
Criticality Dispersion in Swarms to Optimize N-tuples
M.A. Hannan Bin Azhar
Department of Electronics

University of Kent
Canterbury, Kent, UK

maha2@kent.ac.uk

Farzin Deravi
Department of Electronics

University of Kent
Canterbury, Kent, UK

f.deravi@kent.ac.uk

Keith Dimond
Department of Electronics

University of Kent
Canterbury, Kent, UK

krdkent@waitrose.com

ABSTRACT
Among numerous pattern recognition methods the neural network
approach has been the subject of much research due to its ability
to learn from a given collection of representative examples. This
paper concerns with the optimization of a weightless neural
network, which decomposes a given pattern into several sets of n
points, termed n-tuples. A population-based stochastic
optimization technique, known as Particle Swarm Optimization
(PSO), has been used to select an optimal set of connectivity
patterns to improve the recognition performance of such “n-tuple”
classifiers. The original PSO was refined by combining it with a
bio-inspired technique called the Self-Organized Criticality
(SOC) to add diversity in the population for finding better
solutions. The hybrid algorithms were adapted for the n-tuple
system and the performance was measured in selecting better
connectivity patterns. The aim was to improve the discriminating
power of the classifier in recognizing handwritten characters by
exploiting the criticality dispersion in the swarm population.
This paper presents the implementation of the hybrid model in
greater detail with the effect of criticality dispersion in finding
better solutions.

Categories and Subject Descriptors

I.5.1 [Pattern Recognition]: Models- Neural nets.

General Terms

Algorithms, Performance and Design.

Keywords
Swarm intelligence, Self-Organized criticality, Weightless neural
network, Machine Learning, Optimization, Pattern Recognition
and classification.

1. INTRODUCTION
Pattern recognition as a field is extremely diversified and has
been applied in many areas such as science, engineering,
business, medicine etc. The aim of pattern recognition is to
classify objects into identifiable categories or classes after
extracting features from the data. This data may be numerical,

pictorial, textural, linguistic or any combination of these
categories. Numerous techniques for pattern recognition can be
investigated in four general approaches of pattern recognition, as
suggested in [13]: template matching, statistical techniques,
structural techniques and neural networks (NNs).

The neural classification emulates the computational paradigm of
the behaviour of neurones and their interconnections in human
brain. Instead of recognizing a pattern by following a set of
human-designed rules, as in the structural approaches, neural nets
learn the underlying rules from a given collection of
representative examples. Among neural network models, the
weightless or n-tuple form of network [6] stands out due to its
own advantages over a variety of pattern recognition algorithms
[23]. Considerable research activities have focused on the n-tuple
method, both regarding theoretical issues [15][23] as well as
applications to real-world tasks [24]. Several applications of n-
tuple-based networks to handwritten character recognition tasks
have been reported.

Considerable research shows that by optimizing the connections
of an n-tuple network the classification performance can be
improved significantly [2][5][12][14]. Particle swarm
optimization is a population-based stochastic optimization
technique developed by Eberhart and Kennedy [17] in 1995,
motivated from the simulation of social behaviour of bird flocking
or fish schooling. Being successfully applied in many areas like
function optimization, artificial neural network training [25] or
fuzzy system control [9], the PSO seems to be a good candidate to
find an optimal set of input maps for the n-tuple network [3]. The
particle swarm searches optima in the solution space and shrinks
the search area step by step. It refines its search by attracting the
particles to positions with good solutions.

In order to be less susceptible to premature convergence, the
maintenance of “diversity” in particle swarm is important
[16][19]. One way to add diversity in PSO is to use the Self-
Organized Criticality (SOC) [4]. Self-organized criticality has
been found in a variety of phenomena such as earthquakes,
volcanic activity, the game of life, landscape formation and stock
markets. SOC describes how small amounts of external influence
can occasionally lead to the big changes observed in complex
systems. Self-Organized Criticality has been successfully applied
to improve the performance of Evolutionary Algorithms. This was
done with mass extinction and mutation operator control by Krink
and Thomsen [18], where extinction zones were formed (3×3
rectangles). Mutated copies of currently best individual then
substituted individuals in these extinction zones. SOC was also
used in relation to spatial mating control [21], where most mates
were immediate neighbours, but occasionally mates were selected
from remote places. Occasional outbreeding improved the
performance by counter balancing the effect of rigid

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-130-9/08/07…$5.00.

1

neighbourhood inbreeding. Other aspects of SOC have been
described and applied to search problems by Boettcher and
Paczuski [7]. Extending the PSO with SOC was found to be very
promising in achieving faster convergence and reaching better
solutions and the resulting algorithm was named as SOC-PSO
[19]. This paper presents the experimental results regarding the
effect of criticality dispersion in the swarm population to optimize
an n-tuple classifier with the application to the handwritten
character recognition task of the NIST database [28]. The
remainder of the paper has been organized as follows:

Section 2 will introduce the n-tuple network. Application of
particle swarm on n-tuple systems will be introduced in Section 3.
The main idea of SOC will be described in Section 4.
Implementation of the hybrid SOC-PSO algorithm for the n-tuples
will be described in Section 5. Modelling of the criticality
dispersion and the importance of criticality limit will also be
explained here. Section 6 will present the experimental results.
Finally Section 7 will conclude the paper.

2. N-TUPLE NETWORK
Although the n-tuple classifier is not famously popular compared
to some other methods, such as multilayer perceptrons [20], the n-
tuple classifier does have its own advantages over a variety of
pattern recognition algorithms [23]. The networks based on the n-
tuple method have two great strengths: they can be trained
quickly and they can be implemented in conventional computers
simply when compared to other equation solving and minimizing
methods. The training of the basic classifier is a one-shot
memorization process. These advantages come at the cost of
recognition robustness. It has been shown that the n-tuple method
can result in quite reasonable recognition performance if used
with care [23]. The n-tuple method decomposes a given pattern
into several sets of n points, termed n-tuples. The classifier stores
class-specific information about the training set in a number of
look-up tables or RAM nodes. The entries in each look-up table
are addressed by sampling n specific data locations of the input
that constitutes a ‘feature’ of the pattern. A pattern is classified as
belonging to the class for which it has the most features in
common with at least one training pattern of that class.

Figure 1 shows an n-tuple network, which is built out of RAM
nodes. The input address of the RAM unit is also known as
“tuple”. If the width of the address bus (also known as input
connection map) is n bits then the tuple is termed as “n-tuple”.
The width of the address bus is also known as “tuple-size”. Total
number of tuples, denoted by R, is the number of tuples available
to be optimized. R depends on the network’s structure. A group of
RAM nodes in a tree-like structure is called a discriminator. The
discriminator achieves its goal by presenting to each neuron only
a subset of the input pattern, and adding up the outputs of its
RAM nodes. This sum can be seen as a measure of the
recognition confidence of the discriminator. Therefore, when the
discriminator sees a previously learned pattern, its integer output
reaches the discriminator's maximum. For an input vector, of size
L, the number of necessary RAM nodes R of connectivity n that
should be used to cover all inputs of the input vector should
satisfy: R × n > L. A group of discriminators is used to distinguish
a fixed number of classes. The number of classes, which need to
be distinguished by a network, determines the number of
discriminators needed in a network. The network shown in Figure

1 can be used to distinguish a fixed number of classes. If it
consists of ‘j’ discriminators, it can differentiate j classes. At the
output of all discriminators there is a “decision block” where the
winner class is chosen using some criteria such as the greatest
sum, a threshold of the greatest sum, difference between sums etc.
In greatest sum approach, the discriminator containing the
greatest number of active RAM nodes is selected. Thus a pattern
is 'recognized' as the one whose discriminator 'fired' the most, that
is, the discriminator with the highest count of memorized tuples.

Discriminator 1

Figure 1. An n-tuple network

The input connection mapping of the n-tuple classifier determines
the sampling and defines the locations of the pattern matrix. There
will be a vast number of possible connections for a matrix with
the dimension like 32 by 32. The classification and generalization
performance are highly dependent on these input mappings
[5][14]. Conventionally input mappings are randomly chosen [6].
It has been demonstrated in [20] that a randomly connected
system perform better than a network with an ordered map.
Orderly fashioned input connection failed because the patterns
being discriminated were very similar to the way the system was
organized. Random connection was favourable because
randomness doesn’t have a pattern with it. Fairhurst and Stonham
[11] have shown that the n-tuple scheme is relatively insensitive
to the connection mapping. However, Aleksendar and Stonham
[1] have argued that a random map is suitable for an un-optimized
problem because sampling points distributed throughout the
pattern matrix are more likely to detect global features than an
ordered map. For an optimized case better selection of input
mappings can give a relatively better performance [1]. Bishop et
al. [5] demonstrated the importance of sampling sequence in
discriminating similar classes.

3. PARTICLE SWARM ON N-TUPLES
When particle swarm optimization is applied to the n-tuple
training problem, the “tuples” of the n-tuple can be termed as

Discriminator 2

Majority

Decision

Block

Winner

Class

L-
si

ze
 In

pu
t V

ec
to

r

Discriminator j

2

“particles”. Thus each particle corresponds to an input connection
map of the n-tuple network. The size of an n-tuple network is
defined by the total number of tuples it is built with. Total number
of tuples, denoted by R, is the number of tuples available to be
optimized by particle swarm. R depends on the network’s
structure. The particle swarm technique makes use of a population
of particles or input-maps (for n-tuples), where each particle has a
position and a velocity. The PSO formulae, as shown in Equation
1 and 2 define each particle as a potential solution in a multi-
dimensional search space.

 Start

))((11)()1(,,,, tXPrantVt didididi −××+×=+ ψω

Generate Q Particles for PSO;
Initial population of Q particles
randomly distributed over input

matrix

 A

Change particle’s velocity
and position; Q particles will

have new positions in the

 V

 2+ψ

X d)1()()1(,,, ++=+ tVtXt didii

))((2 , tXPran digd −××(1)

..............(2)

solution space.

The dimension of the PSO corresponds to the bits or the tuple-size
of each tuple. As the tuples are “n” bits, so the PSO will be n
dimensional with the i-th particle represented as Xi=(Xi1,Xi2,..Xin).
The PSO remembers the best position found by any particle
which is known as global best, denoted by Pg. Additionally each
particle remembers its own previously best found position
designated as Pi=(Pi1,Pi2,…Pin) and its velocity Vi= (Vi1,Vi2,…Vin).
Equation 1 and 2 will define the velocity and position of the i-th
particle with d-th dimension.

Search in PSO starts with the random initialisation of particles’
positions and velocities within the allowed range defined by Xmax,
Xmin, Vmax and Vmin. Usually Vmin is the negative of Vmax. Each
particle keeps track of its own performance. At each iteration, the
velocity of every dimension of a particle gets updated according
to Equation 1, where Vi,d, Pi,d and Pgd constitute the particle’s
momentum. As this momentum is different for different
dimension of a particle, this has effect to force the particle to
change the trajectory in the search space towards the most
promising areas. This momentum is essential, as it is the feature
of PSO that allows particles to escape the local optima. In
addition the ran1 and ran2 in Equation 1 adds some random
adjustments in velocities, which is essential to avoid the situation
where the particle endlessly follows the exact same path.
Constants 1ψ and 2ψ in Equation 1 determine the relative
influence of the “individuality” and “sociality” traits of the
particles and are usually both set the same to give each
component equal weight as the individual and social learning rate.

3.1 PSO-based tuple search
Tuple search algorithm by PSO is being illustrated in the flow
chart in Figure 2. The algorithm starts with Q particles. Q is the
total number of particles (population size) in any iteration and
they are initially distributed randomly over the whole pattern
matrix. The target is to find R class-specific tuples in total. Class-
specific tuples best describe a specific class but also describe
other classes to some extent [2]. The distribution of R tuples
among the classes is proportionate to the error rates [2]. So the
class with the most error rate gets the most number of tuples and
the class with the least error rate gets the least number of tuples.

Figure 2. Flow chart of PSO based tuple search

Fitness of each particle is measured according to a reward and
punishment based scheme [2], where a reward is associated with
the correct recognition of the pattern and the penalties for
misclassification and rejection. Based on fitness results each

Fitness measure of Q particles.
Fitness is the measure of how

good is each particle in the
solution space.

Update historical information
regard Pi,d and Pgd. Pi,d is the
particle’s best position in the

history.

 Number of
optimized maps
for the specific
class, Cj, found?

End
 Optimized maps for

all classes found?

No

Yes

YesNo

Rank all particles best positions
(Pi,d). Find the number of “Pi,d”s
whose fitness values are more
than the current fitness threshold.

Go to the next class.

Increase class index by one

j=j +1;

 A

3

particle’s best positional values are updated. ‘Pi,d’ defines the
location along the dimension d of the best positional value of each
particle in the history. So ‘Pi,d’s represent best positions of all
particles so far. Next in the flow chart (Figure 2), fitness of all Pi,d
particles are compared with a fitness threshold described by
Equation 3, where ()()tO jii

max is the score of the best-

performed tuple among all the tuples in the current iteration.

()() ()()texptOmaxThreshold jii
/1 τ−−×=

Fitness threshold exponentially decays over iterations according
to the above equation, whereτ should be carefully chosen and
varied throughout the search as a trade-off between performance
and speed. A solution falling within the threshold distance of a
specified value would be considered as an acceptable solution.
The algorithm checks if the total number of particles for a class
has been found. If the target number of particles for a class are not
found then the particles velocities and positions will be updated,
according to Equation 1 and 2, to explore new locations in the
search space. After finding all optimized particles for a class,
tuples for the next class group will be sought. At the beginning of
searching for the next class a new population of Q particles will
be reinitialised randomly. Once all the particles are sought for all
classes the optimization task will be completed and an optimal set
of R maps will be found. These R maps will be used as input
connection maps of the n-tuple network to recognize characters.

Particle swarm optimization like any other stochastic algorithm
may prematurely converge [19]. Fast rate of information flow
between particles can create similar particles resulting in less
diversity in the system, thus increasing the possibility of being
trapped in local optima [22]. PSO is also very much problem
dependent like any other stochastic search. No single parameter
setting exists which can be applied to all problems [19]. For
example choosing the value for the inertia weight, ω in Equation
1, could be critical. A large inertia weight favours exploration
(global search), while a small inertia weight favours local search
[26].

4. SELF-ORGANIZED CRITICALITY
To understand the concept of SOC lets consider a pile of sand. At
some point, as grains of sand are slowly and steadily added, the
pile becomes "critical" or unstable, and an avalanche occurs
spontaneously. In the sand-pile model [4] grains are dropped on a
lattice, they can pile up until a specified height is reached, after
which they fall on the neighbouring sites. In this way avalanches
propagate through the system until they fall out of the boundaries.
Now, this visual and obviously simple system is, in fact, complex
(there are truly many sand grains interacting), and, as the pile
grows, it must attain the point of criticality, which initiates the
dramatic reorganization caused by the avalanche. Bak [4]
developed a simple mathematical model to simulate a growing
sand pile, and it also produced avalanches. The main idea in SOC
is that most state transitions in a component of a complex system
only affect its neighbourhood, but once in a while entire
avalanches of propagating state transitions lead to a major
reconfiguration of the system.

5. HYBRID SOC-PSO
Hybridization helps to combat premature convergence in PSO and
it refers to combining different approaches to benefit from the
advantages of each approach [19]. Hybridization has been
successfully applied to PSO by many researchers [10][16][19].
Lovbjerg and Krink [19] have explored extending the PSO with
the SOC to improve population diversity. The SOC-PSO
algorithms used for the experiments in the research had a globally
set “criticality limit”, denoted by CL, which is the maximum
number of times a position in the search space can be considered
or taken in forming a particle. If the criticality value of a position
in the search space exceeds this limit, the particle corresponding
to that position responds by dispersing the criticality within its
surrounding neighbourhood and then by relocating itself. Two
types of relocation were investigated in [19]: the first reinitialises
the particle, while the second pushes the particle with high
criticality a little further in the search space. The second approach
was followed in the SOC-PSO model used for our research. If the
redistribution causes the criticality of the surrounding cell to be
increased then process continues until criticalities of all the
positions are below the maximum limit. The pseudo code of the
SOC-PSO algorithm is given in Figure 3.

..............(3)

begin
 initialise
 while(not terminate condition) do
 begin

 run PSO{
 for i=1 to the population size Q,

 for d=1 to the problem dimensionality n,
 Apply the velocity update equation;

 Limit magnitude, Vi,d;
 Update Position, Xi,d;
 criticality [Xi,d]= criticality[Xi,d]+1;
 while (Criticality value at Xi,d >CL)
 {criticality[Xi,d] = criticality[Xi,d]-1;
 Xi,d =Disperse (Xi,d);
 criticality[Xi,d] = criticality[Xi,d]+1;}
 End-for-d;
 Compute Fitness;

 If needed, update historical information
 regarding Pi,d and Pgd;

 End-for-i;
 End
 End

Function Disperse (Xi,d)

{Xnew= ƒ{ Xi,d, random(0 to 7)};
 return Xnew;}

Figure 3. Pseudo code of the SOC-PSO algorithm

5.1 Dispersion of Criticality
From the pseudo code of SOC-PSO it can be seen that the SOC
algorithm was implemented within the PSO loop. Once the
velocity and a new positional value are found in PSO, the
criticality value of the new position is being checked. If the value
is more than the criticality limit than the dispersion phenomena
was realized and it was implemented by choosing a new location

4

next to the previously found position. New position’s criticality
value was checked again and if the value was found to be more
than the criticality limit then again the dispersion will occur. Thus
the dispersion continues until the system finds a location where
the criticality value is less than the limit. The flow chart of the
SOC demonstrates this fact in Figure 4.The positions on the
search space can be considered as a grid as shown in Figure 5. Xi,d
in the figure represents a position which was found to have a
critical value more than the limit. The dispersion was realized by
a random jump from Xi,d to one of its surrounding positions. There
are eight possible positions to jump around Xi,d numbered from 0
to 7. In dispersion one of the values from 0 to 7 was chosen
randomly and this value will define the new position. The arrow
in Figure 5 shows the direction of jump.

F

5.2 Critical
Criticality limit
particle will disp
be more than the
An increased c
crowded in the
diverse. With a
bring the system
Later an experim
times particles d
total number o
important roles i
consider a swarm
a 4 by 4 input

matrix will have 16 locations. With the dimensionality of 8, each
particle will take 8 locations in that matrix. There are 4 particles,
so the total places required by all particles are 32. Because there
are only 16 positions available in the matrix so to accommodate
32 positions for all 4 particles each position needs to be used at
least twice. So the criticality limit for this system has to be at least
2. If the limit is 1 then each position will be used only once, so
there will be only 16 positions available and this will not be
enough to accommodate 32 positions required by 4 particles. An
equation was formulated to find the lowest criticality limit. The
smallest criticality limit, denoted by CLmin, can be found by
Equation 4, where W and H are the width and height of a binary
image, Q is the population size and D is the number of
dimensions of particles in PSO.

 × HW

Figure 5. Dispersion by a random jump

2

1

4

5

6 7 0

Xi,d

3

No

Find the
criticality value

of Xi,d

End of
SOC

A new position
Xi,d is found by

PSO

Criticality value of

Xi,d > Criticality limit
igure 4. Flow chart of the SOC

ity Limit
(CL) can control the diversity of the PSO. A
erse when criticality of any of its dimension will
 limit. Criticality limit has to be carefully chosen.
riticality limit will allow more particles to be
same location, thus will make the system less

 small value of CL only fewer particles might
 to a critical point and results in more dispersion.
ent will be carried out to count the number of

isperse in a search for different values of CL. The
f particles and their dimensionality also play
n setting up a value of CL. To understand this lets
 system of 4 particles with dimensionality 8 and

matrix where the particles are positioned. Such

6. EXPE
Experiment
connection-
[28] databa
the experim
dimension 3
and centred
according t
[2]. To calc
first the err
and then th
available tu
the nearest
of class-spe
high error
critical clas
all recognit
The recogni
ten runs. Th
8. So total t
tuple-size w
algorithm w
selectively
use these tu

Disperse to a
new location Xi,d

Yes

5

  ×
=

DQ
minCL (4)
RIMENTAL RESULTS
s were conducted to search for an optimal set of input
maps by the hybrid SOC-PSO algorithm. The NIST
se consists of handwritten digits (0,1…9) was used in
ents. Each character was a binary image with the
2 by 32. All digits were scaled into same dimension
. The available tuples were distributed among classes
o the difficulty associated in recognizing the patterns
ulate the number of class-specific tuples for a class at
or rate of that class was divided by the total error rate
e result of the division was multiplied with the total
ples. The result of the multiplication was rounded to
integer. No normalisation was used in the calculation
cific tuples. Providing more tuples to a class with a

rate ensures that the extra care has been taken for a
s group. The overall recognition rates, the average of
ion rates of all classes, were found in the experiment.
tion rates found by different approaches were mean of
e network was built out of 150 tuples with tuple-size
uples available to be optimized was 150. Because the
as 8, so the dimensionality of the hybrid PSO

as 8. The task was to use hybrid PSO algorithms to
choose tuples that describe the classes better and later
ples to recognize a test data set.

Table 1. Results of t-test for SOC-PSO

 2nd Algorithm t-value p-value
Random selection [6] 15.16 1

Hill-climbing type [2] 5.76 1

Genetic Algorithm [3] 5.57 1

PSO (1ψ =1, 2ψ =1, Vmax=2) 1.85 0.96

Figure 6. Box plot of training algorithms

Several variations of the SOC-PSO were conducted with different
values of the criticality limit, 1ψ , 2ψ and particle velocities. The
inertia parameter can be decremented with number of iterations
from 0.7 to 0.4 as in [19]. In our approach as the SOC-PSO can
terminate at any iteration, the inertia parameter was chosen to be a
constant value of 0.7. Further diversity was added to the SOC-
PSO by reducing the overlapping level, denoted by ‘OL’, between
any two particles. OL=1 means that only the one dimensional
value of a particle is allowed to match with any one dimensional
value of any other particle. Among various approaches a version
of the SOC-PSO (with the settings 1ψ =1, 2ψ =1, Vmax=2, CL=2
and OL=1) exhibited 4.12% higher recognition rate when
compared to a conventionally trained n-tuple network [6]. The
improvement by SOC-PSO over a hill-climbing type approach [2]
and GA [3] were 1.38% and 0.88% respectively. Statistical
significance of the results was analysed by the student’s t-test [8].
The best-performed SOC-PSO was compared against other
algorithms. The null hypothesis for the test was “average
recognition rate by the SOC-PSO is higher than a second
algorithm”. For 10 trials of each algorithm the degrees of freedom
[8] was 18. In the test, t-values were calculated from the
experimental results and compared against the theoretical t-values
at different confidence levels [8] and 18 degrees of freedom.
Theoretical t-values for 90%, 95%, 99% and 99.9% confidence
level and 18 degrees of freedom were 1.73, 2.10, 2.88, and 3.92.
The t-values found in the experiment against the null hypothesis
are presented in Table 1. Results show that the increases in
recognition rates by SOC-PSO over conventional random
selection, hill-climbing type approach and the GA based method

are statistically “very highly significant” [8] because the
experimental t-values for all of these cases were greater than the
theoretical t-value (3.92) at 18 degrees of freedom. The observed
t-value against the original PSO was 1.85 (greater than 1.73) and
this implies that the improved results by the SOC-PSO over the
classical PSO were statistically significant at 90% confidence
level. The p-values in the table indicate the probability of
observing the result by chance given that the null hypothesis is
true. Small values of probabilities cast doubt on the validity of the
null hypothesis.

Table 2. Dispersion for different Criticality set-up

Criticality Limit, CL Dispersion Count (Avg
of 30 cycles)

1 ∞

2 748

3 111

4 28

5 8

6 2

7 1

>8 0

Figure 6 displays the side-by-side box plots [27] of the results
found in the experiments. Each box in the figure was constructed
with the recognition rates of ten trials. The box plot conveys
location and variation information in data sets, particularly for
detecting and illustrating location and variation changes between
different data groups of algorithms. The notches in Figure 6 are
drawn about the median so that notches that don’t overlap
represent significant differences between medians (with 95%
confidence). The median of recognition rates for SOC-PSO was
above 85%, for PSO was just below 85%, for hill-climbing was
just below 84%, for GA was just above 84% and for randomly
selected approach was near 81%. Clearly the SOC-PSO exhibited
a higher median than any other algorithm. Box plots also show if
there are unusual observations (outliers) in the dataset. Outliers
are individually identified with a plus symbol in Figure 6. Two
unusual observations were plotted: one for the random selection
and the other one for the PSO.

Table 2 shows dispersion count or number of times particles
dispersed for different values of criticality limit. Dispersion count
in the table was calculated by finding the average numbers of
dispersion in 30 cycles or iterations. Results show that when the
criticality limit, CL, was equal to or greater than 8 there was no
dispersion by any particle. This is because there was no situation
where a particle’s criticality could cross the limit. Dispersion
count was found to be high for a small value of a criticality limit.
It showed highest value for a criticality limit of 2 and then the
value was gradually dropped to 1 when the criticality limit was 7.
A small value in CL exhibited better results in the experiments by
directing the search to explore new locations. But this benefit was
achieved by the system with the expense of spending more time in
searching due to dispersion.

6

Table 3. Dispersion in a typical SOC-PSO cycle for CL=5

Particle Position, Xi,d Direction of dispersion
107 0

536 2

373 0

107 3

847 7

289 6

579 0

373 3

0

5

10

15

20

25

30

0 10 20 30

x

y

Before
After

y

Figure 7. Co-ordinates of Xi,d from Table 3

From Table 2 it can be noted that when CL was 1, particles
dispersed for infinite times or ‘forever’. An infinite loop made the
system non-convergent and hence was not acceptable. To avoid a
situation where the system might fall into an infinite loop,
Equation 4 was formulated, which calculates the minimum value
of CL. In the experiment there were 200 particles (Q), each with a
dimensionality 8 (D). Area of each image was 32 (W) by 32 (H).
Once these values are put in Equation 4, CLmin has come out to be
2. Table 3 holds the data of dispersion of particles in a SOC
extended PS optimized system. Results in the table were taken
from a typical search cycle of a SOC-PSO simulation in training
n-tuple classifier for CL=5. The first column in the table shows
positions of the particles where dispersion occurred and the
second column shows the direction of dispersion or direction of
jump around Xi,d as shown in Figure 5. Figure 7 shows the x-y co-
ordinates of Xi,d from Table 3 in a 32 by 32 image area. Small
squares and circles in the figure depict the positions of the
particles before and after dispersion respectively. As dispersion is
realized in the nearest neighbourhood area, so a circle in the close
proximity of a square would most likely represent the position
after dispersion. Position “A” in Figure 7 corresponds to a value

of 373 of Xi,d in Table 3. It can be noted from the table that there
are two occasions where the value of Xi,d was 373, but for both
cases the directions of jump were different and this fact is
portrayed by the two circles next to the position A in Figure 7. A
similar situation was observed next to the position B in the figure.
Dispersion was most observed when the value of CL was 2
(Figure 8). A low value of CL forces the system to reach to the
criticality point too often and therefore causes more dispersion.

0

5

10

15

20

25

30

0 5 10 15 20 25 30

x

B

A Before
After

Figure 8. Dispersion in a typical SOC-PSO cycle for CL=2

7. CONCLUSIONS
This paper described a novel SOC-PSO hybrid technique and how
this approach was applied to optimize an n-tuple network for
recognizing binary handwritten characters from the NIST
database. The experiments suggest that values of the criticality
limit play an important role in the exploration of solutions for a
SOC optimized network. A low value in CL was preferred to
assist exploration for new solutions. It was clear that, by using the
hybrid PSO, the connectivity pattern is rearranged in such a way
that the more relevant features of the input patterns in the training
set, for each class, tend to have more connections to the nodes in
the group of tuples specific to that class. This leads to improved
performance of the n-tuple classifiers. The observed
improvements for the SOC-PSO algorithm were found to be
statistically significant when compared to other approaches.

8. REFERENCES
[1] Aleksander, I., and Stonham, T.J. (1979). Guide to Pattern

Recognition using Random-access Memories, Computers
and Digital Techniques, vol. 2, pp. 29-40.

[2] Azhar, M. A. H. B. and Dimond, K.R. (2004). A Stochastic
Search Algorithm to Optimize an N-tuple Classifier by
Selecting Its Inputs, International Conference on Image
Analysis and Recognition, Porto, Portugal, Springer-Verlag,
September 29 - October 1.

[3] Azhar, M.A.H.B., Deravi, F. and Dimond, K.R.(2005).
Relative Performances of Swarm Intelligence and Genetic

7

Algorithm to Select Better N-tuples, Proceedings of the
IEEE SMC UK-RI Chapter Conference on Applied
Cybernetics, pp. 111-116, London, UK, 7-8 September.

[4] Bak, P. (1996). How nature works: the science of self-
organized criticality (Copernicus, New York).

[5] Bishop, J.M., Crowe, A.A., Minchinton, P.R. and Mitchell,
R.J. (1990). Evolutionary Learning to Optimise Mapping in
n-Tuple Networks, IEE Colloquium on "Machine Learning",
28 June, Digest 1990/117.

[6] Bledsoe, W. and Browning, I. (1959). Pattern recognition
and reading by machine, Proceedings of Eastern Joint
Computer Conference, pp. 225-232, Birmingham.

[7] Boettcher, S. and Paczuski, M. (1997). Aging in a Model of
Self-Organized Criticality, Physical Review Letters, vol.79,
Issue 5, pp. 889-892, The American Physical Society.

[8] Deacon, J. (2006). The Really Easy Statistics Site, Biology
Teaching Organisation, University of Edinburgh,
http://www.biology.ed.ac.uk/research/groups/jdeacon/
statistics /tress1.html

[9] Esmin, A. A. A., Aoki, A. R., and Lambert-Torres, G.
(2002). Particle swarm optimization for fuzzy membership
functions optimization. Proc. of the IEEE Int. Conf. on
Systems, Man and Cybernetics, pp. 108-113.

[10] Esquivel, S.C. and Coello Coello, C.A.(2003). On the Use of
Particle Swarm Optimization with Multimodal Functions. In
Proceedings of the IEEE Transactions on Evolutionary
Computation, vol. 2, pp. 1130-1136.

[11] Fairhurst, M.C. and Stonham, T.J. (1976). A Class. System
for Alpha-Numeric Characters Based on Learning Network
Techniques, Digital Processes, vol. 2, pp. 321-339.

[12] Garcia, L.A.C. and Souto, M. C. P. (2004). Global
Optimisation Methods for Choosing the Connectivity Pattern
of N-tuple Classifiers, Proc. of the IEEE International Joint
Conference on Neural Networks, Budapeste, pp. 2263-2266.

[13] Jain, A.K., Duin, R.P.W. and Mao, J. (2000). Statistical
pattern recognition: A review, IEEE Trans. Pattern Anal.
Machine Intell., vol. 22, pp. 4-38

[14] Jørgensen, T. M., Christensen, S. S. and Liisberg, C. (1995).
Crossvalidation and information measures for RAM based
neural networks, Proc. of the Weightless Neural Networks
Workshop, University of Kent at Canterbury, UK, pp. 87-92.

[15] Jørgensen, T.M., Linneberg, C. (1999). Theoretical analysis
and improved decision criteria for the n-tuple classifier,
IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 21, pp.336-347.

[16] Kalyan, V., Thanmaya, P., Chilukuri, K. M. and Lisa, A. O.
(2003). Optimization Using Particle Swarms with Near
Neighbor Interactions, GECCO, July 11-16, Chicago, Illnois.

[17] Kennedy, J., and Eberhart, R. C. (1995). Particle swarm
optimisation, Proc. of the 1995 IEEE Int. Conf. on Neural
Networks (Perth, Australia).

[18] Krink, T. and Thomsen, R.(2001). Self-Organized Criticality
and Mass Extinction in Evolutionary Algorithms,
Proceedings of the Third Congress on Evolutionary
Computation (CEC-2001), vol. 2, pp. 1155-1161.

[19] Løvbjerg, M. and Krink, T. (2002). Extending particle
swarm optimisers with self-organized criticality, Proc. of the
IEEE Congress on Evolutionary Computation, Honolulu,
Hawaii USA.

[20] Picton, P. (2000). Neural Networks (Grassroots Series), 2nd
Edition, Palgrave Publishers Ltd.

[21] Rickers, P., Thomsen, R. and Krink, T. (2000). Applying
Self-Organized Criticality to the Diffusion Model, Late
Breaking Papers at the 2000 Genetic and Evolutionary
Computation Conference, vol. 1, pp. 325-330, Morgan
Kaufmann Publishers.

[22] Riget, J. and Vesterstrøm, J.S. (2002). A Diversity-Guided
Particle Swarm Optimizer -The ARPSO, Technical report,
Department of Computer Science, University of Aarhus.

[23] Rohwer, R. and Morciniec, M. (1998). The Theoretical and
Experimental Status of the n-tuple Classifier, Neural
Networks, 11(1): pp. 1-14.

[24] Rohwer, R. and Cressy, D. (1989). Phoneme classification
by boolean networks, Proceedings of the European
Conference on Speech Communication and Technology, pp.
557-560.

[25] Settles, M. and Rylander, B. (2002).Neural network learning
using particle swarm optimisers, Advances in Information
Science and Soft Computing, pp. 224-226. WSEAS Press.

[26] Shi, Y, and Eberhart, R. (1998). Parameter selection in
particle swarm optimization, in Evolutionary Programming
VII, pp. 591-600, Springer, Lecture Notes in Computer
Science 1447.

[27] Tukey, J.W. (1977), Exploratory Data Analysis, Reading,
MA: Addison-Wesley.

[28] Wilkinson, R., Geist, J., Janet, S., Grother, P., Burges, C.,
Creecy, R., Hammond, B., Hull, J., Larsen, N., Vogl, T., and
Wilson, C. (1992). The first census optical character
recognition systems conference, Technical Report NISTIR
4912, National Institute of Standards and Technology
(NIST), Gaithersburg, USA.

8

	INTRODUCTION
	N-TUPLE NETWORK
	PARTICLE SWARM ON N-TUPLES
	PSO-based tuple search

	SELF-ORGANIZED CRITICALITY
	HYBRID SOC-PSO
	Dispersion of Criticality
	Criticality Limit

	EXPERIMENTAL RESULTS
	CONCLUSIONS
	REFERENCES

