
Dual-population Genetic Algorithm for Nonstationary
Optimization

Taejin Park
Pusan National University

Dept. of Computer Engineering
Jangjeon-Dong San 30
Gumjeong-Gu, Busan

+82-51-510-3531

parktj@pusan.ac.kr

Ri Choe
Pusan National University

Dept. of Computer Engineering
Jangjeon-Dong San 30
Gumjeong-Gu, Busan

+82-51-510-3531

choilee@pusan.ac.kr

Kwang Ryel Ryu
Pusan National University

Dept. of Computer Engineering
Jangjeon-Dong San 30
Gumjeong-Gu, Busan

+82-51-510-2453

krryu@pusan.ac.kr

ABSTRACT
In order to solve nonstationary optimization problems efficiently,
evolutionary algorithms need sufficient diversity to adapt to envi-
ronmental changes. The dual-population genetic algorithm
(DPGA) is a novel evolutionary algorithm that uses an extra popu-
lation called the reserve population to provide additional diversity
to the main population through crossbreeding. Preliminary ex-
perimental results on various periods and degrees of environ-
mental change have shown that the distance between the two
populations of DPGA is one of the most important factors that
affect its performance. However, it is very difficult to determine
the best population distance without prior knowledge about the
given problem. This paper proposes a new DPGA that uses two
reserve populations (DPGA2). The reserve populations are at
different distances from the main population. The information
inflow from the reserve populations is controlled by survival se-
lection. Experimental results show that DPGA2 shows a better
performance than other evolutionary algorithms for nonstationary
optimization problems without relying on prior knowledge about
the problem.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search

General Terms
Algorithms

Keywords
Genetic algorithm, multi-population GA, dual-population GA,
nonstationary optimization, dynamic optimization

1. INTRODUCTION
Since the population of a genetic algorithm (GA) offers the advan-
tage of diversity, the GA adapts more easily to environmental
changes, and consequently, shows a better performance for dy-

namic optimization as compared to other meta-heuristic algo-
rithms such as hill-climbing, simulated annealing, and tabu search.
However, as the population evolves, the GA loses its diversity and
it can no longer adapt easily to environmental changes. Many
previous studies have proposed various methods to cope with this
problem. Branke [2] has grouped these methods into four catego-
ries: increasing diversity after a change [3, 11], maintaining diver-
sity throughout the run [4], memory-based methods [5, 7] and
multi-population approaches [1, 10].

The dual-population genetic algorithm (DPGA) was originally
proposed for stationary optimization problems [8, 9]. It employs
two distinct populations with different evolutionary objectives.
The main population plays the same role as that of the population
of an ordinary GA. It evolves to find a good solution with a high
fitness value. The additional population called the reserve popula-
tion provides additional diversity to the main population. In order
to allow the main population to use the diversity in the reserve
population, there must be a method of exchanging information
between the populations. The migration method used for most
multi-population GAs (MPGAs), however, is not suitable for
DPGA because the two populations have different evolutionary
objectives. An individual of one population can hardly survive in
the other because the methods for evaluating fitness are different
for both populations. Therefore, DPGA uses crossbreeding as a
means of information exchange. In DPGA, offspring are produced
by mating not only the individuals of the same population but also
the individuals of different populations. Since the crossbred off-
spring contain the genetic material of both populations, their fit-
ness values are not too low and thus they assimilate relatively
easily into the new population.

The population distance is a very important factor that affects the
performance of DPGA. The distance between the populations of
DPGA can be controlled by the fitness function parameter of the
reserve population [9]. The best distance depends on the charac-
teristics of a given problem. For example, DPGA must maintain a
rather small distance between the main population and the reserve
populations for most stationary optimization problems. However,
for problems that require high diversity, such as the deceptive
problems, the algorithm must maintain a relatively large distance
between the populations. For dynamic optimization problems, the
best distance between the populations depends on the dynamic
characteristics of the given problems, such as the period of change
and the degree of change. In this study, we apply DPGA to dy-
namic optimization problems of various periods and degrees of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-130-9/08/07…$5.00.

1025

change in order to identify the relationship between the best popu-
lation distance and the dynamic characteristics. In addition, we
propose a new DPGA with two reserve populations for dynamic
optimization problems. The two reserve populations are at differ-
ent distances from the main population and the information inflow
from the reserve populations is controlled by survival selection.

The rest of the paper is organized as follows. Section 2 explains
the DPGA in detail and section 3 describes the new version of
DPGA that has two reserve populations. Section 4 reports the
experimental results with various dynamic optimization problems
and compares DPGA with other genetic algorithms. Finally, sec-
tion 5 provides conclusions.

2. Dual-population Genetic Algorithm
2.1 Fitness Function for Reserve Population
DPGA manipulates two populations with different evolutionary
objectives. The individuals of each population are evaluated by
the fitness function of the population based on its evolutionary
objective. The fitness function fm(x) of the main population is the
same as the evaluation function given by the problem, as its evo-
lutionary objective is to find a good solution. The individuals of
the reserve population are evaluated by their average distance to
the individuals of the main population, because the evolutionary
objective of the reserve population is to provide additional diver-
sity to the main population. Previous studies [9] have used equa-
tion (1) as the fitness function of the reserve population so that an
individual has its maximum fitness value of 1 when its average
distance to the individuals of the main population is equal to a
given value δ:

),(1)(xMx dfr −−= δδ (1)

where 0 ≤ δ ≤ 1, and 0 ≤ d(M, x) ≤ 1 is the normalized average
distance between the individuals of the main population M and an
individual x of the reserve population. Assuming a binary repre-
sentation for a chromosome, d(M, x) is calculated using equation
(2):

∑∑
=∈

−==
l

k
kk xf

l
distd

1
,

1),(1),(M
Mm

xm
M

xM
(2)

where |M| is the size of the main population M, l is the length of a
chromosome, and dist(m, x) is the distance between two chromo-
some vectors m and x. dist(m, x) can be the Hamming distance in
case of binary representation. fM,k represents the frequency of the
kth gene value “1” of M. xk denotes the frequency of the kth gene
value “1” of the chromosome vector x and is identical to the kth
gene value of the chromosome. The details of this function can be
found in previous studies [8, 9]. When δ = 0, individuals that are
very similar to those of the main population have high fitness
values. In contrast, when δ = 1, individuals that are very different
from those of the main population have high fitness values.

2.2 Algorithm for Evolution
DPGA begins with two randomly generated populations. The
individuals of each population are evaluated by the fitness func-
tion of the population to which they belong. Ordinary MPGAs
generate new offspring only by inbreeding, i.e., a recombination
between parents selected from the same population. However,
DPGA generates offspring by both inbreeding and crossbreeding.

The inbred offspring and crossbred offspring compete with each
other through survival selection and only the winners are selected
for the next generation. Figure 1 shows the pseudocode of DPGA.

DPGA generates n offspring for each population and then the best
m offspring are selected for the next generation of each population
(n > m). First, the algorithm generates m inbred offspring IM
through inbreeding between parents from the main population.
Similarly, the algorithm generates m inbred offspring IR through
inbreeding between parents from the reserve population. Next, the
algorithm generates (n – m) crossbred offspring C through cross-
breeding. The inbred offspring IM of the main population and the
crossbred offspring C constitute a candidate set OM for the next
generation of the main population. Similarly, the inbred offspring
IR of the reserve population and the crossbred offspring C consti-
tute a candidate set OR for the reserve population.

The procedure GenerateInbredOffspring for generating inbred
offspring is identical to the procedure of a standard GA for gener-
ating offspring. Two parents are selected from the given popula-
tion Mt or Rt according to their fitness values and new offspring
are generated by using crossover and mutation. The procedure
GenerateCrossbredOffspring for generating crossbred offspring
selects the parents from different populations, one from the main
population and the other from the reserve population. It should be
noted that the fitness functions of the two populations are differ-
ent; hence, the basis for selection of the parents is different. After
selecting the parents, new offspring are generated by crossover
and mutation. Since the crossbred offspring contain genetic mate-
rials of both the parents, they can function as a medium of infor-
mation exchange.

The next step is survival selection for the next generation of each
population. First, the individuals in the candidate set OM are eva-
luated by the fitness function fr(x) of the main population. Then,
the algorithm selects m individuals from OM for the next genera-

Figure 1. Pseudocode of DPGA.

Procedure DPGA
begin

Initialize population M0
 and R0 (|M0| = |R0| = m)

Evaluate M0 using fm(x)
Evaluate R0

 using fr(x)
t := 0
repeat

IM = GenerateInbredOffspring(Mt, m)
IR = GenerateInbredOffspring(Rt, m)
C = GenerateCrossbredOffspring(Mt, Rt, n - m)
OM = IM ∪ C
OR = IR ∪ C
Evaluate OM using fm(x)

Evaluate OR using frδ(x)

Mt+1 = SurvivalSelection(OM, m)
Rt+1

 = SurvivalSelection(OR, m)
t := t + 1

until terminated = true
end

1026

tion Mt+1 of the main population through survival selection. Simi-
larly, the individuals in the candidate set OR are evaluated by the
fitness function frδ(x), and m individuals are selected from OR for
the next generation Rt+1 of the reserve population. For survival
selection, individuals in the given candidate set are sorted by their
fitness values and the best m individuals are selected. Since m is
equal to the number of generated inbred offspring, the crossbred
offspring can survive only if they are better than at least one of the
inbred offspring. If too much genetic materials are imported
through crossbred offspring, the convergence of the population
can be disturbed and it could be difficult for the population to
evolve into a good solution. Therefore the influx of the crossbred
offspring is controlled by survival selection.

3. DPGA with two reserve populations
The fitness function frδ(x) drives the individuals of the reserve
population to evolve to ones whose distance to the main popula-
tion is δ. When δ is too small, the individuals of the reserve popu-
lation become very similar to those of the main population and
therefore do not provide sufficient diversity. On the contrary,
when δ is too large, the parents for crossbreeding are too different
from each other and therefore do not give birth to good offspring.
When the parents for crossbreeding are genetically very different
from each other, the probability that the offspring will be much
worse than their parents is high. Accordingly, as the populations
converge and their average population fitness attains high values,
it becomes difficult for the crossbred offspring to win the survival
selection. In such cases, the reserve population also cannot pro-
vide sufficient diversity to the main population because genetic
materials are rarely exchanged between the populations.

A previous study [9] shows that the performance of DPGA is
highly dependent on the value of δ, and the best value of δ differs
for each problem. In general, DPGA shows a good performance
for stationary problems when the value of δ is rather small (e.g.,
0.1). Exceptionally, a large value of δ is required for the deceptive
problems because they demand high diversity to be solved effi-
ciently. Due to the difficulty in determining the best value of δ,
the previous study proposed a method for adjusting the value of δ
by using the information obtained through evolution.

For nonstationary optimization problems, the best value of δ is
affected by the dynamic characteristics of a problem such as the
speed of change and degree of change. According to our prelimi-
nary experiments, DPGA shows a good performance for a dy-
namic optimization problem with a small degree of change when
the value of δ is small. However, a larger value of δ is required for
a problem with a higher degree of change. The method for adjust-
ing the value of δ proposed in the previous study is not suitable
for nonstationary optimization problems. Since the method is
devised for stationary problems, it tends to maintain a low average
value of δ even when it is applied to nonstationary problems.
Consequently, the reserve population cannot maintain sufficient
diversity for a problem with a high degree of change.

In this paper, we propose a new algorithm called DPGA2 in which
the reserve population is split into two independent subpopula-
tions R1 and R2, with R1 having a small value δ1 and R2 a large
value δ2. Crossbred offspring are generated only between the main
population and each of the reserve populations. Since it is not
necessary to exchange information between the reserve popula-
tions, no crossbred offspring are generated between them. Each

crossbred offspring competes with both inbred offspring and other
crossbred offspring, and thus, the inflow of genetic material from
each reserve population is automatically adjusted by survival se-
lection. We expect a good amount of information flow into the
main population from R1 for problems with a low degree of
change or from R2 for problems with a high degree of change.

The algorithm of DPGA2 is shown in Figure 2. DPGA2 generates
n offspring and selects the best m offspring for the main popula-
tion. However, it generates n/2 offspring and selects the best m/2
offspring for each reserve population. The main population M
generates m inbred offspring IM, and the reserve population R1
and R2 generate m/2 inbred offspring IR1 and IR2, respectively.
Then, (n – m)/2 offspring C1 are generated by crossbreeding be-
tween M and R1. Similarly (n – m)/2 offspring C2 are generated
by crossbreeding between M and R2. The inbred offspring IM of
the main population and both the crossbred offspring C1 and C2
become candidates OM for the next generation of the main popula-
tion. The inbred offspring IR1 and the crossbred offspring C1 be-
come candidate OR1 for the reserve population R1, and the inbred
offspring IR2 and the crossbred offspring C2 become candidates
OR2 for the reserve population R2. Finally, the candidate set of
each population is evaluated by its fitness function and the best m
or m/2 individuals are selected for the next generation through
survival selection.

Procedure DPGA2
begin

Initialize population M0, R1
0, and R2

0
(|M0| = m, |R1

0| = |R2
0| = m/2)

Evaluate M0 using fm()
Evaluate R1

0
 using frδ1()

Evaluate R2
0
 using frδ2()

t := 0
repeat

IM := GenerateInbredOffspring(Mt, m)
IR1 := GenerateInbredOffspring(R1

t, m/2)
IR2 := GenerateInbredOffspring(R2

t, m/2)
C1 := GenerateCrossbredOffspring(Mt, R1

t, (n – m)/2)
C2 := GenerateCrossbredOffspring(Mt, R2

t, (n – m)/2)
OM := IM ∪ C1 ∪ C2

OR1 := IR1 ∪ C1
OR2 := IR2 ∪ C2
Evaluate OM using fm(x);
Evaluate OR1 using frδ1(x)
Evaluate OR2 using frδ2(x)
Mt+1 := SurvivalSelection(OM, m)
R1

t+1
 := SurvivalSelection(OR1, m/2)

R2
t+1

 := SurvivalSelection(OR2, m/2)
t := t + 1

until terminated = true
end

Figure 2. Pseudocode of DPGA with two reserve populations
(DPGA2).

1027

4. Experimental results
We have used the dynamic problem generator that was proposed
by [14, 15]. This generator can create various dynamic problems
using two parameters: the period of change τ and the degree of
change ρ. Given a binary-encoded stationary optimization prob-
lem f(x), the dynamic problem f(x, t) is defined as follows.

f(x, t) = f(x ⊕ m(k)) (3)

where t is the generation count, k = ⎣t/τ⎦ is the period index, τ is
the length of the period, and m(k) is a binary mask for the kth
period. In order to evaluate an individual x, we first perform the
operation x ⊕ m(k), where “⊕” is the bitwise exclusive-or (XOR)
operator, and then evaluate the resulting individual. The first mask
m(0) is randomly generated, and the mask m(k) of the kth period
is generated incrementally using the mask m(k – 1) of the previ-
ous period, as shown below.

m(k) = m(k – 1) ⊕ t(k) (4)

where t(k) is an intermediate binary template randomly generated
for the period k containing ρ × l ones. When ρ = 0.0, the problem
stays stationary, and a larger ρ causes a severer change. Also,
m(k) changes more frequently as τ gets smaller.

This paper uses three well-known problems as the base problem
f(x): binary knapsack problem, royal road function [6], and decep-
tive function [12]. A knapsack problem with 50 items is randomly
generated using the method described in [15]. To see the effects of
the dynamic parameters, the period of change τ is set to 10, 100,
and 200 generations, and the degree of change ρ is set to 0.05,
0.25, 0.5, 0.75, and 0.95. In total, a series of 15 dynamic problems
is constructed from each base problem.

First, we compare DPGA2 with DPGA using various values of δ.
For DPGA2, we set δ1 to 0.1 and δ2 to 0.9. For DPGA, δ is set to
0.1, 0.5, and 0.9. The parent size m is set to 80 and the offspring
size n is set to 100. We use a two-point crossover with a crossover
rate of 1.0 and bitwise mutation with a mutation rate of 1/l, where
l is the length of a chromosome. Tournament selection together
with elitism is used for selection.

For each experiment, 100 independent runs are executed and each
algorithm is run for 1,000 generations. For each run of the various
algorithms on each problem, the best-of-generation fitness is re-
corded for every generation. Figure 3 shows the best-of-
generation fitness of the algorithms on the stationary problems.
The best value of δ is 0.1 for the knapsack problem and 0.9 for the
royal road and deceptive functions. The best value of δ differs for
each problem; however, DPGA2 shows curves similar to those of
DPGA with the best values of δ for all the stationary problems.

For the dynamic problems, the overall performance is measured
by the mean best-of-generation fitness BGF . It is defined as the
best-of-generation fitness averaged across all the different runs
and then averaged over all the generations.

∑ ∑
= =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⋅=

G

i

N

j
ijBGF

NG
BGF

1 1

11 (5)

where G is the number of generations, N is the total number of
runs, and BGFij is the best-of-generation fitness of generation i of
run j.

Table 1. The mean best-of-generation fitness of the DPGA with δ = 0.1, 0.5, and 0.9 and DPGA2 on the dynamic problems.

Knapsack Problem Royal Road function Deceptive function Param.
Setting
Index

Parameters
Setting
(τ, ρ) δ = 0.1 δ = 0.5 δ = 0.9 DPGA2 δ = 0.1 δ = 0.5 δ = 0.9 DPGA2 δ = 0.1 δ = 0.5 δ = 0.9 DPGA2

1 (10, 0.05) 933.4 930.8 930.5 934.0 39.0 37.8 37.3 38.9 279.0 276.3 275.3 277.7
2 (10, 0.25) 926.2 927.6 927.2 927.7 12.3 16.1 15.8 15.4 236.6 238.7 238.0 237.9
3 (10, 0.50) 922.3 925.6 925.7 925.3 8.8 12.7 12.8 11.9 220.2 225.6 225.2 223.8
4 (10, 0.75) 918.5 923.7 924.4 923.4 9.4 12.7 13.1 12.2 232.4 234.6 234.5 234.0
5 (10, 0.95) 913.3 921.3 922.6 920.3 18.5 16.8 17.3 18.3 278.3 273.8 269.8 275.3
6 (100, 0.05) 946.2 938.5 938.5 944.5 57.1 56.7 56.4 57.4 290.3 292.8 293.2 295.5
7 (100, 0.25) 939.7 936.8 936.6 939.8 41.9 43.4 43.0 43.1 283.1 284.5 286.2 286.2
8 (100, 0.50) 934.9 936.0 935.8 937.2 26.8 37.4 37.5 35.9 280.1 281.6 283.2 282.0
9 (100, 0.75) 931.6 935.6 936.3 937.2 23.7 35.8 41.7 39.8 283.4 283.8 285.5 284.5

10 (100, 0.95) 929.7 935.3 937.5 939.7 28.0 35.1 53.0 51.8 288.7 288.4 291.0 290.3
11 (200, 0.05) 947.6 940.7 940.4 946.4 57.7 58.2 57.7 58.2 290.9 293.9 295.2 296.8
12 (200, 0.25) 943.4 939.2 939.1 943.0 49.6 49.9 49.7 50.0 287.6 289.0 291.5 291.7
13 (200, 0.50) 939.5 938.8 938.7 941.3 36.2 45.8 46.0 44.7 285.1 286.3 290.4 289.2
14 (200, 0.75) 936.6 938.3 938.9 941.6 29.1 45.0 49.1 47.5 286.8 287.2 291.4 290.1
15 (200, 0.95) 934.7 938.4 939.9 943.3 32.4 44.6 56.4 56.0 289.0 289.1 294.2 293.4

1028

Table 1 and Figure 4 show the results obtained for the dynamic
problems. For the dynamic knapsack problems, DPGA with a
small value of δ shows the best performance when the degree of
change (ρ) is small. As ρ gets larger, however, the algorithm
shows the best performance with a larger value of δ. When the
period of change (τ) is 10, we can see from Table 1 that the best

value of δ for DPGA is 0.1 for ρ = 0.05, but the best δ becomes
0.9 for ρ = 0.95. In fact, similar observations can be made with
the other values of τ. A more careful examination of the data re-
veals that there is a tendency that DPGA shows its best perform-
ance at a smaller value of δ as the period of change (τ) gets longer.
For example, when ρ = 0.5, the best values of δ are 0.9, 0.5, and

915

920

925

930

935

940

945

950

0 50 100 150 200

B
es

t-
of

-G
en

er
at

io
n

Fi
tn

es
s

Generation

δ = 0.1
δ = 0.5
δ = 0.9
DPGA2

910

915

920

925

930

935

940

945

950

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M
ea

n
B

es
t-

of
-G

en
er

at
io

n
Fi

tn
es

s

Parameter Setting Index

δ = 0.1
δ = 0.5
δ = 0.9
DPGA2

(a) (a)

0

8

16

24

32

40

48

56

64

0 50 100 150 200

B
es

t-
of

-G
en

er
at

io
n

Fi
tn

es
s

Generation

δ = 0.1
δ = 0.5
δ = 0.9
DPGA2

0

8

16

24

32

40

48

56

64

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M
ea

n
B

es
t-

of
-G

en
er

at
io

n
Fi

tn
es

s

Parameter Setting Index

δ = 0.1
δ = 0.5
δ = 0.9
DPGA2

(b) (b)

180

200

220

240

260

280

300

0 50 100 150 200

B
es

t-
of

-G
en

er
at

io
n

Fi
tn

es
s

Generation

δ = 0.1
δ = 0.5
δ = 0.9
DPGA2

220

230

240

250

260

270

280

290

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M
ea

n
B

es
t-

of
-G

en
er

at
io

n
Fi

tn
es

s

Parameter Setting Index

δ = 0.1
δ = 0.5
δ = 0.9
DPGA2

(c) (c)

Figure 3. The best-of-generation fitness of the algorithms on
the stationary problems: (a) knapsack, (b) royal road, and

(c) deceptive problem.

Figure 4. The mean best-of-generation fitness of the DPGA
with δ = 0.1, 0.5, and 0.9 and DPGA2 on the dynamic

problems: (a) knapsack, (b) royal road, and (c) deceptive
problem.

1029

0.1 for τ = 10, 100, and 200, respectively. This seems to imply
that DPGA demands more diversity as the period of change τ gets
shorter. Note that DPGA2 shows performances close to those of
DPGA using its best values of δ for every setting of dynamic pa-
rameters τ and ρ. For some cases, e.g., (200, 0.75) and (200, 0.95),
the performance of DPGA2 is even significantly better than that
of DPGA with its best δ.

For the dynamic royal road functions, all the algorithms show
similar performances when ρ is small. When ρ is large, δ = 0.9 is
the best for DPGA in most cases, and DPGA2 gives results close
to those of DPGA with δ = 0.9.

In case of the dynamic deceptive problems, DPGA with δ = 0.9
shows the best performance for most dynamic settings, except
when τ is very short. Note that for the deceptive problems, even
when they are stationary, DPGA requires large diversity and thus
its performance with δ = 0.9 is much better than those with δ = 0.1
and 0.5. The best value of δ for a dynamic problem seems to be
highly dependent on the characteristics of its stationary version
problem as well as on its dynamic parameter setting. Therefore, it

is very difficult to determine the best value of δ without prior
knowledge about the given problem or careful experiments. How-
ever, DPGA2 shows good performances close to those of DPGA
with its best value of δ for almost all the problems and dynamic
parameter settings.

Figure 5 shows the dynamic behavior of DPGA with various δ
values and that of DPGA2 on dynamic knapsack problems for the
dynamic parameter settings of τ = 200 and ρ = 0.05, 0.25, 0.75,
and 0.95. When ρ is 0.05 and 0.25, DPGA with δ = 0.1 shows the
best performance by converging fast during the first period and
adapting easily to environmental changes from then on through
the following periods. However, when ρ = 0.75 and 0.95, DPGA
with δ = 0.1 shows the worst performance. Although it converges
fast during the first period, it does not adapt easily to severe envi-
ronmental changes. Perhaps its reserve population may not main-
tain sufficient diversity to adapt to such extreme environmental
changes. As a result, DPGA with δ = 0.1 shows much worse per-
formance from the second period. On the other hand, although
DPGA with δ = 0.9 converges slowly, it shows more robust per-
formance against environmental changes. We can see that the

900

905

910

915

920

925

930

935

940

945

950

0 200 400 600 800 1000

Be
st

-o
f-

ge
ne

ra
tio

n
Fi

tn
es

s

Generation

δ = 0.1
δ = 0.5
δ = 0.9
DPGA2

900

905

910

915

920

925

930

935

940

945

950

0 200 400 600 800 1000

Be
st

-o
f-

ge
ne

ra
tio

n
Fi

tn
es

s

Generation

δ = 0.1
δ = 0.5
δ = 0.9
DPGA2

(a) (b)

900

905

910

915

920

925

930

935

940

945

950

0 200 400 600 800 1000

Be
st

-o
f-

G
en

er
at

io
n

Fi
tn

es
s

Generation

δ = 0.1
δ = 0.5
δ = 0.9
DPGA2

900

905

910

915

920

925

930

935

940

945

950

0 200 400 600 800 1000

Be
st

-o
f-

ge
ne

ra
tio

n
Fi

tn
es

s

Generation

δ = 0.1
δ = 0.5
δ = 0.9
DPGA2

(c) (d)

Figure 5. Dynamic behavior of the DPGA with various δ and DPGA2 on dynamic knapsack problems when τ = 200. ρ is set to
(a) 0.05, (b) 0.25, (c) 0.75, and (d) 0.95.

1030

performance with δ = 0.9 is worse than that with δ = 0.1 when ρ =
0.05 and 0.25, but it converges steadily all through the periods,
even when ρ = 0.75 and 0.95. DPGA2 shows fast convergence
and adaptability to a small degree of change, as does DPGA with
δ = 0.1. DPGA2 also shows robustness to a high degree of envi-
ronmental changes, as does DPGA with δ = 0.9. Having the
strengths of both DPGAs, DPGA2 performs better than all the
DPGAs when ρ = 0.75 and 0.95.

Finally, we compare DPGA2 with a standard GA (SGA), a pri-
mal-dual GA (PDGA), and an island-model GA (IMGA). SGA is
a general generative-model GA. PDGA adopts a complementary
and dominance mechanism and uses a complementary chromo-

some—dual chromosome—to provide additional diversity to the
population. Further details on PDGA can be found in [14]. IMGA
is a typical multi-population GA that employs two distinct popula-
tions, evolves them separately, and exchanges some of their indi-
viduals regularly [13]. In our experiment, the best solution of each
population is exchanged in every five generations. The population
size is set to 100 for SGA and PDGA and to 50 + 50 for IMGA.
Other genetic operators and parameters are set identical to those
of DPGA and DPGA2.

Table 2 and Figure 6 compare the experimental results obtained
by running these genetic algorithms. For most problems and most
dynamic parameter settings, DPGA2 shows the best performance.

Table 2. The mean best-of-generation fitness of SGA, PDGA, IMGA, and DPGA2 on dynamic problems.

Knapsack problem Royal Road function Deceptive problem Param.
Setting
Index

Parameters
Setting
(τ, ρ) SGA PDGA IMGA DPGA2 SGA PDGA IMGA DPGA2 SGA PDGA IMGA DPGA2

1 (10, 0.05) 933.1 933.0 934.4 934.0 37.4 37.7 36.7 38.9 275.4 275.6 276.4 277.7
2 (10, 0.25) 927.3 927.4 927.7 927.7 13.7 13.9 13.1 15.4 234.3 234.4 233.9 237.9
3 (10, 0.50) 924.3 924.4 924.2 925.3 10.3 10.4 10.0 11.9 218.9 218.8 218.0 223.8
4 (10, 0.75) 921.7 921.8 921.1 923.4 10.7 11.0 10.4 12.2 229.8 229.7 229.0 234.0
5 (10, 0.95) 917.7 918.0 916.4 920.3 17.7 18.3 17.3 18.3 273.5 273.3 274.3 275.3
6 (100, 0.05) 941.6 941.4 943.8 944.5 56.8 56.5 55.6 57.4 291.3 292.9 292.1 295.5
7 (100, 0.25) 938.7 938.7 939.9 939.8 42.6 42.5 40.9 43.1 283.2 284.2 283.9 286.2
8 (100, 0.50) 936.2 936.3 937.0 937.2 31.8 32.0 29.8 35.9 279.6 280.1 279.5 282.0
9 (100, 0.75) 934.3 934.3 934.5 937.2 26.6 31.9 25.0 39.8 282.7 283.0 282.9 284.5
10 (100, 0.95) 932.7 933.0 932.4 939.7 25.7 49.1 25.4 51.8 288.2 288.7 288.4 290.3
11 (200, 0.05) 943.0 943.1 945.3 946.4 57.9 57.9 56.6 58.2 292.2 294.5 292.6 296.8
12 (200, 0.25) 941.2 941.3 943.1 943.0 50.1 49.9 47.3 50.0 287.7 289.5 288.5 291.7
13 (200, 0.50) 939.6 939.7 941.0 941.3 41.8 42.2 39.6 44.7 285.2 286.9 285.4 289.2
14 (200, 0.75) 938.7 938.7 939.4 941.6 36.7 43.1 34.2 47.5 286.3 288.3 286.5 290.1
15 (200, 0.95) 937.8 938.2 938.5 943.3 33.8 54.1 31.5 56.0 288.7 291.1 289.2 293.4

910

915

920

925

930

935

940

945

950

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M
ea

n
B

es
t-

of
-G

en
er

at
io

n
Fi

tn
es

s

Parameter Setting Index

SGA
PDGA
IMGA
DPGA2

0

8

16

24

32

40

48

56

64

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M
ea

n
B

es
t-

of
-G

en
er

at
io

n
Fi

tn
es

s

Parameter Setting Index

SGA
PDGA
IMGA
DPGA2

200

210

220

230

240

250

260

270

280

290

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M
ea

n
B

es
t-

of
-G

en
er

at
io

n
Fi

tn
ss

Parameter Setting Index

SGA
PDGA
IMGA
DPGA2

(a) (b) (c)

Figure 6. The mean best-of-generation fitness of SGA, PDGA, IMGA, and DPGA2 with different combinations of dynamic
parameters on dynamic problems: (a) knapsack, (b) royal road, and (c) deceptive problem.

1031

For knapsack problems, the curves of the other three algorithms
are similar to each other, and their performances degrade as the
degree of change increases. When τ = 10, the curve of DPGA2 is
not very different from the curves of the other algorithms. When τ
= 100 and 200, however, the curve of DPGA2 shows a different
“U” shape due to the performance upgrades after ρ = 0.5. On dy-
namic royal road functions, PDGA also displays a similar “U”
curve although not as good as that of DPGA2. On dynamic decep-
tive problems, all the algorithms show quite similar performance
curves, although DPGA2 again shows the best performance for all
the dynamic parameter settings.

5. Conclusions
DPGA is a novel evolutionary algorithm that uses a reserve popu-
lation to provide additional diversity to the main population. The
distance between the two populations is a very important factor
that affects the performance of the algorithm and can be con-
trolled by using the parameter δ of the fitness function for the
reserve population. In this study, we extended DPGA to solve
dynamic optimization problems. We first investigated the rela-
tionship between the value of δ and the dynamic characteristics
such as the period and degree of change. Our experiments re-
vealed that DPGA with a relatively small value of δ shows the
best performance for a low degree of change by converging fast
and adapting well to moderate environmental changes. However,
DPGA with a larger value of δ shows a better performance for a
high degree of change by providing enough diversity to cope with
extreme environmental changes. The problem is that the best val-
ue of δ differs for each problem and each dynamic environmental
characteristic; hence, it is difficult to decide the best value of δ
without prior knowledge or intensive experiments on the given
problem.

In this paper, we proposed a new algorithm called DPGA2 having
its reserve population split into two. One of the reserve popula-
tions uses a small δ for the fitness function and the other uses a
large δ. Since the inflow of genetic material from each reserve
population to the main population is automatically adjusted by
crossbreeding and survival selection, an appropriate amount of
diversity can always be provided regardless of the problem char-
acteristics. Experiments showed that the performance of DPGA2
is close to that of DPGA with small δ for a low degree of change
and DPGA with large δ for a high degree of change. Additional
experiments showed that DPGA2 is better than other evolutionary
algorithms based on similar concepts.

6. ACKNOWLEDGMENTS
This work was supported by the Korea Research Foundation
Grant funded by the Korean Government (MOEHRD) (The Re-
gional Research Universities Program/Research Center for Logis-
tics Information Technology).

7. REFERENCES
[1] J. Branke, T. Kaubler, C. Schmidt, and H. Schmeck. A multi-

population approach to dynamic optimization problems. In
Adaptive Computing in Design and Manufacturing 2000.
Springer, 2000.

[2] J. Branke. Evolutionary approaches to dynamic optimization
problems—updated survey. GECCO Workshop on Evolu-
tionary Algorithms for Dynamic Optimization Problems,
pages 134–137, 2001.

[3] H. G. Cobb. An investigation into the use of hypermutation
as an adaptive operator in genetic algorithms having continu-
ous, time-dependent nonstationary environments. Technical
Report AIC-90-001, Naval Research Laboratory, Washington,
USA, 1990.

[4] J. J. Grefenstette. Genetic algorithms for changing environ-
ments. In R. Maenner and B. Manderick, editors, Parallel
Problem Solving from Nature 2, pages 137–144, 1992.

[5] B. S. Hadad and C. F. Eick. Supporting polyploidy in genetic
algorithms using dominance vectors. In 6th Intl. Conf. on
Evolutionary Programming, volume 1213 of LNCS, pages
223–234, Springer, 1997.

[6] M. Mitchell, S. Forrest, and J. H. Holland. The royal road for
genetic algorithms: fitness landscapes and GA performance.
In Proc. of the 1st European Conf. on Artificial Life, pages
245–254, 1992.

[7] K. P. Ng and K. C. Wong. A new diploid scheme and domi-
nance change mechanism for non-stationary function optimi-
zation. In 6th Intl. Conf on Genetic Algorithms, pages 159–
166, 1955.

[8] T. Park and K. R. Ryu. A dual population genetic algorithm
with evolving diversity. In IEEE Congress on Evolutionary
Computation (CEC2007), pages 3516–3522, 2007.

[9] T. Park, R. Choe, and K. R. Ryu. Adjusting population dis-
tance for the dual-population genetic algorithm. In Australian
Conference on Artificial Intelligence (AI 2007) (LNCS 4830),
pages 171–180, 2007.

[10] S. Tsutsui, Y. Fujimoto, and A. Chosh. Forking genetic algo-
rithms: GAs with search space division schemes. Evolution-
ary Computation, 5(1):61–80, 1997.

[11] F. Vavak, K. Jukes, and T. C. Fogarty. Learning the local
search range for genetic optimisation in nonstationary envi-
ronments. In IEEE Intl. Conf. on Evolutionary Computation
(ICEC’97), pages 355–360, 1997.

[12] L. D. Whitley. Fundamental principles of deception in ge-
netic search. In Foundations of Genetic Algorithms 1, pages
221–241, 1991.

[13] D. Whitley, S. Rana, and R. B. Heckendorn. The island mod-
el genetic algorithm: on separability, population size, and
convergence. In Journal of Computing and Information
Technology, volume 7, pages 33–47, 1999.

[14] S. Yang. Non-stationary problem optimization using the
primal-dual genetic algorithm. In IEEE Congress on Evolu-
tionary Computation (CEC2003), pages 2246–2253, 2003.

[15] S. Yang and X. Yao. Experimental study on population-
based incremental learning algorithm for dynamic optimiza-
tion problems, In Soft Computing, volume 9, pages 815–834,
2005.

1032

