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ABSTRACT
In this study, we take a first step towards theoretically an-
alyzing genetic algorithms (GAs) in noisy environments us-
ing Markov chain theory. We explicitly construct a Markov
chain that models GAs applied to fitness functions perturbed
by either additive or multiplicative noise that takes on finitely
many values, and we analyze the chain to investigate the
transition and convergence properties of the GAs. For the
additive case, our analysis shows that GAs eventually (i.e.,
as the number of iterations goes to infinity) find at least one
globally optimal solution with probability 1. In contrast,
GAs may eventually with probability 1 fail to do so in the
multiplicative case, and we establish a condition that is both
necessary and sufficient for eventually finding a globally op-
timal solution. In addition, our analysis shows that the chain
has a stationary distribution that is also its steady-state dis-
tribution. Based on this property, we derive an upper bound
for the number of iterations sufficient to ensure with certain
probability that a GA has reached the set of globally opti-
mal solutions and continues to include in each subsequent
population at least one globally optimal solution whose ob-
served fitness value is greater than that of any suboptimal
solution.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: Probability and Statis-
tics—probabilistic algorithms, Markov processes;
F.2.m [Theory of Computation]: Analysis of Algorithms
and Problem Complexity—miscellaneous
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1. INTRODUCTION AND SUMMARY
In many practical problems, objective functions are per-

turbed by random noise, and genetic algorithms (GAs) have
been widely proposed as an effective optimization tool for
dealing with noisy objective functions (e.g., Beyer [2], Chen,
Subprasom, and Ji [3]). Although quite a few studies (e.g.,
Goldberg and Rudnick [6], Miller and Goldberg [11], Nissen
and Propach [12], Beyer [2], Arnold [1], Di Pietro, While,
and Barone [5]) have examined GAs and more general evo-
lutionary algorithms in noisy environments using either nu-
merical or other theoretical methods, Markov chain analysis
has not been applied to such GAs. (For a survey of the lit-
erature, we refer the reader to Beyer [2] and Jin and Branke
[8].) This is quite contrastive to the noiseless case; Markov
chain theory has been effectively used to reveal important
properties of GAs applied to noiseless fitness functions (e.g.,
Vose and Liepins [19], Nix and Vose [13], Davis and Principe
[4], Rudolph [16], Suzuki [17], Vose [18]).

In this study, we take a first step towards theoretically
analyzing GAs in noisy environments using Markov chain
theory. More precisely, we apply Markov chain theory to in-
vestigate the transition and convergence properties of GAs
applied to fitness functions that are perturbed by either
additive or multiplicative noise (these two types of noise
are fully characterized in Sections 3.1 and 4.1). Theoreti-
cal studies that examine evolutionary computation schemes
applied to perturbed fitness functions typically assume that
the noise is additive and has an independent and identical
Gaussian distribution with mean zero (e.g., Miller and Gold-
berg [11], Beyer [2]). To our knowledge, this study is the
first to elucidate the transition and convergence properties
of GAs applied to fitness functions perturbed by multiplica-
tive noise, which has been considered in a variety of practi-
cal optimization problems such as control optimization (e.g.,
Hopkins [7]), image restoration (e.g., Rudin and Osher [15]),
and portfolio optimization (e.g., Primbs [14]). For the mul-
tiplicative noise case, the degree of fitness disturbance may
not be the same at all points in the search space. For ex-
ample, multiplicative noise can perturb large fitness values
more severely than small fitness values. Also, if multiplica-
tive noise is negative, then the sign of perturbed fitness is
the opposite of that of noiseless fitness. In this study, we do
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not assume that multiplicative noise is positive with proba-
bility 1, so we cannot simply take the logarithm of (noisy)
observed fitness.

For analytical tractability, we assume in this study that
both the additive noise and the multiplicative noise take
on finitely many values. However, we do not make any as-
sumptions about their expected values or variances. The
two types of noise are fully characterized in Sections 3.1 and
4.1. We are currently extending the Markov chain analy-
sis described in this study to other noisy environments—for
example, environments with continuous noise.

GAs in our study are assumed to implement the elitist
strategy and to reevaluate the fitness value of each popula-
tion member except for that of the chromosome preserved by
the elitist strategy every time a new population is formed.
It will become clear that these strategies are essential for
ensuring that GAs eventually reach the set of globally opti-
mal solutions and continue to include at least one globally
optimal solution in each subsequent population with proba-
bility 1 when they are applied to fitness functions perturbed
by the additive noise described above. The reassessment of
the fitness value also significantly reduces memory require-
ments compared to the strategy of storing a fitness value
for every chromosome that has been included in some pop-
ulation formed since the beginning of the execution. For
analytical simplicity, we will not consider noise compensa-
tion techniques such as averaging (e.g., Beyer [2], Di Pietro,
While, and Barone [5]) in this study. However, we are cur-
rently extending our Markov chain analysis to GAs executed
with these techniques in noisy environments. Sections 2 and
3.1 fully describe the implementation of GAs considered in
this study.

We explicitly construct a Markov chain that models GAs
applied to perturbed fitness functions. This Markov chain is
fundamentally different from those considered for the noise-
less environment in one essential aspect: Each state of the
chain for the noisy case is not a population but a set of or-
dered pairs, each of which consists of a chromosome and its
observed noise value [the ordered pairs are defined at (3.4)].
Markov chains considered to analyze the noiseless case typi-
cally have a state space that consists of distinct populations.
However, these Markov chains fail to explicitly capture the
evolution of GAs in noisy environments. The construction
of the Markov chain for the additively noisy case is fully ex-
plained in Section 3.2. We explicitly compute the transition
probabilities of the chain; see Theorem 3.1. It turns out
that these probabilities can be effectively used to bound the
number of iterations sufficient to ensure with certain prob-
ability that a GA selects a globally optimal solution upon
termination.

We first describe the Markov chain analysis for the ad-
ditive noise case. The additive case turns out to be much
simpler than the multiplicative case, although the analytical
techniques applied to the additive case can essentially be car-
ried over to the multiplicative case. Under the assumptions
mentioned above, we show that the Markov chain in the
additive case (and in the multiplicative case) is indecompos-
able; it has only one positive recurrent communication class
(a communication class is a set of states that are accessible
to each other and is positive recurrent if the expected return
time for each of its states is finite). This is Theorem 3.2. For
the additive case, it follows immediately from this theorem
that GAs eventually find at least one globally optimal solu-

tion with probability 1. (In this regard, the multiplicative
case is strikingly different from the additive case.) Theorem
3.3 states that the chain has a stationary distribution that
is also its steady-state distribution. Theorem 3.4 provides
an upper bound for the number of iterations sufficient to
ensure with certain probability that a GA has reached the
set of globally optimal solutions and continues to include
in each subsequent population at least one globally optimal
solution whose observed fitness value is greater than that of
any suboptimal solution. We describe the details of these
results in Section 3.3.

Although many of the results for the multiplicative noise
case are analogous to those for the additive noise case, there
is one essential difference between the two cases: Although
GAs eventually find at least one globally optimal solution
with probability 1 in the additive case, they may eventually
fail with probability 1 in the multiplicative case (see Defini-
tion 4.2.1). In Theorem 4.1, we establish a condition that is
both necessary and sufficient for GAs in the multiplicative
case to eventually find at least one globally optimal solu-
tion with probability 1. Furthermore, in Theorem 4.2, we
identify a condition (Condition 4.2.2) that is both necessary
and sufficient for GAs to eventually with probability 1 fail
to find any globally optimal solution.

Space limitations on this paper force us to omit the proofs
of these theorems; we will provide them in our full-length
paper.

2. PRELIMINARIES
We assume that, as in traditional GAs, the search space

S consists of 2L binary strings of length L. These 2L can-
didate solutions are also referred to as chromosomes. Since
the search space is finite, these chromosomes will be labeled
by integers 1, . . . , 2L. Let f denote the (noiseless) fitness
function. The objective of GAs is to find i ∈ S such that

f(i) ≥ f(j) ∀ j ∈ S.

In order to rigorously explain our Markov chain analysis,
we describe the basic steps involved in executing GAs ap-
plied to noisy environments. The implementation of GAs
considered in this study consists of the following steps:

1. An initial population of M chromosomes is formed,
and the fitness of each of the chromosomes is evaluated.

2. A chromosome with the highest observed fitness value
is selected, and this chromosome is included in the next
population by the elitist strategy.

3. Selection is performed on the chromosomes in the cur-
rent population, and M−1

2
pairs of chromosomes are

formed (M is assumed to be odd).

4. Crossover is performed on each of the pairs to generate
offspring.

5. Mutation is performed on each offspring, and this com-
pletes the formation of the next population of size M .

6. The fitness of each of the new chromosomes is evalu-
ated. If this population satisfies some stopping crite-
rion, then the algorithm terminates. Otherwise, steps
2–6 are repeated.
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We consider executing GAs with the elitist strategy. This
guarantees that the best candidate solution in the current
population is included in the next population. In noisy envi-
ronments, the best candidate solution in each population is a
chromosome with the highest observed fitness value. Hence
it is important to realize that the elitist strategy guarantees
the monotonic improvement of (noisy) observed fitness but
may fail to monotonically improve (noiseless) fitness.

When GAs terminate, note that they select a chromo-
some that has the highest observed fitness value among the
chromosomes in the last population as a (candidate for a)
globally optimal solution. Since the observed fitness value
may not be the same as the (noiseless) fitness value of the
chromosome due to noise, GAs may not choose a globally
optimal solution even if it is included in the last population;
in order for GAs to correctly identify a globally optimal
solution contained in the last population, the chromosome
must have the highest observed fitness value. This observa-
tion is important for properly characterizing GAs in noisy
environments.

Another important strategy is that in step 6, GAs reeval-
uate the fitness value of each population member except for
that of the chromosome preserved by the elitist strategy ev-
ery time a new population is formed. It will become clear
that this reevaluation of the fitness value is also essential
for ensuring that GAs eventually find at least one globally
optimal solution.

As stated earlier, we will not consider executing GAs with
noise compensation techniques such averaging in this study,
but note that these techniques may be totally ineffective for
multiplicative noise. In Section 3.1, we specify the details
of the genetic operations described in this section. We con-
struct a Markov chain that models these GAs and derive its
transition probabilities in Section 3.2.

3. GENETIC ALGORITHMS WITH
ADDITIVE NOISE

We will first analyze GAs applied to fitness functions per-
turbed by bounded additive discrete noise. This case turns
out to be much simpler than the multiplicative noise case,
where fitness functions are perturbed by bounded multi-
plicative discrete noise (see Section 4). However, the analyt-
ical techniques applied to the additive case can essentially
be carried over to the multiplicative case.

Although we attempt to closely follow the notation de-
veloped by previous studies that conducted Markov chain
analysis of GAs (for example, see Vose and Liepins [19], Nix
and Vose [13], Davis and Principe [4], Rudolph [16], Suzuki
[17], Vose [18]), our notation inevitably becomes complicated
due to the inclusion of noise. However, all of our new no-
tation extends the conventional notation rather naturally.
(The majority of the notation used in this study simply du-
plicates the notation firmly established by previous studies;
see Suzuki [17] and Vose [18] in particular.) We will use
simple examples to explain our notation.

3.1 Mathematical Details of Additive Noise and
Genetic Operations

First, we select M chromosomes from S with replacement
to form an initial population P0. The population generated
during the k-th iteration (the k-th population) will be de-
noted by Pk. Let m(i,Pk) denote the number of instances

of chromosome i included in the k-th population Pk. Note
that Pk is a multiset of chromosomes for each k. Let i(j,Pk)
represent the j-th instance of chromosome i in Pk (thus
1 ≤ j ≤ m(i,Pk)). We need this notation because it is
necessary to distinguish all the elements in the multiset Pk;
all the elements must be distinguished in order to precisely
characterize the mathematical properties of noise considered
in this study and to define the states of the Markov chain
we construct in Section 3.2.

Example 3.1.1. Consider a search space S = {1, 2, 3, 4}
(thus L = 2 for this search space). Suppose that the k-th
population Pk consists of two instances of chromosome 1,
one instance of chromosome 2, and two instances of chro-
mosome 4 (hence M = |Pk| = 5). Then

Pk = {1, 1, 2, 4, 4}.

When the two instances of chromosome 1 in Pk must be dis-
tinguished, the first instance of 1 will be denoted by 1(1,Pk),
and the second instance of 1 will be denoted by 1(2,Pk).
When it is necessary to distinguish all the elements in Pk,
we write

Pk = {1(1,Pk), 1(2,Pk), 2(1,Pk), 4(1,Pk), 4(2,Pk)}. (3.1)

We have m(1,Pk) = 2 since there are two instances of chro-
mosome 1 in this population. We also have m(2,Pk) = 1,
m(3,Pk) = 0, and m(4,Pk) = 2. We will refer to this simple
example several times to explain our notation.

At each iteration, we evaluate the fitness value of each
chromosome in the population. Instead of deterministic fit-
ness values, we consider fitness values consisting of both
deterministic and random components; we suppose that a
random noise is added upon each fitness function evaluation.
Hence if we let F (i(j,Pk)) denote the observed fitness value
of chromosome i(j,Pk) (the j-th instance of chromosome i
in Pk), then it can be written as

F (i(j,Pk)) = f(i) +Xi(j,Pk), (3.2)

where Xi(j,Pk) represents the random noise added to the fit-
ness value of i(j,Pk). Note that f(i(j,Pk)) = f(i) for each
i, j, and Pk because this is the deterministic component of
the observed fitness value of chromosome i.

Example 3.1.2. Again, we consider the search space S
and the k-th population Pk described in Example 3.1.1 [see
(3.1)]. The observed fitness values of the five chromosomes
in Pk will be expressed as follows:

F (1(1,Pk)) = f(1) +X1(1,Pk),

F (1(2,Pk)) = f(1) +X1(2,Pk),

F (2(1,Pk)) = f(2) +X2(1,Pk),

F (4(1,Pk)) = f(4) +X4(1,Pk),

F (4(2,Pk)) = f(4) +X4(2,Pk).

For instance, the deterministic component of the observed
fitness value of 1(1,Pk) is f(1), which is the same as that
of 1(2,Pk). Similarly, the deterministic component of the
observed fitness value of 4(1,Pk) is f(4), which is the same
as that of 4(2,Pk).

For analytical simplicity, we assume thatXi(j,Pk) are inde-
pendent and identically distributed; the random component
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has the same distribution for each observed fitness value,
and it is independent of the random component added to
any other instance of fitness function evaluation. We fur-
ther assume that Xi(j,Pk) is discrete and takes on finitely
many values. Thus for each i(j,Pk), we define Xi(j,Pk) by

Xi(j,Pk) = xn with probability pn, 1 ≤ n ≤ N, (3.3)

where N represents the number of distinct possible values
of Xi(j,Pk) (thus N <∞).

Let i∗(j∗,Pk) represent an instance of a chromosome in Pk

that has the highest observed fitness value in the population
Pk (it is the j∗-th instance of chromosome i∗ in Pk). The
elitist strategy guarantees the inclusion of i∗(j∗,Pk) in the
next population Pk+1. (If the highest observed fitness value
is achieved by more than one i(j,Pk) ∈ Pk, then break a tie
by selecting one of them uniformly at random to determine
i∗(j∗,Pk)).

Using the notation defined above, we describe the math-
ematical details of selection. At each iteration, selection
is performed to form pairs of chromosomes. In this study,
we consider forming M−1

2
pairs for concreteness (thus M is

assumed to be odd). First, the fitness value of each chro-
mosome in the current population Pk is evaluated. Each
of the observed fitness values has the form shown in (3.2).
GAs subsequently select M − 1 chromosomes from Pk with
replacement to form these pairs. Our Markov chain analysis
of GAs in the noisy environment is valid for any selection
scheme—for example, proportional selection, ranking selec-
tion, and tournament selection (e.g., Miller and Goldberg
[11], Vose [18], Leung, Duan, Xu, and Wong [10]).

Crossover and mutation in the noisy case do not differ
from those in the noiseless case. For each of the M−1

2
pairs

formed by selection, crossover is performed with some pre-
determined probability in order to generate two new chro-
mosomes from the pair. Due to the elitist strategy, crossover
does not operate on the chromosome i∗(j∗,Pk). Similarly,
the elitist strategy does not allow mutation to alter i∗(j∗,Pk).
For each of the other chromosomes in Pk, mutation inverts
each bit of an individual chromosome with some predeter-
mined probability µ. We assume 0 < µ < 1. Although
adaptive mutation rates are not considered in this study,
we are currently investigating how to optimize the mutation
rate using Markov chain analysis.

A new population Pk+1 emerges upon completing selec-
tion, crossover, and mutation. The algorithm computes the
fitness value of each chromosome in Pk+1, and these steps
are repeated until a stopping criterion is satisfied.

3.2 Framework of Markov Chain Analysis
The key to understanding our Markov chain analysis of

GAs in noisy environments is that we construct a Markov
chain, call it (Zk), whose state space consists of multisets not
of chromosomes but of the ordered pairs defined below. The
state space of a Markov chain constructed to model GAs in
the noiseless case is typically the set of all possible distinct
populations that can be formed from S (for example, see
Davis and Principe [4], Suzuki [17], Vose [18]). However,
this Markov chain fails to explicitly capture the evolution of
GAs in noisy environments.

For the k-th iteration of a GA in the additively noisy
environment, the corresponding state of the chain can be
derived from the k-th population Pk as follows. We pair each
chromosome i(j,Pk) in Pk with the value of the additive

noise observed when its fitness value is evaluated [see (3.2)]
and form an ordered pair

(i,Xi(j,Pk)), (3.4)

where j and Pk are suppressed in the first entry because
they are unnecessary. In this manner, we form M ordered
pairs from the M chromosomes in Pk. These M ordered
pairs compose a state of the Markov chain for the noisy case
(thus each state of this chain is a multiset of the ordered
pairs).

Example 3.2.1. Consider the search space S and the popu-
lation Pk described in Examples 3.1.1–3.1.3. We have Pk =
{1, 1, 2, 4, 4}. This population leads to the following state T
of the Markov chain for the noisy environment:

T = {(1, X1(1,Pk)), (1, X1(2,Pk)), (2, X2(1,Pk)),

(4, X4(1,Pk)), (4, X4(2,Pk))}.

Each state of this particular Markov chain consists of five
ordered pairs.

It is important to recognize that in order to explicitly
model the evolution of GAs in the noisy environment using
any Markov chain, we need the second entry of each ordered
pair in (3.4) (or a quantity that is mathematically equiv-
alent to the second entry) because the selection process of
GAs applied to the noisy environment is based on a function
of not only the chromosome but also the i.i.d. noise defined
at (3.3). We analyze the Markov chain (Zk) to uncover the
transition and convergence properties of GAs in the noisy
environment. We denote by T the state space of (Zk). Let
m(i, T ) denote the number of instances of chromosome i
included in the ordered pairs of T ∈ T (thus m(i, T ) is anal-
ogous to m(i,Pk) defined at the beginning of Section 3.1).
Similarly, we denote by m(xn, T ) the number of instances
of noise value xn contained in the ordered pairs of T ∈ T.
Note that

2L∑
i=1

m(i, T ) =

N∑
n=1

m(xn, T ) = M

for each T ∈ T.

Example 3.2.2. Consider the following state T ∈ T:

T = {(1, x2), (1, x3), (2, x1), (4, x3), (4, x3)}.

As described earlier, the first entry in each ordered pair
is a chromosome, and the second entry is the noise value
observed when the fitness of the chromosome is evaluated.
We have m(1, T ) = 2 since two instances of chromosome 1
are contained in the ordered pairs of T . Similarly, we have
m(2, T ) = 1 and m(4, T ) = 2. We also have m(x1, T ) = 1,
m(x2, T ) = 1, and m(x3, T ) = 3.

We are now ready to describe the transition probabilities
of the Markov chain (Zk). In Section 3.3, we will show that
these probabilities can be effectively used to bound the num-
ber of iterations sufficient to ensure with certain probability
that a GA selects a globally optimal solution upon termi-
nation. The following theorem shows the exact transition
probabilities of (Zk).
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Theorem 3.1. Let (Zk) denote the Markov chain with
state space T that models GAs in the noisy environment.
Let T and T ′ denote states in T, and let i∗(T ) denote a
chromosome in (an ordered pair of) T ∈ T that has the
highest observed fitness value. If the observed fitness value
of i∗(T ′) is greater than or equal to that of i∗(T ), then for
each k,

P{Zk+1 = T ′|Zk = T }

= (M − 1)!

2L∏
i=1

1

m̃(i, T ′)!φ(i, T )m̃(i,T ′)

×(M − 1)!

N∏
n=1

1

m̃(xn, T ′)!
pm̃(xn,T ′)

n ,

(3.5)

where

φ(i, T ) = P{chromosome i is generated from state T },
(3.6)

m̃(i, T ′) =

{
m(i, T ′)− 1 if i = i∗(T )
m(i, T ′) otherwise,

and

m̃(xn, T ′) =

 m(xn, T ′)− 1 if i∗(T ) is paired with xn

in T (and in T ′)
m(xn, T ′) otherwise.

On the other hand, if the observed fitness value of i∗(T ′) is
less than that of i∗(T ), then

P{Zk+1 = T ′|Zk = T } = 0.

The probabilities φ(i, T ) defined at (3.6) depend on the
selection scheme employed by GAs. They can be computed
exactly.

3.3 Convergence Analysis
Using the Markov chain (Zk) constructed in Section 3.2,

we analyze the convergence properties of GAs applied to fit-
ness functions perturbed by the additive discrete noise de-
scribed in Section 3.1. Without loss of generality, we arrange
the N labels x1, x2, . . . , xN representing the N possible val-
ues of Xi(j,Pk) defined at (3.3) in descending order:

x1 > x2 > · · · > xN . (3.7)

This is simply for notational convenience. Let S∗ denote the
set of chromosomes that are globally optimal solutions. We
have

f(i) ≥ f(j) ∀ i ∈ S∗, ∀ j ∈ S. (3.8)

The following theorem guarantees that the GAs applied to
the noisy environment eventually find at least one globally
optimal solution with probability 1.

Theorem 3.2. The Markov chain (Zk) is indecompos-
able: It has only one positive recurrent communication class,
which consists of states in T that each contain at least one
ordered pair (i, x1) with i ∈ S∗.

Let A denote the only positive recurrent communication
class of the chain. Thus the chain hits A and stays there
with probability 1. Since each state in A contains at least
one globally optimal solution paired with a noise value that
maximizes its observed fitness value, Theorem 3.2 immedi-
ately implies the following essential property of GAs in the
additive noise case: With probability 1, the algorithms even-
tually (i.e., as the number of iterations goes to infinity) reach
the set of globally optimal solutions and continue to include
in each subsequent population at least one globally optimal
solution whose observed fitness value is greater than that of
any suboptimal solution. It is important that the globally
optimal solution has the highest observed fitness value be-
cause GAs will otherwise fail to select it as a (candidate for
a) globally optimal solution when they terminate. Thus GAs
eventually find at least one optimal solution with probability
1.

The next theorem follows from Theorem 3.2 and ensures
the convergence of the chain to stationarity.

Theorem 3.3. The Markov chain (Zk) has a unique sta-
tionary distribution that is also its steady-state distribution:
There exists a unique distribution π on T such that

π = πK,

where K is the |T| × |T| transition kernel of (Zk), and for
any states T and T ′ in T,

π(T ) = lim
k→∞

P{Zk = T |Z0 = T ′}.

The stationary distribution π in Theorem 3.3 satisfies

π(T ) > 0 ∀ T ∈ A, (3.9)

and

π(T ) = 0 ∀ T ∈ T \ A. (3.10)

Thus the number of nonzero entries in π equals |A|. Let π(k)

denote the distribution of the chain (Zk) at time k. From
Theorem 3.3 and (3.9)–(3.10), we have

lim
k→∞

∑
T ∈A

π(k)(T ) = 1, (3.11)

Thus, in order to determine how many iterations are suffi-
cient to guarantee with certain probability that GAs select
a globally optimal solution upon termination, we need to
analyze the convergence rate of (3.11). Clearly, (3.11) is
equivalent to

lim
k→∞

∑
T ∈T\A

π(k)(T ) = 0, (3.12)

and the remaining part of this section focuses on the con-
vergence rate analysis of (3.12).

In order to analyze the convergence rate, we need to es-
tablish more notation. Each ordered pair (i, xn) can be as-
sociated with its observed fitness value, which we denote by
F ((i, xn)):

F ((i, xn)) := f(i) + xn. (3.13)

Let W denote the number of distinct possible values of
(3.13), and let F1, F2, . . . , FW denote the W distinct val-
ues. For notational convenience, they will be arranged in
descending order:

F1 > F2 > · · · > FW .
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Let

Hj := {T ∈ T| max
(i,xn)∈T

F ((i, xn)) = Fj}.

Thus, the highest observed fitness value of each state in Hj

equals Fj . Note that H1 denotes the set of states in T that
contain at least one ordered pair (i, x1) with i ∈ S∗; hence

H1 = A, and we have T \ A =
⋃W

j=2Hj . For the remaining

analysis, we rewrite (3.12) as

lim
k→∞

∑
T ∈

⋃W
j=2 Hj

π(k)(T ) = 0. (3.14)

We assign |T| labels T1, T2, . . . , T|T| to the |T| states in T
as follows. The first |H1| labels (T1, T2, . . . , T|H1|) represent
states that belong to H1 (it does not matter exactly how
these |H1| states are represented by the |H1| labels). The
next |H2| labels (T|H1|+1, T|H1|+2, . . . , T|H1|+|H2|) represent
states that belong to H2. We continue this process until we
label all the states in T. With these labels, the i-j-th entry
of the |T| × |T| transition kernel Kof the Markov chain (Zk)
naturally represents the one-step transition probability from
state Ti to state Tj . As shown in Figure 1, K is a block
lower triangular matrix, and the j-th diagonal block K(j) is
a |Hj | × |Hj | matrix (1 ≤ j ≤ W ). The eigenvalues of this

Figure 1: Transition Kernel of (Zk). The |T| × |T|
transition matrix K of the Markov chain (Zk) is a
block lower triangular matrix whose j-th diagonal
block K(j) is a |Hj | × |Hj | matrix (1 ≤ j ≤W ).

transition kernel K provide bounds for the convergence rate
of (3.14). Let σ(K) denote the spectrum of the kernel. Since
K is a block lower triangluar matrix, the eigenvalues of K
are the eigenvalues of the W diagonal blocks K(1), K(2),. . .,
K(W ):

σ(K) =

W⋃
j=1

σ(K(j)). (3.15)

Let λj,l denote the eigenvalues of the j-th diagonal block
K(j):

σ(K(j)) = {λj,1, λj,2, . . . , λj,|Hj |}. (3.16)

As stated in Theorems 3.2 and 3.3, the Markov chain (Zk)
has only one positive recurrent class, which is also aperiodic.

Hence the eigenvalue 1 of the transition kernel K has mul-
tiplicity 1, and it belongs to σ(K(1)). Moreover, there are
no other eigenvalues of modulus 1:

|λ| < 1 ∀ λ ∈ σ(K), λ 6= 1. (3.17)

This is shown in Karlin and Taylor [9] (see Chapter 10).

We have π(k) = π(0)Kk, where π(0) is the initial distri-
bution of the chain. Thus, the convergence rate of (3.14)
can be analyzed by examining the (|T|− |H1|)× (|T|− |H1|)
submatrix of K that is obtained by eliminating the first |H1|
rows and the first |H1| columns of K. This submatrix will

be denoted by K̃. From (3.15)–(3.17), we know that each

entry of K̃k goes to zero as k approaches infinity (the mod-

ulus of each eigenvalue of K̃ is strictly less than 1), and the
convergence rate of (3.14) is determined by how fast each

entry of K̃k goes to zero. We have the following theorem:

Theorem 3.4. There exists a constant C <∞ such that
for each k, ∑

T ∈
⋃W

j=2 Hj

π(k)(T ) ≤ Cλ∗k,

where λ∗ = max{|λ| : λ ∈
⋃W

j=2 σ(K(j))}.

Note that λ∗ < 1. With regard to (3.11), it follows from
Theorem 3.4 that∑

T ∈A

π(k)(T ) ≥ 1− Cλ∗k.

Thus the convergence rate of the probability in (3.11) or
(3.12) is roughly determined by the maximum modulus λ∗

of eigenvalues in the spectrum of the (|T|−|H1|)×(|T|−|H1|)
submatrix K̃ of the transition kernel K.

4. GENETIC ALGORITHMS WITH
MULTIPLICATIVE NOISE

In Sections 4.1–4.2, we analyze GAs applied to fitness
functions perturbed by multiplicative noise that takes on
finitely many values. We will continue to use the notation
established in Sections 2 and 3. The Markov chain con-
struction described in Section 3.2 can be carried over to the
multiplicative noise case with few modifications. However,
the convergence analysis for the multiplicative case becomes
more complicated compared to the additive case described
in Section 3.3. First we characterize the multiplicative noise
mathematically.

4.1 Mathematical Details of Multiplicative
Noise

In the multiplicative noise case, we suppose that random
noise multiplies the deterministic component of the fitness
value upon each fitness function evaluation. Hence the ob-
served fitness value F (i(j,Pk)) of chromosome i(j,Pk) can
be written as

F (i(j,Pk)) = Xi(j,Pk)f(i), (4.1)

where Xi(j,Pk) represents the random multiplicative noise
that perturbs the fitness value of i(j,Pk). Here we do not
assume that the multiplicative noise Xi(j,Pk) is positive with
probability 1, so we cannot simply take the logarithm of
(4.1). For analytical simplicity, we again assume thatXi(j,Pk)
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are independent and identically distributed and that each
Xi(j,Pk) is discrete and takes on finitely many values. Thus
for each i(j,Pk), we again define Xi(j,Pk) by (3.3). We will
denote by X the set of the N possible values of the multi-
plicative noise Xi(j,Pk):

X := {x1, x2, . . . , xN}. (4.2)

4.2 Convergence Analysis
The construction of the Markov chain described in Section

3.2 remains essentially the same for the multiplicative noise
case. Each state of this chain is again a multiset of the
ordered pairs defined at (3.4), and Theorem 3.1 holds for
the multiplicative noise case as well. We leave the details to
the reader.

The following is an essential condition for characterizing
convergence properties of GAs in the multiplicatively noisy
environment:

Condition 4.2.1. The maximum observed fitness value of
globally optimal solutions is greater than that of any sub-
optimal solution, i.e.,

max
1≤n≤N

{xnf(i)} > max
1≤n≤N

{xnf(j)} (4.3)

∀ i ∈ S∗, ∀ j ∈ S \ S∗.

Here define the right-hand side of (4.3) to be −∞ for the
trivial case that S∗ = S, i.e., any chromosome in S is a
globally optimal solution. Note that since S∗ denotes the
set of globally optimal solutions, all the chromosomes in S∗

have the same maximum (noiseless) fitness value [see (3.8)].
Thus Condition 4.2.1 can also be stated as follows: There
exists a chromosome i ∈ S∗ such that

max
1≤n≤N

{xnf(i)} > max
1≤n≤N

{xnf(j)} ∀ j ∈ S \ S∗.

Example 4.2.1. Suppose that the (noiseless) fitness value
of each chromosome is positive:

f(i) > 0 ∀ i ∈ S.

Then, excluding the trivial case that S∗ = S, Condition 4.2.1
is satisfied if and only if Xi(j,P) defined at (3.3) takes on at
least one positive value with positive probability, i.e., there
exists x ∈ X such that x > 0 [X is defined at (4.2)].

Example 4.2.2. Suppose that there exists at least one
chromosome i in S whose fitness value f(i) is positive. Then
Condition 4.2.1 is satisfied if, for instance, Xi(j,P) is positive
with probability 1:

x > 0 ∀ x ∈ X.

The following theorem shows a striking difference between
the additive and multiplicative cases.

Theorem 4.1. Suppose that GAs are executed in the mul-
tiplicatively noisy environment described in Section 4.1. Then
Condition 4.2.1 is necessary and sufficient for GAs to even-
tually find at least one globally optimal solution with proba-
bility 1.

This theorem shows that we can verify Condition 4.2.1 in
order to determine whether GAs in the multiplicative noise

case will eventually find at least one globally optimal solu-
tion with probability 1. Examining the proof of this theo-
rem, we can also identify a condition that is both necessary
and sufficient for GAs to eventually fail with probability 1.
First we define the eventual failure mathematically.

Definition 4.2.1 (Eventual Failure). GAs are said to
eventually fail if, after some (random) finite number of it-
erations, they include in each subsequent population at least
one suboptimal solution whose observed fitness value is greater
than that of any globally optimal solution. In other words,
GAs are said to eventually fail if, after sufficiently many
iterations, they are guaranteed to never find any globally
optimal solution. This may be counterintuitive because the
probability of the undesirable event of failing to find any
globally optimal solution approaches 1 as the number of it-
erations goes to infinity.

The following is another essential condition for character-
izing the convergence properties of GAs in the multiplica-
tively noisy environment:

Condition 4.2.2. There exists a suboptimal solution such
that its maximum observed fitness value is greater than that
of globally optimal solutions, i.e., there exists a chromosome
i in S \ S∗ such that

max
1≤n≤N

{xnf(i)} > max
1≤n≤N

{xnf(j)} ∀ j ∈ S∗. (4.4)

Example 4.2.3. Suppose that the (noiseless) fitness value
of each chromosome is positive:

f(i) > 0 ∀ i ∈ S.

Then, excluding the trivial case that S∗ = S, Condition 4.2.2
is satisfied if and only if Xi(j,P) defined at (3.3) is negative
with probability 1: x < 0 ∀ x ∈ X [X is defined at (4.2)].

We are now in position to state the following theorem:

Theorem 4.2. Suppose that GAs are executed in the mul-
tiplicatively noisy environment described in Section 4.1. Then
Condition 4.2.2 is necessary and sufficient for GAs to even-
tually fail with probability 1.

Theorems 4.1–4.2 reveal an intriguing difference between
the additive and multiplicative cases; although GAs eventu-
ally find at least one globally optimal solution with proba-
bility 1 in the additive case, they may eventually fail with
probability 1 in the multiplicative case.

One can show that the chain for the multiplicative noise
case converges to stationarity regardless of whether Condi-
tion 4.2.1 (or Condition 4.2.2) holds. Thus we can obtain a
result analogous to Theorem 3.4 for the multiplicative case.
We describe the details of this analysis in our full-length
paper.

5. DISCUSSION
To our knowledge, this study is the first to rigorously ex-

amine transition and convergence properties of GAs applied
to noisy environments by explicitly constructing a Markov
model. Mathematically, a Markov chain is completely deter-
mined by its transition kernel, and we thoroughly described
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the kernel of the chain that models GAs in noisy environ-
ments. Our analysis shows that GAs eventually (i.e., as
the number of iterations goes to infinity) find at least one
globally optimal solution with probability 1 when they are
applied to fitness functions perturbed by any i.i.d. additive
noise that takes on finitely many values. For the multi-
plicative noise case, however, they may be unable to do so
depending on whether Condition 4.2.1 is satisfied; in fact,
they eventually fail (see Definition 4.2.1) with probability 1
if Condition 4.2.2 is satisfied.

This striking difference between the additive and multi-
plicative cases probably has significant implications in prac-
tice. For example, one must be cautious about using ge-
netic algorithms to find a globally optimal solution if it is
suspected that the fitness function is perturbed by multi-
plicative noise. On the other hand, it is reassuring that
GAs are guaranteed to find at least one globally optimal
solution as the number of iterations goes to infinity if the
fitness function is perturbed by the additive noise described
in Section 3.1.

Note that GAs considered in our study are assumed to
reassess the fitness value of each population member except
for that of the chromosome preserved by the elitist strategy
every time a new population is formed. If the algorithms
do not do this, then, examining the arguments described in
Sections 3.2–3.3, it is easy to see that the probability that
they eventually find at least one globally optimal solution is
less than 1 even for the additive noise case. Thus the reeval-
uation of the fitness value is important for ensuring that
GAs accomplish their objective. Moreover, it significantly
reduces memory requirements as compared to the strategy
of storing the fitness value of every chromosome that has
been included in any population formed during the runtime.

Theorem 3.4 shows that the convergence rate of the prob-
ability in (3.11) or (3.12) is roughly determined by the maxi-
mum modulus λ∗ of the eigenvalues of the (|T|−|H1|)×(|T|−
|H1|) submatrix K̃ of the transition kernel K described in
Section 3.3. Both λ∗ and C can be explicitly computed from
the Jordan canonical form of K̃. Hence the transition prob-
abilities in Theorem 3.1 can be effectively used to bound the
number of iterations sufficient to ensure with certain prob-
ability that a GA selects a globally optimal solution upon
termination.

We are currently extending our Markov chain analysis to
other noisy environments—for example, environments with
more general discrete noise and with continuous noise. We
believe that our Markov chain-theoretic approach to analyz-
ing GAs in noisy environments will further elucidate essen-
tial theoretical and practical properties of the algorithms.
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