networkers
competition. DT expounds on TNGS by proposing that the
networking competition during early development enables
brains to scale to fit the body’s sensory and motor appara-
tus. In short, primary sensory and motor areas of the brain
are sized according to their immediate inputs or outputs,
respectively. Secondary region sizes derive from those of the
primary regions, and deep cortical structures grow or shrink
to fit their input and output sources.

Figure 3 conveys the essence of TNGS and DT. Note a)
the expansion of the 3 neuron groups along the path from
the largest sensory input, S1, to the largest motor output,
M2, and b) the decline of groups B and D, which lose the
competition for C’s dendrites and C’s axons, respectively.

Figure 3: (Above) The Theory of Neural Group
Selection (TNGS), wherein neurons survive only if
they establish efferent and afferent connections. Dy-
ing neurons are unfilled in the figure. (Below) Dis-
placement Theory (DT), in which neuron groups
with good networking possibilities expand, while
others shrink. Sizes of sensory, motor, and neuron
group icons depict sizes of the corresponding pools.

Developmental neuroscience clearly supports and employs
the key tenets of DT. For example, Fuster [7] documents the
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earlier maturation of posterior brain regions (used in early
sensory processing) and late maturation of frontal areas such
as the prefrontal cortex (PFC). Striedter [18] combines DT
with the work of Finlay and Darlington [6] to explain the
trend of greater neocortical (and especially PFC) control
of lower brain regions in higher organisms. First, Finlay
and Darlington show that late equals large in neurogenesis:
larger brain regions are those that mature later in develop-
ment. Second, a key corollary of Deacon’s DT is that large
equals well-connected : big brain regions send many axons
to other regions and thereby have a significant amount of
control over them. Together, these show how small changes
in developmental timing (in higher mammals) have enabled
the frontal regions to mature later, hence grow larger, and
hence exhibit greater control over a wide variety of cortical
areas. And greater frontal control correlates well with be-
havioral sophistication, as illustrated by Nakajima et al.’s
[13] comparisons of manual dexterity vis-a-vis frontal con-
trol of motor areas in mammals such as cats, monkeys and
humans.

Together, these theories paint neurogenesis as a self-orga-
nizing process in which genetics determines the neuromeric
structure, the basic properties of neurons in different lay-
ers of the neuromeres, and the maturation speed of neural
regions, but the final sizes of these regions and their in-
terconnectivity stem from self-organizing processes wherein
neuronal subpopulations essentially compete for the right
to cooperate (via synaptic signalling) with other subpopu-
lations.

3. GROUP-LEVEL DEVELOPMENT IN
DEACANN

Designed to emulate the essential elements of neuromere
formation, Neural Group Selection and Displacement The-
ory, while avoiding the computationally intensive simulation
of axon growth, the developmental algorithm employed in
DEACANN involves three phases.

In phase I, Translation, the binary genome is converted
into a set of neuromeres, each containing one or more neuron
groups, whose basic properties are genetically determined.

In phase II, Displacement, the sizes of each neuron
group and intra- and inter-group invasion strengths undergo
repeated cycles of modification. Since (in both TNGS and
DT) group size affects invasion strength, and vice versa,
several iterations are required to translate the initial group
masks, inter-group distances, growth limits and proximities
(to sensory inputs and motor outputs) into group sizes and
relative degrees of inter-group connectivity.

In phase III, Instantiation, the final group sizes and in-
vasion strengths are used to generate a) populations of neu-
rons for each group, and b) connections between individual
neurons in the same and different groups. Although not de-
tailed in this paper, some of these connections specify neu-
romodulatory signalling pathways, wherein single neurons
send messages to entire neuron groups.

3.1 Translation
The DEACANN genome needs to support the develop-

ment of neuromere chains, where each segment may consist
of several distinct neuron groups. All neurons in a group
should be similar, and a group type may repeat several times
in the same or in different neuromeres. For example, a layer

Figure 4: DEACANN’s 3-stage developmental
model. Each circle denotes a neuromere, while each
concentric ring represents a neuron group, with ring
width proportional to group size. In the upper
right, arrows between neuron groups indicate biases
(quantified as invasion factors - see below) that gen-
erally lead to axonal connections during the instan-
tiation phase. In the bottom section, small dots are
neurons, and their axons are thin, outward-bound
arrows.

of lateral inhibitors may occur several places in the devel-
oped neural network.

Although one could rely on evolution to duplicate the
genes that encode these groups, the probability of such
copying (in a linear genome) decreases dramatically as gene
complexity rises. Although genetic programming with sub-
routines [11] provides one method of modularizing reusable
genes, the computational overhead of GP seems unnecessary
in this case, given the objective of evolving sets of neuron-
group parameters, not actual growth procedures.

In this special case, where neither the number of neu-
romeres nor the number of groups per neuromere is fixed, we
can achieve modularity and reuse within a linear GA chro-
mosome by simply removing the standard GA constraint of
fixed gene locations and adopting a tag-based addressing
system, as shown in Figure 5.

In this indirect representation, binary tags denote the
start of a neuromere specification. In the example of Figure
5, this tag is 11111, with length k = 5. The user can specify
the degree to which any k-length segment of the chromosome
must match this tag to qualify as a hit. A matching segment
is called a neuromere header. Here, we assume a match de-
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gree of 100 % for neuromere headers, i.e., they must match
the neuromere tag exactly.

Once a neuromere header is found, the bits directly fol-
lowing it are interpreted as the neuromere specification. In
the current version of DEACANN, this specification is sim-
ply a single value denoting a neuron-group tag. In Figure
5, the single neuromere specification (denoted by the pen-
tagon labelled ”N”) has 01010 following its header. Thus,
the neuron-group tag for this neuromere is 01010.

The translator then scans the (entire) chromosome in
search of segments that match the neuron-group tag, 01010.
In this example, we assume that a 80% or more of a chromo-
some segment’s bits must match the tag. Each such match-
ing segment denotes the header of a neuron-group specifica-
tion, and the bits following the header are translated into the
various parameters of the group, such as axon and dendrite
masks, learning rates, etc. (which are detailed below).

Thus, for each neuromere specification header that is
found, a neuron group tag is read from the chromosome
and used as the basis for a complete scan of the chromo-
some for the specifications of the neuron groups of that
neuromere. During a scan, the group specifications cannot
overlap. However, the group specification for one neuromere
may be ignored or interpreted differently during the scan for
another neuromere’s groups. Similarly, the (rather short)
neuromere specifications cannot overlap.

A match degree less than 100% allows neuromeres to share
some, but not necessarily all, group specifications, since each
neuromere has a potentially unique group tag. For example,
assuming a common group-tag-match degree of 75%, if neu-
romere N1 has group tag 1111 and neuromere N2 has group
tag 1010, then both neuromeres would share any group spec-
ification with header 1011 or 1110, but only N1 would in-
clude groups with header 0111 and only N2 would select
groups headed with 1000.

This representation supports complexification via the well-
known combination of genetic duplication and differentia-
tion [1]. Being relatively short, neuromere coding regions
are frequently copied in their entirety, thus creating addi-
tional neuromeres in later generations. Any mutation to the
new neuromere’s group tag then provides the potential for
differentiation, since this enables the new neuromere to in-
herit some, but not all, of the neuron-group types from its
ancestor neuromere.

The neuron-group specification consists of a contiguous
string of bits that encode the following parameters:

1. Axon mask – Masks are abstractions of cadherins,
ephrins, [19] and other chemicals that govern the at-
traction and repulsion of axons during their migration
toward dendritic targets. In general, the attractive-
ness of one neuron group for another is directly propor-
tional to the complementarity of the axon and dendrite
masks in the two groups, and inversely proportional to
the distance between the groups.

2. Dendrite mask

3. Axon sharing – The sharing parameters indirectly con-
trol the patterns of connectivity formed between two
groups during the Instantiation phase of development.

4. Dendrite sharing

5. Postsynaptic effect – Indicates whether group neurons
have excitatory or inhibitory effects upon targets.

Figure 5: Translation of a bit string into the pa-
rameters for the neuron groups of a neuromere.
Pentagons point to the start of neuromere (N) and
group (G) tags, while triangles denote the extent of
the parameter bits (P) that follow each tag. In this
example, the tag for neuromeres is 11111 and must
be matched exactly, while group tags must match
on at least 4 of their 5 bits. The single parameter
for the neuromere is the tag for its groups, 01010,
which appears under the triangle attached to pen-
tagon N. Hence, all strings that match 80% of 01010
mark the start of group specifications.

6. Neuromodulator sent – Governs whether group neu-
rons send neuromodulators (and of what type) instead
of normal action potentials when excited. If the group
is excitatory (inhibitory), then it’s neuromodulator
will always have an excitatory (inhibitory) effect upon
targets.

7. Neuromodulator received – Neuromodulator (if any)
to which the group neurons are sensitive.

8. Growth limit – Number of developmental rounds in
which the group neurons will participate.

9. Learning rule – One of several Hebbian and anti-Heb-
bian synaptic-modification schemes, with the same
rule applied to all incoming connections of a group’s
neurons.

10. Learning rate – Degree of synaptic-strength change
during learning-rule application.

3.2 Displacement
Phase II of development is the heart of the DEACANN ap-

proach. It simulates the interaction between neuron groups,
both within and between neuromeres, but without simulat-
ing the actual growth of axons and dendritic trees. Instead,
three interacting factors are iteratively updated: 1) the car-
dinality of the neuron sets in each group, Si, 2) the invasion
strength of each group relative to itself and others, Ii,j , and
3) the connectivity of each neuron group, Ci.

Invasion strength, Ii,j , represents the propensity of neu-
rons in group i for sending axons to invade targets in group j.
It is a function of the distance between the two groups, Di,j ,
the compatibility of the axon mask for i with the dendritic
mask for j, Mi,j , and the sizes of groups i and j, Si and Sj .
The basic update formula is given in equation 1, in which
αm and αd are weighting constants with typical values of 0.5
and 1, respectively, and T is the total elapsed time since the
beginning of Phase II. The inclusion of T allows groups that
are distant from one another but otherwise compatible, i.e.
high Mi,j , to eventually hook up if both groups can maintain
a reasonable size during the early stages of displacement.
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Ii,j = SiSj(T + 1)
αmMi,j

1 + αdDi,j
(1)

For each group, i, the total invasion force into, Iin
i , and out

from i, Iout
i are derived from the pairwise invasion strengths

as:

Iin
i =

X
j∈G

Ij,i (2)

and

Iout
i =

X
j∈G

Ii,j (3)

Neuron groups compete for targets via the following mod-
ification to invasion strength:

Ii,j ← (1− γ)
Iin

j

Ng
+ γIi,j (4)

Here,
Iin
j

Ng
is the average intensity of invasions into group

j; Ng is the total number of neuron groups in the ANN. γ
denotes the competition intensity, a constant with a range of
[0 1] and typical value of 0.5. Higher values of γ will penalize
intensities that are below the average, thus squeezing out
weak invaders. Conversely, a γ closer to 0 will push all
invasion strengths closer to the average, thus more evenly
distributing access to group j’s dendrites.

The competition-modified invasion strengths are re-sum-
med to update the invasion forces, and the estimated - re-
member, no actual connections have yet been formed - con-
nectivity of each neuron group is then computed as:

Ci = Iin
i + Iout

i (5)

To reflect the basic tenet of Neural Darwinism - the best
networkers proliferate, while poorly-connected neurons die -
neuron-group sizes are updated as a function of connectivity:

4Si = αg(Ci − C) (6)

where C is the average connectivity over all neuron groups,
and αg is a growth constant, typically 0.1. Notice that Si

does not occur in this update formula; its effect is already
present in the contribution of Iout

i to Ci, since each addend
of Iout

i involves Si.
These updates of Ii,j , Ci and Si are repeated a maximum

of R (a user-defined parameter typically in the range [5 10])
developmental rounds. Any group with a growth limit, Gi

less than R will not participate in the final R-Gi rounds.
This embodies the late equals large principle, since neuron
groups with longer growth limits will tend to have higher
connectivity - remember the affect of T in equation 1 - and
hence larger sizes.

Initially, each group size is 1, and typically, each input
and output neuron constitutes its own group. Inputs are as-
sumed to enter through the outermost groups of neuromere
0, while outputs exit through its innermost groups. Groups
that are spatially adjacent or otherwise attractive as targets
for several input and/or output groups will have high incom-
ing invasion forces, and thus high connectivity and increas-
ing sizes, exactly as prescribed by Displacement Theory.

3.3 Instantiation
Given the Si and Ii,j values for each group and group

pair, respectively, Phase III of development uses these val-
ues to bias the generation of neurons for each group and
connections between them.

To generate neurons, all group sizes, except the input and
output groups, are normalized to produce distribution frac-
tions for a fixed total number of neurons, N.

Connections are formed by considering each group, i, and
all invasion factors into that group. These factors are nor-
malized to produce the values ˜Ij,i for all groups j. For
each potentially invading group j, corresponding neurons in
groups i and j are considered. For each pair, a connection
from the j neuron to the i neuron is formed with probability
˜Ij,i.
Once formed, a connection from the kth neuron of group

j to the kth neuron of group i neuron can spawn further
connections of a convergent, divergent or parallel form, de-
pending upon the axonal sharing factor of group j, λout

j and

the dendritic sharing factor of group i, λin
i . In the process

described below, the kth neuron of group is denoted Gi(k)

• ki = k, kj = k

• Repeat

– Create connection Gj(kj)→ Gi(ki)

– Generate random fractions ri and rj

– If (ri ≤ λin
i ∧ rj ≤ λout

j ) then ki ← ki + 1 and
kj ← kj + 1

– Else if ri ≤ λin
i then ki ← ki + 1

– Else if rj ≤ λout
j then kj ← kj + 1

• Until (ri > λin
i ∧ rj > λout

j )

Briefly, if both sharing factors are high, then the first
conditional will often be true and both indices will be in-
cremented, causing the next pair of corresponding neurons
to be paired. Several rounds of this will create a set of par-
allel connections, similar to a topological map. If dendritic
sharing is high but axonal sharing low, then the second, but
not the first, conditional will often be true, thus causing
the presynaptic neuron to remain fixed, while the postsy-
naptic neuron becomes the neighbor to Gi(ki). A few re-
peats of this situation forms a divergent connection pattern
from group j to i. Conversely, if dendritic sharing is low
but axonal sharing high, the third condition is frequently
triggered and a convergent pattern results. Finally, if both
sharing values are low, then the loop exits early and only
one or a few connections are created. These outcomes are
summarized in Figure 6.

This approach has a drawback with respect to evolvability:
since synapses are generated stochastically, the same genome
can give rise to different phenotype topologies. Hence, a
good phenotype may disappear from the population if its
genotype (G), and G’s near neighbors in genotype space, all
develop into low-fitness phenotypes in any particular gener-
ation.

To reduce this non-determinism during development, an
alternate approach, scaled pairing, begins by comparing ˜Ij,i

to a threshold (0.2 in the results below). If it is above,
then corresponding neurons in groups i and j are immedi-
ately coupled, with a scaling factor of ˜Ij,i attached to each
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link. As detailed in [15], this fixed factor modifies the link’s
weight (which, due to learning, is not fixed). The stochas-
tic computation of divergent and convergent links can then
proceed as above, with each new connection also receiving
˜Ij,i as a scaling factor.

Figure 6: Inter-group connection topologies as a
function of axonal and dendritic sharing factors.

4. RESULTS
Three-way adaptive (a.k.a. TRIDAP) systems that com-

bine evolution, development and learning create a rather
ominous search space, as work with DEACANN has clearly
revealed. Several problems were unsuccessfully attempted,
where success is defined very loosely as the ability to show
improved fitness over the course of evolution. These in-
cluded short-term-memory and simple tracking tasks.

However, a simple movement control problem, the starfish,
does allow DEACANN to consistently show evolutionary
progress. In this task, a radially-symmetric k-limbed animat
must move as far away from its’ starting point as possible in
a limited time. Each limb has two muscles, one for pulling
in the limb’s direction, and one for pushing in the opposite
direction. A motor neuron is devoted to each of these mus-
cles, so a k-limbed starfish has 2k motor neurons. The firing
rate of each neuron affects the strength with which its mus-
cle contracts, and the magnitude and direction of starfish
movement is then the resultant vector averaged over all the
pulling and pushing contractions, weighted by their intensi-
ties. The four input neurons register positive and negative
velocity components along the x and y axes.

To make the task more interesting, each muscle has a
fatigue factor that increases (decreases) each time its’ mo-
tor neuron’s membrane potential is above (below) a firing

threshold, which is 0.25 in these examples. The fatigue fac-
tor inversely affects the ability of motor neuron’ activity to
translate into muscle activity, with fully fatigued muscles
unable to contract. In this model, muscles still contract,
but with weak intensity, when the motor neuron is above
zero but below the firing threshold.

When tested on a 5-limbed starfish for 50 timesteps, DEA-
CANN typically evolves progressively better controllers; in-
volving multiple interacting neuron groups and neuromeres
that produce cooperative motor-neuron firing patterns. Al-
though a starfish can move a maximum of one distance unit
per timestep, fatigue prohibits a string of 50 such maximum-
distance movements in the same direction, thus rendering
the calculation of an optimal 50-step distance somewhat
difficult. Running a population of 20 individuals for 20 gen-
erations in DEACANN typically yields a top performance
of 14 to 16 distance units. These runs employ fitness-
proportionate selection, with three-individual elitism and
culling of the lower 25 % of each generation. Genomes are
200 bits long; development has a maximum of 5 rounds,
employs scaled pairing and randomly initializes all weights
to values in (0, 0.1]. An individual’s fitness is simply its’
distance from the start point after 50 time steps.

Figure 7: Fitness progression of a 20-individual
DEACANN population on the 5-limbed starfish
problem.

Figure 7 shows a standard evolutionary progression, while
Figure 8 shows the best individual of generation 100, which
moves nearly 20 units, while Figure 9 illustrates the winning
strategy. A net pushing force is generated from arms 1 and
5, while a net pulling force occurs in arms 3 and 4. Arm 2 has
competing pulling and pushing forces, which largely cancel
one another. In limbs 1, 3, 4 and 5, a dominant force arises
due to a fatigued opposing force. For example, in limb 1,
the motor neuron for pushing fires only weakly, while that
for pulling fires strongly. This causes the former to work
weakly, but without accumulating fatigue, while the latter
quickly fatigues; and since its’ motor neuron never rests, the
limb-1 pulling muscle remains inactive for the remainder of
the run. Since all motor neurons have the same default time
constants, biases, etc., their different firing intensities stem
from heterogeneous inputs and learning rules. As shown in
Figure 8, 3 of the large intermediate neuromere’s 4 neuron
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groups are inhibitory, so differential connectivity between
the 10 motor neurons and the different layers of neuromere
1 (along with different learning rules) leads to heterogeneous
combinations of inhibition and excitation, and thus to the
special mixture of pushing and pulling intensities that facil-
itates 20-units of movement.

Figure 8: Neural network of the best-of-generation
individual after 100 generations of a 20-individual
DEACANN run on the 5-limbed starfish problem.
Three neuromeres occupy successive slanted planes
in the picture, and neuron groups are concentric
rings within each plane. Darker neurons (with solid
lines emanating from them) are excitatory, while the
lighter circles (with dotted emerging lines) are in-
hibitory. The leftmost bar, neuromere 0, consists of
the 4 input and 10 output neurons, each of which is
its own neuron group.

As shown in Figure 7, even with elitism, DEACANN can-
not always maintain its’ maximum fitness across the genera-
tions. This stems from developmental stochasticity, with the
main source of nondeterminism being the synaptic forma-
tion process (despite the use of scaled pairing), as discussed
above.

Figure 9: Main forces generated by the winning
starfish of the 100-generation run.

5. CONCLUSION
Although DEACANN’s intermediate level of abstraction

saves considerable computational effort during development,
it does involve a complex iterative process that is quadratic
in the number of neuron groups. The neuron-group level a)

still affords the cooperative and competitive interactions at
the heart of Neural Darwinism, and b) appears to be the
proper level at which to explain the formation of large-scale
brain topologies, via principles such as late equals large and
large equals well connected and structures such as laminae
and neuromeres [18]. In artificial TRIDAP systems, devel-
opment can afford to work primarily at this intermediate
level, since learning can (and should) handle the fine-tuning
of individual synapses. Future work will investigate tasks in
which learning plays a more obvious role than in the current
starfish controllers.
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