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ABSTRACT 
Among numerous pattern recognition methods the neural network 
approach has been the subject of much research due to its ability 
to learn from a given collection of representative examples. This 
paper concerns with the optimization of a weightless neural 
network, which decomposes a given pattern into several sets of n 
points, termed n-tuples. A population-based stochastic 
optimization technique, known as Particle Swarm Optimization 
(PSO), has been used to select an optimal set of connectivity 
patterns to improve the recognition performance of such “n-tuple” 
classifiers. The original PSO was refined by combining it with a 
bio-inspired technique called the Self-Organized Criticality 
(SOC) to add diversity in the population for finding better 
solutions. The hybrid algorithms were adapted for the n-tuple 
system and the performance was measured in selecting better 
connectivity patterns. The aim was to improve the discriminating 
power of the classifier in recognizing handwritten characters by 
exploiting the criticality dispersion in the swarm population.   
This paper presents the implementation of the hybrid model in 
greater detail with the effect of criticality dispersion in finding 
better solutions. 

Categories and Subject Descriptors 

I.5.1 [Pattern Recognition]: Models- Neural nets. 

General Terms 

Algorithms, Performance and Design. 

Keywords 
Swarm intelligence, Self-Organized criticality, Weightless neural 
network, Machine Learning, Optimization, Pattern Recognition 
and classification. 

1. INTRODUCTION 
Pattern recognition as a field is extremely diversified and has 
been applied in many areas such as science, engineering, 
business, medicine etc. The aim of pattern recognition is to 
classify objects into identifiable categories or classes after 
extracting features from the data. This data may be numerical, 

pictorial, textural, linguistic or any combination of these 
categories.  Numerous techniques for pattern recognition can be 
investigated in four general approaches of pattern recognition, as 
suggested in [13]: template matching, statistical techniques, 
structural techniques and neural networks (NNs). 

The neural classification emulates the computational paradigm of 
the behaviour of neurones and their interconnections in human 
brain. Instead of recognizing a pattern by following a set of 
human-designed rules, as in the structural approaches, neural nets 
learn the underlying rules from a given collection of 
representative examples.  Among neural network models, the 
weightless or n-tuple form of network [6] stands out due to its 
own advantages over a variety of pattern recognition algorithms 
[23]. Considerable research activities have focused on the n-tuple 
method, both regarding theoretical issues [15][23] as well as 
applications to real-world tasks [24]. Several applications of n-
tuple-based networks to handwritten character recognition tasks 
have been reported. 

Considerable research shows that by optimizing the connections 
of an n-tuple network the classification performance can be 
improved significantly [2][5][12][14]. Particle swarm 
optimization is a population-based stochastic optimization 
technique developed by Eberhart and Kennedy [17] in 1995, 
motivated from the simulation of social behaviour of bird flocking 
or fish schooling. Being successfully applied in many areas like 
function optimization, artificial neural network training [25] or 
fuzzy system control [9], the PSO seems to be a good candidate to 
find an optimal set of input maps for the n-tuple network [3]. The 
particle swarm searches optima in the solution space and shrinks 
the search area step by step. It refines its search by attracting the 
particles to positions with good solutions.  

In order to be less susceptible to premature convergence, the 
maintenance of “diversity” in particle swarm is important 
[16][19]. One way to add diversity in PSO is to use the Self-
Organized Criticality (SOC) [4]. Self-organized criticality has 
been found in a variety of phenomena such as earthquakes, 
volcanic activity, the game of life, landscape formation and stock 
markets. SOC describes how small amounts of external influence 
can occasionally lead to the big changes observed in complex 
systems. Self-Organized Criticality has been successfully applied 
to improve the performance of Evolutionary Algorithms. This was 
done with mass extinction and mutation operator control by Krink 
and Thomsen [18], where extinction zones were formed (3×3 
rectangles). Mutated copies of currently best individual then 
substituted individuals in these extinction zones. SOC was also 
used in relation to spatial mating control [21], where most mates 
were immediate neighbours, but occasionally mates were selected 
from remote places. Occasional outbreeding improved the 
performance by counter balancing the effect of rigid 
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neighbourhood inbreeding. Other aspects of SOC have been 
described and applied to search problems by Boettcher and 
Paczuski [7]. Extending the PSO with SOC was found to be very 
promising in achieving faster convergence and reaching better 
solutions and the resulting algorithm was named as SOC-PSO 
[19]. This paper presents the experimental results regarding the 
effect of criticality dispersion in the swarm population to optimize 
an n-tuple classifier with the application to the handwritten 
character recognition task of the NIST database [28]. The 
remainder of the paper has been organized as follows:   

Section 2 will introduce the n-tuple network. Application of 
particle swarm on n-tuple systems will be introduced in Section 3. 
The main idea of SOC will be described in Section 4. 
Implementation of the hybrid SOC-PSO algorithm for the n-tuples 
will be described in Section 5. Modelling of the criticality 
dispersion and the importance of criticality limit will also be 
explained here. Section 6 will present the experimental results. 
Finally Section 7 will conclude the paper.  

2. N-TUPLE NETWORK 
Although the n-tuple classifier is not famously popular compared 
to some other methods, such as multilayer perceptrons [20], the n-
tuple classifier does have its own advantages over a variety of 
pattern recognition algorithms [23].  The networks based on the n-
tuple method have two great strengths: they can be trained 
quickly and they can be implemented in conventional computers 
simply when compared to other equation solving and minimizing 
methods. The training of the basic classifier is a one-shot 
memorization process. These advantages come at the cost of 
recognition robustness. It has been shown that the n-tuple method 
can result in quite reasonable recognition performance if used 
with care [23]. The n-tuple method decomposes a given pattern 
into several sets of n points, termed n-tuples. The classifier stores 
class-specific information about the training set in a number of 
look-up tables or RAM nodes. The entries in each look-up table 
are addressed by sampling n specific data locations of the input 
that constitutes a ‘feature’ of the pattern. A pattern is classified as 
belonging to the class for which it has the most features in 
common with at least one training pattern of that class.  

Figure 1 shows an n-tuple network, which is built out of RAM 
nodes. The input address of the RAM unit is also known as 
“tuple”. If the width of the address bus (also known as input 
connection map) is n bits then the tuple is termed as “n-tuple”. 
The width of the address bus is also known as “tuple-size”. Total 
number of tuples, denoted by R, is the number of tuples available 
to be optimized. R depends on the network’s structure. A group of 
RAM nodes in a tree-like structure is called a discriminator. The 
discriminator achieves its goal by presenting to each neuron only 
a subset of the input pattern, and adding up the outputs of its 
RAM nodes. This sum can be seen as a measure of the 
recognition confidence of the discriminator. Therefore, when the 
discriminator sees a previously learned pattern, its integer output 
reaches the discriminator's maximum. For an input vector, of size 
L, the number of necessary RAM nodes R of connectivity n that 
should be used to cover all inputs of the input vector should 
satisfy: R × n > L. A group of discriminators is used to distinguish 
a fixed number of classes. The number of classes, which need to 
be distinguished by a network, determines the number of 
discriminators needed in a network. The network shown in Figure 

1 can be used to distinguish a fixed number of classes. If it 
consists of ‘j’ discriminators, it can differentiate j classes. At the 
output of all discriminators there is a “decision block” where the 
winner class is chosen using some criteria such as the greatest 
sum, a threshold of the greatest sum, difference between sums etc. 
In greatest sum approach, the discriminator containing the 
greatest number of active RAM nodes is selected. Thus a pattern 
is 'recognized' as the one whose discriminator 'fired' the most, that 
is, the discriminator with the highest count of memorized tuples. 
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Figure 1. An n-tuple network  

The input connection mapping of the n-tuple classifier determines 
the sampling and defines the locations of the pattern matrix. There 
will be a vast number of possible connections for a matrix with 
the dimension like 32 by 32. The classification and generalization 
performance are highly dependent on these input mappings 
[5][14]. Conventionally input mappings are randomly chosen [6]. 
It has been demonstrated in [20] that a randomly connected 
system perform better than a network with an ordered map. 
Orderly fashioned input connection failed because the patterns 
being discriminated were very similar to the way the system was 
organized. Random connection was favourable because 
randomness doesn’t have a pattern with it. Fairhurst and Stonham 
[11] have shown that the n-tuple scheme is relatively insensitive 
to the connection mapping. However, Aleksendar and Stonham 
[1] have argued that a random map is suitable for an un-optimized 
problem because sampling points distributed throughout the 
pattern matrix are more likely to detect global features than an 
ordered map. For an optimized case better selection of input 
mappings can give a relatively better performance [1]. Bishop et 
al. [5] demonstrated the importance of sampling sequence in 
discriminating similar classes. 

3. PARTICLE SWARM ON N-TUPLES 
When particle swarm optimization is applied to the n-tuple 
training problem, the “tuples” of the n-tuple can be termed as 
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“particles”. Thus each particle corresponds to an input connection 
map of the n-tuple network. The size of an n-tuple network is 
defined by the total number of tuples it is built with. Total number 
of tuples, denoted by R, is the number of tuples available to be 
optimized by particle swarm. R depends on the network’s 
structure. The particle swarm technique makes use of a population 
of particles or input-maps (for n-tuples), where each particle has a 
position and a velocity. The PSO formulae, as shown in Equation 
1 and 2 define each particle as a potential solution in a multi-
dimensional search space. 
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The dimension of the PSO corresponds to the bits or the tuple-size 
of each tuple. As the tuples are “n” bits, so the PSO will be n 
dimensional with the i-th particle represented as Xi=(Xi1,Xi2,..Xin). 
The PSO remembers the best position found by any particle 
which is known as global best, denoted by Pg. Additionally each 
particle remembers its own previously best found position 
designated as Pi=(Pi1,Pi2,…Pin) and its velocity Vi= (Vi1,Vi2,…Vin). 
Equation 1 and 2 will define the velocity and position of the i-th 
particle with d-th dimension.  

Search in PSO starts with the random initialisation of particles’ 
positions and velocities within the allowed range defined by Xmax, 
Xmin, Vmax and Vmin. Usually Vmin is the negative of Vmax. Each 
particle keeps track of its own performance. At each iteration, the 
velocity of every dimension of a particle gets updated according 
to Equation 1, where Vi,d, Pi,d and Pgd constitute the particle’s 
momentum. As this momentum is different for different 
dimension of a particle, this has effect to force the particle to 
change the trajectory in the search space towards the most 
promising areas. This momentum is essential, as it is the feature 
of PSO that allows particles to escape the local optima. In 
addition the ran1 and ran2 in Equation 1 adds some random 
adjustments in velocities, which is essential to avoid the situation 
where the particle endlessly follows the exact same path. 
Constants 1ψ and 2ψ in Equation 1 determine the relative 
influence of the “individuality” and “sociality” traits of the 
particles and are usually both set the same to give each 
component equal weight as the individual and social learning rate.   

3.1 PSO-based tuple search 
Tuple search algorithm by PSO is being illustrated in the flow 
chart in Figure 2. The algorithm starts with Q particles. Q is the 
total number of particles (population size) in any iteration and 
they are initially distributed randomly over the whole pattern 
matrix. The target is to find R class-specific tuples in total. Class-
specific tuples best describe a specific class but also describe 
other classes to some extent [2]. The distribution of R tuples 
among the classes is proportionate to the error rates [2]. So the 
class with the most error rate gets the most number of tuples and 
the class with the least error rate gets the least number of tuples.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Flow chart of PSO based tuple search 

Fitness of each particle is measured according to a reward and 
punishment based scheme [2], where a reward is associated with 
the correct recognition of the pattern and the penalties for 
misclassification and rejection. Based on fitness results each 
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particle’s best positional values are updated. ‘Pi,d’ defines the 
location along the dimension d of the best positional value of each 
particle in the history. So ‘Pi,d’s represent best positions of all 
particles so far. Next in the flow chart (Figure 2), fitness of all Pi,d 
particles are compared with a fitness threshold described by 
Equation 3, where ( )( )tO jii

max  is the score of the best-

performed tuple among all the tuples in the current iteration. 

 

( )( ) ( )( )texptOmaxThreshold jii
/1 τ−−×=  

Fitness threshold exponentially decays over iterations according 
to the above equation, whereτ  should be carefully chosen and 
varied throughout the search as a trade-off between  performance 
and speed. A solution falling within the threshold distance of a 
specified value would be considered as an acceptable solution. 
The algorithm checks if the total number of particles for a class 
has been found. If the target number of particles for a class are not 
found then the particles velocities and positions will be updated, 
according to Equation 1 and 2, to explore new locations in the 
search space. After finding all optimized particles for a class, 
tuples for the next class group will be sought. At the beginning of 
searching for the next class a new population of Q particles will 
be reinitialised randomly. Once all the particles are sought for all 
classes the optimization task will be completed and an optimal set 
of R maps will be found. These R maps will be used as input 
connection maps of the n-tuple network to recognize characters. 

Particle swarm optimization like any other stochastic algorithm 
may prematurely converge [19]. Fast rate of information flow 
between particles can create similar particles resulting in less 
diversity in the system, thus increasing the possibility of being 
trapped in local optima [22]. PSO is also very much problem 
dependent like any other stochastic search. No single parameter 
setting exists which can be applied to all problems [19]. For 
example choosing the value for the inertia weight, ω  in Equation 
1, could be critical. A large inertia weight favours exploration 
(global search), while a small inertia weight favours local search 
[26].  

4. SELF-ORGANIZED CRITICALITY  
To understand the concept of SOC lets consider a pile of sand. At 
some point, as grains of sand are slowly and steadily added, the 
pile becomes "critical" or unstable, and an avalanche occurs 
spontaneously. In the sand-pile model [4] grains are dropped on a 
lattice, they can pile up until a specified height is reached, after 
which they fall on the neighbouring sites. In this way avalanches 
propagate through the system until they fall out of the boundaries. 
Now, this visual and obviously simple system is, in fact, complex 
(there are truly many sand grains interacting), and, as the pile 
grows, it must attain the point of criticality, which initiates the 
dramatic reorganization caused by the avalanche. Bak [4] 
developed a simple mathematical model to simulate a growing 
sand pile, and it also produced avalanches. The main idea in SOC 
is that most state transitions in a component of a complex system 
only affect its neighbourhood, but once in a while entire 
avalanches of propagating state transitions lead to a major 
reconfiguration of the system. 

5. HYBRID SOC-PSO  
Hybridization helps to combat premature convergence in PSO and 
it refers to combining different approaches to benefit from the 
advantages of each approach [19]. Hybridization has been 
successfully applied to PSO by many researchers  [10][16][19]. 
Lovbjerg and Krink [19] have explored extending the PSO with 
the SOC to improve population diversity. The SOC-PSO 
algorithms used for the experiments in the research had a globally 
set “criticality limit”, denoted by CL, which is the maximum 
number of times a position in the search space can be considered 
or taken in forming a particle. If the criticality value of a position 
in the search space exceeds this limit, the particle corresponding 
to that position responds by dispersing the criticality within its 
surrounding neighbourhood and then by relocating itself. Two 
types of relocation were investigated in [19]: the first reinitialises 
the particle, while the second pushes the particle with high 
criticality a little further in the search space. The second approach 
was followed in the SOC-PSO model used for our research. If the 
redistribution causes the criticality of the surrounding cell to be 
increased then process continues until criticalities of all the 
positions are below the maximum limit. The pseudo code of the 
SOC-PSO algorithm is given in Figure 3. 

..............(3) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

begin 
    initialise 
    while(not terminate condition) do 
      begin 

    run PSO{  
    for i=1 to the population size Q, 

          for d=1 to the problem dimensionality n, 
                            Apply the velocity update equation;
     
  Limit magnitude, Vi,d; 
  Update Position, Xi,d; 
  criticality  [Xi,d]= criticality[Xi,d]+1; 
  while (Criticality value at Xi,d >CL) 
         {criticality[Xi,d] = criticality[Xi,d]-1; 
          Xi,d =Disperse (Xi,d); 
          criticality[Xi,d] = criticality[Xi,d]+1;} 
      End-for-d; 
                           Compute Fitness; 

      If needed, update historical information  
      regarding Pi,d and Pgd; 

 End-for-i; 
      End 
 End 
*********************************** 
Function Disperse (Xi,d) 

{Xnew= ƒ{ Xi,d, random(0 to 7)}; 
 return Xnew;} 

Figure 3. Pseudo code of the SOC-PSO algorithm  

5.1 Dispersion of Criticality 
From the pseudo code of SOC-PSO it can be seen that the SOC 
algorithm was implemented within the PSO loop. Once the 
velocity and a new positional value are found in PSO, the 
criticality value of the new position is being checked. If the value 
is more than the criticality limit than the dispersion phenomena 
was realized and it was implemented by choosing a new location 

4



next to the previously found position. New position’s criticality 
value was checked again and if the value was found to be more 
than the criticality limit then again the dispersion will occur. Thus 
the dispersion continues until the system finds a location where 
the criticality value is less than the limit. The flow chart of the 
SOC demonstrates this fact in Figure 4.The positions on the 
search space can be considered as a grid as shown in Figure 5. Xi,d 
in the figure represents a position which was found to have a 
critical value more than the limit. The dispersion was realized by 
a random jump from Xi,d to one of its surrounding positions. There 
are eight possible positions to jump around Xi,d numbered from 0 
to 7. In dispersion one of the values from 0 to 7 was chosen 
randomly and this value will define the new position.  The arrow 
in Figure 5 shows the direction of jump. 
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matrix will have 16 locations.  With the dimensionality of 8, each 
particle will take 8 locations in that matrix. There are 4 particles, 
so the total places required by all particles are 32. Because there 
are only 16 positions available in the matrix so to accommodate 
32 positions for all 4 particles each position needs to be used at 
least twice. So the criticality limit for this system has to be at least 
2. If the limit is 1 then each position will be used only once, so 
there will be only 16 positions available and this will not be 
enough to accommodate 32 positions required by 4 particles. An 
equation was formulated to find the lowest criticality limit. The 
smallest criticality limit, denoted by CLmin, can be found by 
Equation 4, where W and  H are the width and height of a binary 
image, Q is the  population  size and D is the number of 
dimensions of particles in PSO. 
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Figure 5. Dispersion by a random jump 
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RIMENTAL RESULTS  
s were conducted to search for an optimal set of input 
maps by the hybrid SOC-PSO algorithm. The NIST 
se consists of handwritten digits (0,1…9) was used in 
ents. Each character was a binary image with the 
2 by 32.  All digits were scaled into same dimension 
. The available tuples were distributed among classes 
o the difficulty associated in recognizing the patterns 
ulate the number of class-specific tuples for a class at 
or rate of that class was divided by the total error rate 
e result of the division was multiplied with the total 
ples. The result of the multiplication was rounded to 
integer. No normalisation was used in the calculation 
cific tuples. Providing more tuples to a class with a 

rate ensures that the extra care has been taken for a 
s group. The overall recognition rates, the average of 
ion rates of all classes, were found in the experiment. 
tion rates found by different approaches were mean of 
e network was built out of 150 tuples with tuple-size 
uples available to be optimized was 150. Because the 
as 8, so the dimensionality of the hybrid PSO 

as 8. The task was to use hybrid PSO algorithms to 
choose tuples that describe the classes better and later 
ples to recognize a test data set.    



Table 1. Results of t-test for SOC-PSO  

 2nd Algorithm t-value p-value 
Random selection [6] 15.16 1 

Hill-climbing type [2] 5.76 1 

Genetic Algorithm [3] 5.57 1 

PSO ( 1ψ =1, 2ψ =1, Vmax=2) 1.85 0.96 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Box plot of training algorithms 

Several variations of the SOC-PSO were conducted with different 
values of the criticality limit, 1ψ , 2ψ and particle velocities. The 
inertia parameter can be decremented with number of iterations 
from 0.7 to 0.4 as in [19]. In our approach as the SOC-PSO can 
terminate at any iteration, the inertia parameter was chosen to be a 
constant value of 0.7. Further diversity was added to the SOC-
PSO by reducing the overlapping level, denoted by ‘OL’, between 
any two particles. OL=1 means that only the one dimensional 
value of a particle is allowed to match with any one dimensional 
value of any other particle. Among various approaches a version 
of the SOC-PSO (with the settings 1ψ =1, 2ψ =1, Vmax=2, CL=2 
and OL=1) exhibited 4.12% higher recognition rate when 
compared to a conventionally trained n-tuple network [6]. The 
improvement by SOC-PSO over a hill-climbing type approach [2] 
and GA [3] were 1.38% and 0.88% respectively. Statistical 
significance of the results was analysed by the student’s t-test [8]. 
The best-performed SOC-PSO was compared against other 
algorithms. The null hypothesis for the test was “average 
recognition rate by the SOC-PSO is higher than a second 
algorithm”. For 10 trials of each algorithm the degrees of freedom 
[8] was 18. In the test, t-values were calculated from the 
experimental results and compared against the theoretical t-values 
at different confidence levels [8] and 18 degrees of freedom. 
Theoretical t-values for 90%, 95%, 99% and 99.9% confidence 
level and 18 degrees of freedom were 1.73, 2.10, 2.88, and 3.92. 
The t-values found in the experiment against the null hypothesis 
are presented in Table 1. Results show that the increases in 
recognition rates by SOC-PSO over conventional random 
selection, hill-climbing type approach and the GA based method 

are statistically “very highly significant” [8] because the 
experimental t-values for all of these cases were greater than the 
theoretical t-value (3.92) at 18 degrees of freedom. The observed 
t-value against the original PSO was 1.85 (greater than 1.73) and 
this implies that the improved results by the SOC-PSO over the 
classical PSO were statistically significant at 90% confidence 
level. The p-values in the table indicate the probability of 
observing the result by chance given that the null hypothesis is 
true. Small values of probabilities cast doubt on the validity of the 
null hypothesis.  
  

Table 2. Dispersion for different Criticality set-up  

Criticality Limit, CL Dispersion Count (Avg 
of 30 cycles) 

1 ∞ 

2 748 

3 111 

4 28 

5 8 

6 2 

7 1 

>8 0 

 
Figure 6 displays the side-by-side box plots [27] of the results 
found in the experiments. Each box in the figure was constructed 
with the recognition rates of ten trials. The box plot conveys 
location and variation information in data sets, particularly for 
detecting and illustrating location and variation changes between 
different data groups of algorithms. The notches in Figure 6 are 
drawn about the median so that notches that don’t overlap 
represent significant differences between medians (with 95% 
confidence). The median of recognition rates for SOC-PSO was 
above 85%, for PSO was just below 85%, for hill-climbing was 
just below 84%, for GA was just above 84% and for randomly 
selected approach was near 81%.  Clearly the SOC-PSO exhibited 
a higher median than any other algorithm. Box plots also show if 
there are unusual observations (outliers) in the dataset. Outliers 
are individually identified with a plus symbol in Figure 6. Two 
unusual observations were plotted: one for the random selection 
and the other one for the PSO. 

Table 2 shows dispersion count or number of times particles 
dispersed for different values of criticality limit. Dispersion count 
in the table was calculated by finding the average numbers of 
dispersion in 30 cycles or iterations. Results show that when the 
criticality limit, CL, was equal to or greater than 8 there was no 
dispersion by any particle. This is because there was no situation 
where a particle’s criticality could cross the limit. Dispersion 
count was found to be high for a small value of a criticality limit. 
It showed highest value for a criticality limit of 2 and then the 
value was gradually dropped to 1 when the criticality limit was 7. 
A small value in CL exhibited better results in the experiments by 
directing the search to explore new locations. But this benefit was 
achieved by the system with the expense of spending more time in 
searching due to dispersion. 
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Table 3. Dispersion in a typical SOC-PSO cycle for CL=5  

Particle Position, Xi,d Direction of dispersion 
107 0 

536 2 

373 0 

107 3 

847 7 

289 6 

579 0 

373 3 
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Figure 7. Co-ordinates of Xi,d   from Table 3 

From Table 2 it can be noted that when CL was 1, particles 
dispersed for infinite times or ‘forever’. An infinite loop made the 
system non-convergent and hence was not acceptable. To avoid a 
situation where the system might fall into an infinite loop, 
Equation 4 was formulated, which calculates the minimum value 
of CL. In the experiment there were 200 particles (Q), each with a 
dimensionality 8 (D). Area of each image was 32 (W) by 32 (H). 
Once these values are put in Equation 4, CLmin has come out to be 
2. Table 3 holds the data of dispersion of particles in a SOC 
extended PS optimized system. Results in the table were taken 
from a typical search cycle of a SOC-PSO simulation in training 
n-tuple classifier for CL=5. The first column in the table shows 
positions of the particles where dispersion occurred and the 
second column shows the direction of dispersion or direction of 
jump around Xi,d as shown in Figure 5. Figure 7 shows the x-y co-
ordinates of Xi,d from Table 3 in a 32 by 32 image area. Small 
squares and circles in the figure depict the positions of the 
particles before and after dispersion respectively. As dispersion is 
realized in the nearest neighbourhood area, so a circle in the close 
proximity of a square would most likely represent the position 
after dispersion. Position “A” in Figure 7 corresponds to a value 

of 373 of Xi,d in Table 3. It can be noted from the table that there 
are two occasions where the value of Xi,d was 373, but for both 
cases the directions of jump were different and this fact is 
portrayed by the two circles next to the position A in Figure 7. A 
similar situation was observed next to the position B in the figure. 
Dispersion was most observed when the value of CL was 2 
(Figure 8). A low value of CL forces the system to reach to the 
criticality point too often and therefore causes more dispersion. 
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Figure 8. Dispersion in a typical SOC-PSO cycle for CL=2 

7.  CONCLUSIONS 
This paper described a novel SOC-PSO hybrid technique and how 
this approach was applied to optimize an n-tuple network for 
recognizing binary handwritten characters from the NIST 
database. The experiments suggest that values of the criticality 
limit play an important role in the exploration of solutions for a 
SOC optimized network. A low value in CL was preferred to 
assist exploration for new solutions. It was clear that, by using the 
hybrid PSO, the connectivity pattern is rearranged in such a way 
that the more relevant features of the input patterns in the training 
set, for each class, tend to have more connections to the nodes in 
the group of tuples specific to that class. This leads to improved 
performance of the n-tuple classifiers. The observed 
improvements for the SOC-PSO algorithm were found to be 
statistically significant when compared to other approaches.    
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