
Analysis of Estimation of Distribution Algorithms and
Genetic Algorithms on NK Landscapes

Martin Pelikan
Missouri Estimation of Distribution Algorithms Laboratory (MEDAL)

Dept. of Mathematics and Computer Science, 320 CCB
Univ. of Missouri in St. Louis

One University Blvd., St. Louis, MO 63121

pelikan@cs.umsl.edu

ABSTRACT
This study analyzes performance of several genetic and
evolutionary algorithms on randomly generated NK fitness
landscapes with various values of n and k. A large num-
ber of NK problem instances are first generated for each n
and k, and the global optimum of each instance is obtained
using the branch-and-bound algorithm. Next, the hierar-
chical Bayesian optimization algorithm (hBOA), the uni-
variate marginal distribution algorithm (UMDA), and the
simple genetic algorithm (GA) with uniform and two-point
crossover operators are applied to all generated instances.
Performance of all algorithms is then analyzed and com-
pared, and the results are discussed.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; I.2.8 [Artificial
Intelligence]: Problem Solving, Control Methods, and
Search; G.1.6 [Numerical Analysis]: Optimization

General Terms
Algorithms, Performance

1. INTRODUCTION
NK fitness landscapes [13, 14] were introduced by Kauff-

man as tunable models of rugged fitness landscape. An NK
landscape is a function defined on binary strings of fixed
length and is characterized by two parameters: (1) n for
the overall number of bits and (2) k for the neighborhood
size. For each bit, k neighbors are specified and a function
is given that determines the fitness contribution of the bit
and its neighbors. Usually, both the neighbors as well as the
subfunctions are initialized randomly in some way. NK land-
scapes are NP-complete for k > 1, although some variants
of NK landscapes are polynomially solvable and there exist
approximation algorithms for others [23, 8, 6]. Nonethe-
less, NK landscapes remain a challenge for any optimization
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algorithm and they are also interesting from the perspec-
tive of complexity theory and computational biology; that
is why since their inception NK landscapes have attracted
researchers in all these areas [14, 2, 23, 8, 1, 6].

This paper presents an in-depth empirical performance
analysis of various genetic and evolutionary algorithms on
NK landscapes with varying n and k. For each value of n
and k, a large number of problem instances are first gener-
ated. Then, the branch-and-bound algorithm is applied to
each of these instances to provide a guaranteed global opti-
mum of this instance. Several genetic and evolutionary algo-
rithms are then applied to all generated problem instances
and their performance is analyzed and compared. More
specifically, we consider the hierarchical Bayesian optimiza-
tion algorithm (hBOA), the univariate marginal distribution
algorithm (UMDA), and the simple genetic algorithm (GA)
with bit-flip mutation, and uniform or two-point crossover
operator. Additionally, GA without any crossover is con-
sidered. The results provide insight into the difficulty of
NK landscapes with respect to the parameters n and k and
performance differences between all compared algorithms.

The paper starts by describing NK landscapes and the
branch-and-bound algorithm used to verify the global op-
tima of generated NK landscapes in section 2. Section 3
outlines compared algorithms. Section 4 presents experi-
mental results. Section 5 discusses future work. Finally,
section 6 summarizes and concludes the paper.

2. NK LANDSCAPES
This section describes NK landscapes and the branch-and-

bound algorithm, which was used to obtain global optima
of all NK problem instances considered in this paper.

2.1 Problem Definition
An NK fitness landscape [13, 14] is fully defined by the

following components: (1) The number of bits, n. (2) The
number of neighbors per bit, k. (3) A set of k neighbors
Π(Xi) for the i-th bit, Xi, for every i ∈ {0, . . . , n − 1}. (4)
A subfunction fi defining a real value for each combination
of values of Xi and Π(Xi) for every i ∈ {0, . . . , n− 1}. Typ-
ically, each subfunction is defined as a lookup table with
2k+1 values. The task is to maximize the objective function

fnk(X0, X1, . . . , Xn−1) =

n−1X

i=0

fi(Xi, Π(Xi)).

The difficulty of optimizing NK landscapes depends on all
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of the four components defining an NK problem instance.
One useful approach to analyzing complexity of NK land-
scapes is to focus on the influence of k on problem complex-
ity. For k = 0, NK landscapes are simple unimodal functions
similar to onemax or binint, which can be solved in linear
time and should be easy for practically any genetic and evo-
lutionary algorithm. The global optimum of NK landscapes
can be obtained in polynomial time [23] even for k = 1; on
the other hand, for k > 1, the problem of finding the global
optimum of unrestricted NK landscapes is NP-complete [23].
The problem becomes polynomially solvable with dynamic
programming even for k > 1 if the neighbors are restricted
to only adjacent string positions (using circular strings) [23]
or if the subfunctions are generated according to some dis-
tributions [8]. For unrestricted NK landscapes with k > 1,
a polynomial-time approximation algorithm exists with the
approximation threshold 1 − 1/2k+1 [23].

2.2 Generating Random NK Instances
Typically, both the neighbors as well as the lookup tables

defining the subfunctions are generated randomly. In this
paper, for each string position Xi, we first generate a random
set of k neighbors where each string position except for Xi

is selected with equal probability. Then, the lookup table
defining fi is generated using the uniform distribution over
[0, 1).

Consequently, the studied class of NK landscapes is NP-
complete for any k > 1. Since the case for k = 1 is extremely
simple to solve, we only considered k > 1; specifically, we
considered k = 2 to 6 with step 1. To study scalability of
various evolutionary algorithms, for each k, we considered a
range of values of n with the minimum value of n = 20 and
the maximum value bounded mainly by the available com-
putational resources and the scope of the empirical analysis.

2.3 Branch and Bound
The basic idea of branch and bound is to recursively ex-

plore all possible binary strings of n bits using a recursion
tree where each level corresponds to one of the bits and the
subtrees below each level correspond to the different values
of the bit corresponding to this level. To make the algorithm
more efficient, some subtrees are cut if they can be proven
to not lead to any solution that is better than the best-so-far
solution found.

Before running the branch-and-bound algorithm, we first
use a simple hill climber based on bit-flip mutation with
several random restarts to locate high-quality local optima.
The best of the discovered optima is then used as the
best-so-far solution when the branch-and-bound algorithm
is started. In the branch-and-bound approach used in this
paper, the bits are assigned sequentially from X0 to Xn, al-
though reordering the bits might improve performance un-
der some conditions.

When processing a node at level i, the best value we
can obtain by setting the remaining n − i bits is given by
maxxi,...,xn∈{0,1}n−i fnk(X1 = x1, . . . , Xn = xn) where bits
x0 to xi−1 are assumed to be fixed to the values defined by
the path from the root of the recursion tree to the current
node. If a solution has been found already that has a higher
fitness than this maximum possible value, the processing
below the current node does not have to continue.

The aforedescribed branch-and-bound algorithm is com-
plete and it is thus guaranteed to find the global optimum

of any problem instance. Nonetheless, the complexity of
branch and bound can be expected to grow exponentially
fast and solving large NK instances becomes intractable with
this algorithm. While the evolutionary algorithms presented
in the next section should be capable of reliably solving
larger instances, their convergence to the global optimum
cannot be guaranteed (unless we know the global optimum
a priori).

3. COMPARED ALGORITHMS
This section outlines the optimization algorithms dis-

cussed in this paper: (1) the hierarchical Bayesian optimiza-
tion algorithm (hBOA) [18, 17], (2) the univariate marginal
distribution algorithm (UMDA) [16], and (3) the genetic al-
gorithm (GA) [12, 9]. Additionally, the section describes
the deterministic hill climber (DHC) [19], which is incorpo-
rated into all compared algorithms to improve their perfor-
mance. In all compared algorithms, candidate solutions are
represented by n-bit binary strings and restricted tourna-
ment replacement (RTR) [10] is used for effective diversity
maintenance.

3.1 Genetic Algorithm
The genetic algorithm (GA) [12, 9] evolves a population

of candidate solutions typically represented by fixed-length
binary strings. The first population is generated at ran-
dom. Each iteration starts by selecting promising solutions
from the current population. We use binary tournament
selection. New solutions are created by applying variation
operators to the population of selected solutions. Specifi-
cally, crossover is used to exchange bits and pieces between
pairs of candidate solutions and mutation is used to perturb
the resulting solutions. Here we use uniform or two-point
crossover, and bit-flip mutation [9]. The new candidate so-
lutions are incorporated into the original population using
restricted tournament replacement (RTR) [10]. The run is
terminated when termination criteria are met.

3.2 UMDA
The basic procedure of the univariate marginal distribu-

tion algorithm (UMDA) [16] is similar to that of the GA.
However, instead of using crossover and mutation, UMDA
creates new candidate solutions by building and sampling
a probabilistic model in the form of the probability vector.
After selection, the probability vector is first learned that
stores the proportion of 1s in each position of the selected
population. Then, each bit of a new candidate solution is
then set to 1 with the probability equal to the proportion
of 1s in this position; otherwise, the bit is set to 0. Conse-
quently, the variation operator of UMDA preserves the pro-
portions of 1s in each position while decorrelating different
string positions.

UMDA is an estimation of distribution algorithm
(EDA) [3, 16, 15, 20]. EDAs—also called probabilistic
model-building genetic algorithms (PMBGAs) [20] and it-
erated density estimation algorithms (IDEAs) [4]—replace
standard variation operators of genetic algorithms such as
crossover and mutation by building a probabilistic model of
promising solutions and sampling the built model to gener-
ate new candidate solutions. The only difference between
the GA and UMDA is in the way the selected solutions are
processed to generate new solutions.
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3.3 Hierarchical BOA (hBOA)
The hierarchical Bayesian optimization algorithm

(hBOA) [18, 17] is also an EDA and the basic procedure
of hBOA is similar to that of the UMDA variant described
earlier. However, to model promising solutions and sample
new solutions, Bayesian networks with local structures [5, 7]
are used instead of the simple probability vector of UMDA.
Similarly as in the considered GA and UMDA variants, the
new candidate solutions are incorporated into the original
population using RTR and the run is terminated when
termination criteria are met.

3.4 Deterministic Hill Climber (DHC)
The deterministic hill climber (DHC) is incorporated into

GA, UMDA and hBOA to improve their performance. DHC
takes a candidate solution represented by an n-bit binary
string on input. Then, it performs one-bit changes on the
solution that lead to the maximum improvement of solu-
tion quality. DHC is terminated when no single-bit flip
improves solution quality and the solution is thus locally
optimal. Here, DHC is used to improve every solution in
the population before the evaluation is performed.

4. EXPERIMENTS
This section describes experiments and presents experi-

mental results. First, problem instances and experimental
setup are discussed. Next, the analysis of hBOA, UMDA
and several GA variants is presented. Finally, all algorithms
are compared and the results are discussed.

4.1 Problem Instances
NK instances for k = 2 to k = 6 with step 1 were studied.

The only restriction on problem size was the efficiency of the
branch-and-bound algorithm, the complexity of which grew
very fast with n. For k = 2, we considered n = 20 to n = 52
with step 2; for k = 3, we considered n = 20 to n = 48 with
step 2; for k = 4, we considered n = 20 to n = 40 with step
2; for k = 5, we considered n = 20 to n = 38 with step 2;
for k = 6, we considered n = 20 to n = 32 with step 2.

For each combination of n and k, we generated 10,000
random problem instances and for each instance we used the
branch-and-bound algorithm to locate the global optimum.
Then, we applied hBOA, UMDA and several GA variants
to each of these instances and collected empirical results,
which were subsequently analyzed. That means that overall
600,000 unique problem instances were generated and all
of them were tested with every algorithm included in this
study.

4.2 Experimental Setup
To select promising solutions, binary tournament selec-

tion is used. New solutions (offspring) are incorporated
into the old population using RTR with window size w =
min{n, N/5} as suggested in 17]. In hBOA, Bayesian net-
works with decision trees [5, 7, 17] are used and the mod-
els are evaluated using the Bayesian-Dirichlet metric with
likelihood equivalence [11, 5] and a penalty for model com-
plexity [7, 17]. All GA variants use bit-flip mutation with
the probability of flipping each bit pm = 1/n. Two com-
mon crossover operators are considered in a GA: two-point
and uniform crossover. For both crossover operators, the
probability of applying crossover is set to 0.6. To empha-
size the importance of using crossover, the results for GA

without any crossover are also included, where only bit-flip
mutation is used. A stochastic hill climber with bit-flip mu-
tation has also been considered in the initial stage, but the
performance of this algorithm was far inferior compared to
any other algorithm included in the comparison and it was
intractable to solve most problem instances included in the
comparison; that is why the results for this algorithm are
omitted.

For each problem instance and each algorithm, an ade-
quate population size is approximated with the bisection
method [22, 17], which estimates the minimum population
size required for reliable convergence to the optimum. Here,
the bisection method finds an adequate population size for
the algorithms to find the optimum in 10 out of 10 inde-
pendent runs. Each run is terminated when the global op-
timum has been found. The results for each problem in-
stance comprise of the following statistics: (1) the popula-
tion size, (2) the number of iterations (generations), (3) the
number of evaluations, and (4) the number of flips of DHC.
However, due to space limitations, we only present two of
these statistics—the number of evaluations and the number
of flips. For each value of n and k, all observed statistics
were averaged over the 10,000 random instances. Since for
each instance, 10 successful runs were performed, for each
n and k and each algorithm the results are averaged over
100,000 successful runs. Overall, for each algorithm, the re-
sults correspond to 6,000,000 successful runs on a total of
600,000 unique problem instances.

4.3 Performance Analysis
Figure 1 shows the average number of fitness evaluations

and the average number of DHC flips for all compared al-
gorithms on NK problem instances for k = 2 to k = 6.
Due to space limitations, we omit the results of GA with no
crossover, which was outperformed by all other algorithms.
As expected, performance of all algorithms gets worse with
increasing k. More specifically, the population size, the num-
ber of iterations, the number of evaluations, and the number
of DHC flips appear all to grow exponentially with k (the
figure shows only graphs for the latter two statistics). For a
fixed k, the time complexity appears to grow with n slightly
faster than polynomially regardless of whether it is measured
by the number of evaluations or the number of flips.

4.4 Comparison of All Algorithms
To compare performance of algorithms A and B, for each

problem instance, we can compute the ratio of the number
of evaluations required by A and the number of evaluations
required by B; analogically, we can compute the ratio of
the number of flips required by A and B. Then, the ratios
can be averaged over all instances with specific n and k.
If A performs better than B, the computed ratios should
be smaller than 1; if A performs the same as B, the ratios
should be about 1; finally, if the A performs worse than B,
the ratios should be greater than 1.

A comparison based on the aforementioned ratio was com-
puted for each pair of algorithms studied in this work. To
make the results easier to read, the superior algorithm was
typically used as the second algorithm in the comparison (in
the denominator of the ratios), so that the ratios should be
expected to be greater than 1.

Figure 2 compares performance of hBOA with that of
UMDA, GA with two-point crossover, and GA with uniform
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Figure 1: Performance of all compared algorithms except for GA with no crossover on NK landscapes with
k = 2 to 6 (log-log scale).
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crossover. Figure 4 compares performance of GA with two-
point crossover and that of GA with uniform crossover. Fig-
ures 5 and 6 compare performance of GAs with and without
crossover. Finally, figure 3 compares performance of UMDA
and GA with two-point crossover. Some results of pairwise
comparisons were omitted due to space limitations; nonethe-
less, the omitted results followed from those included here.

One of the important trends to observe in the results of
the comparisons is the change in the two ratios with prob-
lem size. In most cases, when one algorithm outperforms
another one, the differences become more significant as the
problem size increases. In some cases, although one algo-
rithm outperforms another one on small problems, because
of the observed dynamics with problem size, we can expect
the situation to reverse for large problems.

The comparisons based on the number of evaluations and
the number of flips can be summarized as follows:

hBOA. While for small values of k, hBOA is outperformed
by other algorithms included in the comparison, as k
increases, the situation changes rapidly. More specif-
ically, for larger k, hBOA outperforms all other al-
gorithms and its relative performance with respect
to other algorithms improves with increasing problem
size. The larger the k, the more favorably hBOA com-
pares to other algorithms.

GA with uniform crossover. GA with uniform
crossover performs better than GA with two-
point crossover and UMDA regardless of k and its
relative performance with respect to these algorithms
improves with problem size. However, as mentioned
above, for larger values of k, GA with uniform
crossover is outperformed by hBOA and the factor by
which hBOA outperforms GA with uniform crossover
grows with problem size.

GA with two-point crossover. GA with two-point
crossover performs worse than hBOA and GA with
uniform crossover for larger values of k, but it still
outperforms UMDA with respect to the number
of flips, which is the most important performance
measure.

UMDA. UMDA performs worst of all recombination-based
algorithms included in the comparison except for a few
cases with small values of k.

Crossover versus mutation. Crossover has proven to
outperform pure mutation, which is clear from all
the results. First of all, for the most difficult in-
stances, hBOA—which is a pure selectorecombinative
evolutionary algorithm with no explicit mutation—
outperforms other algorithms with increasing n. Sec-
ond, eliminating crossover from GA significantly de-
creases its efficiency and the mutation-based ap-
proaches perform worst of all compared algorithms.
Specifically, GA with no crossover is outperformed by
all other variants of GA, and the stochastic hill climb-
ing is not even capable of solving many problem in-
stances in practical time.

5. FUTURE WORK
There are several interesting ways of extending the work

presented in this paper. First of all, the problem instances

generated in this work can be used for analyzing perfor-
mance of other optimization algorithms and comparing dif-
ferent optimization algorithms on a broad class of problems
with tunable difficulty. Second, the class of problems con-
sidered in this study can be extended substantially using
genetic and evolutionary algorithms with adequate settings
for solving instances unsolvable with branch and bound.
Although the global optimum would no longer be guaran-
teed, methods can be devised that still guarantee that the
global optimum is found reliably as was done for example
in ref. [21] for Sherrington-Kirkpatrick spin glasses. Finally,
other probability distributions for generating NK problem
instances can be considered to provide further insights into
the difficulty of various classes of NK landscapes and the
benefits and costs of using alternative optimization strate-
gies in each of these classes.

6. SUMMARY AND CONCLUSIONS
This paper presented an in-depth empirical performance

study of several genetic and evolutionary algorithms on NK
landscapes with various values of n and k. Specifically, the
algorithms considered in this work included hBOA, UMDA,
and several GA variants. For each value of n and k, a large
number of NK instances were generated and solved with the
branch-and-bound algorithm, which is a complete algorithm
that is guaranteed to find the global optimum. Performance
of all algorithms was analyzed and compared.

The main contributions of this work are summarized in
what follows. First of all, NK landscapes represent an im-
portant class of test problems and despite that there has
been practically no work on using advanced estimation of
distribution algorithms (EDAs) on NK landscapes. This
work provides many experimental results on one advanced
and one simple EDA, and it shows that advanced EDAs can
significantly outperform other genetic and evolutionary al-
gorithms on NK landscapes for larger values of k. Second,
most studies concerned with NK landscapes do not verify the
global optimum of the considered problem instances and it
is thus often difficult to interpret the results and evaluate
their importance. In this study, the global optimum of each
instance is verified with the complete branch-and-bound al-
gorithm. Third, while the difficulty of NK landscapes can
be expected to vary substantially from instance to instance,
most studies presented in the past used only a limited sam-
ple of problem instances; here we provide an in-depth study
where about 600,000 unique problem instances are consid-
ered. Finally, the results in this paper are not based on
only one evolutionary algorithm; instead, we consider sev-
eral qualitatively different evolutionary algorithms, provid-
ing insight into the comparison of genetic algorithms and
EDAs, as well as into the comparison of the mutation-based
and recombination-based evolutionary algorithms.

The NK problem generator, the branch-and-bound algo-
rithm and some of the NK problem instances used in this pa-
per can be downloaded from http://medal.cs.umsl.edu/.
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Figure 2: Comparison of hBOA with UMDA and two GA variants (uniform and two-point crossover) with
respect to the number of evaluations and the number of flips.
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Figure 3: Comparison of GA with two-point crossover and UMDA with respect to the number of evaluations
and the number of flips.
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Figure 4: Comparison of GA with uniform and two-point crossover with respect to the number of evaluations
and the number of flips.
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Figure 5: Comparison of GA with uniform crossover and GA with no crossover (mutation only) with respect
to the number of evaluations and the number of flips.
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Figure 6: Comparison of GA with two-point crossover and GA with no crossover (mutation only) with respect
to the number of evaluations and the number of flips.
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