
A Transformation-Based Approach to Static
Multiprocessor Scheduling

Alan Sheahan and Conor Ryan
Biocomputing and Developmental Systems Group

Computer Science and Information Systems Department
University of Limerick, Ireland

Alan.Sheahan@lit.ie, Conor.Ryan@ul.ie

ABSTRACT
This paper describes a novel Genetic Algorithm (GA) ap-
proach to scheduling. Although the particular problems ex-
amined are all multi-processor scheduling types it can, be-
cause the algorithm takes a DAG (Directed Acyclic Graph)
as input, be applied to any scheduling problem represented
by a DAG.

The algorithm works by calculating the mobility of each
node in the graph and using this to constrain the search
space in a useful way, that is, nodes can be scheduled us-
ing a larger range of levels in the final schedule than those
obtained by a simple levelling of the DAG.

The GA itself operates by evolving sequences of transfor-
mations which build up ever increasing lists of task asso-
ciations, using two simple transformations. We show that
our algorithm can outperform standard methods, both tra-
ditional and GA based, at considerably lower costs.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Problem Solving, Control Meth-
ods, and Search—Genetic Algorithms

General Terms
Algorithms, Performance

Keywords
Scheduling, Multi-processor, graph drawing

1. INTRODUCTION
Scheduling is one of the earliest applications of computers

to problem solving. It is a hard, NP complete problem which
can be applicable in all sorts of different domains. This work
is concerned in particular with multi-processor scheduling, in
the form of producing a list of processor/task pairs from a
Directed Acyclic Graph (DAG). However, DAGs are general
representations of task dependencies, and so can be used for
different kinds of schedules.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-130-9/08/07…$5.00.

In recent years, it has become feasible to use Genetic Algo-
rithms to produce schedules. The advantage GA approaches
have is their parallel search. Traditional approaches to schedul-
ing are virtually all based on greedy (to various extents)
heuristics and are not always capable or even likely to find
optimal schedules. This is acceptable in many scheduling
applications where it is more important to produce a good
schedule quickly than it is to produce an optimal one. In
“once and for all” schedules, where a schedule is to be used
many times, this is less acceptable.

GA approaches are, theoretically, less likely to be to trapped
by the sort of local optima greedy heuristics can fall prey to
by virtue of their parallel, population-based search. One
difficulty with GAs, however, is the brittleness of the indi-
viduals, and, particularly with an absolute representation,
a crossover between two good schedules can produce non-
viable offspring.

This paper describes a representation in which the genome
comprises sequences of transformations which cluster tasks
together and move them around a virtual parallel machine.
Crucial to this is a notion of mobility, information about
how tasks can be moved. We describe how this information
can automatically be generated from each DAG.

We show that highly efficient and sometimes optimal so-
lutions can be obtained from only 2 such types of trans-
formations on the genome. We demonstrate a high perfor-
mance across a wide variety of diverse benchmark graphs
in the literature, when compared with other GA and tra-
ditional methods. In addition, a superior average perfor-
mance is achieved when contrasted with a well-known GA
approach to the problem, thus showing the robust nature
of the system. This superior performance is achieved at a
much smaller computational cost (identical population sizes
running for 50 instead of 3000 generations).

The paper is organized as follows. Section 2 describes the
problem in terms of DAGs and section 3 details traditional
approaches to scheduling. We describe our approach to the
problem in sections 4 and 5. Sections 6 and 7 describe the
experimental set up and section 8 shows our results.

2. PROBLEM DEFINITION AND ASSUMP-
TIONS

We have assumed a well-accepted model of multiprocessor
systems where parallel programs are modelled by Directed
Acyclic Graphs (DAGs) [5], [1], [2], [4]. The DAG is
defined by a tuple G = (V, E, C, T), where V is the set of
graph nodes, E corresponds to the set of edges, C represents
the set of edge weights and T is the set of node weights.

1041

A B

E

F G

C D10

10 10

10

10

10

10

1

10 200

200

200200 10

Level 2

Level 1

Level 3

Level 4

Figure 1: A typical DAG

Figure 1 shows a typical DAG, where each node corre-
sponds to a set of one or more instructions that are executed
to completion on the same processor without interruption.
The node weight is the time necessary to complete the execu-
tion. Each edge, joining a source and destination node, rep-
resents a precedence constraint imposed on the final schedule
such that the source node must complete its execution and
communicate the necessary information to the destination
node before the destination node can begin execution. The
edge weight is the time delay incurred in the communica-
tion across the network. If the two nodes are scheduled on
the same processor, the communication cost is assumed zero
due to the relatively insignificant amount of time to retrieve
information from local memory compared to retrieval across
a network. Note also that the 7 nodes in Figure 1 occupy 4
distinct levels, where the level that a node occupies is one
greater than the largest level of its immediate predecessors
[3]. All entry nodes (nodes A and B in Fig. 1) have level 1.
The concept of levelling is central to the system presented
here.

P0

P1

10

 B A C D E G

 F

20 30 40 50 60 700

Figure 2: A sample schedule for the DAG in Figure 1

Figure 2 depicts a schedule on a 2-processor machine. No-
tice that the communication delay represented by the edge
weight from task A to C does not apply as the tasks reside
on the same processor, whereas the edge joining task E and
F delays the execution of the latter by 10 time units due to
the fact that the tasks reside on different processors.

The model assumes that the target architecture comprises
a fixed number of identical processors which are completely
connected via a uniform network (i.e. a network where the
communication delay between any pair of processors is the
same). Nodes (also known as tasks) may send and receive
data in parallel and may multicast information to more than
one receiver. It is also assumed that communication is asyn-
chronous and can occur simultaneously with computation.

Static task graph scheduling involves the assignment of
tasks to processors, the ordering of the tasks on each proces-
sor and the determination of each task’s execution start time
in order to achieve a specified objective [7]. While many
objectives exist (e.g. minimise processor utilisation, balance
workload across all processors etc..), the generally-accepted

primary goal (and the only one under consideration here)
is to minimise the overall program execution time, known
as the Parallel Time (PT) [4], [1], [2]. This problem has
been shown, except under simplifying assumptions, to be
NP-Complete [6].

Some techniques allow the redundant allocation of mul-
tiple instances of tasks to processors known as Task Dupli-
cation in order to reduce the PT further [2]. While the
concept of Task Duplication is central to these systems, the
system presented is the only one of its kind to incorporate
task duplication as an option.

3. TRADITIONAL APPROACHES
The earliest approaches to solving this problem were de-

terministic by nature, the most common of which comprised
the following techniques:

List Scheduling (LS) algorithms schedule nodes according
to a priority-assignment scheme, where higher priorities are
given to nodes based on some graph/schedule characteris-
tic e.g. nodes whose predecessors are already scheduled or
nodes whose in-coming edges are heavily weighted etc.

Critical Path (CP) heuristics schedule nodes by trying to
shorten the longest execution path (critical path) in the
DAG. This is done by incrementally zeroing critical path
edges and consequently clustering nodes together for execu-
tion on the same processor.

Graph Decomposition (GD) methods parse the DAG into
a hierarchical tree of subgraphs and subsequently focus on
subsections of the graph that are independent and can be
parallelised.

While these methods can produce reasonably good sched-
ules, there are a number of problems associated with them.
These include:

(i) Ties between scheduling decisions are invariably broken
arbitrarily.

(ii) The algorithms are greedy, making choices based on
localised information.

(iii) These algorithms only perform reasonably well when
the ratio of edge weights to node weights is relatively small
(i.e. coarse grained graphs) and often produce schedule
lengths in excess of a serial execution where the cost of com-
munication is relatively high (fine grained graphs) [1].

Since then, significant improvements have been made in
this area using evolutionary approaches which have led specif-
ically to a reduction in the overall schedule time. In partic-
ular Genetic Algorithms (GAs) have been applied by either
combining the GA with list scheduling techniques to find
favourable priority-assignment rules or using the GA to ex-
plicitly carry out the actual assignment and ordering of the
tasks on the processors [2]. The system presented here
adopts the latter form.

4. DESIGN CONSIDERATIONS
The limitations of the traditional methods mentioned above

motivated the identification and exploration of the main
characteristics of the problem so that a suitable represen-
tation could be found that would minimise the search space
and tailor the search to exploring only:

(i) schedules that are likely to be efficient (schedules with
a speedup greater than 1) and

(ii) legal, in terms of adhering to the precedence con-
straints of the DAG.

1042

To tailor the search for efficient schedules, a mechanism
based solely on DAG information is incorporated into the
mapping from the genome to schedules. In particular, in-
dependent tasks (i.e. where neither task is a predecessor of
the other) should be capable of being scheduled in any order
on the same processor, however such tasks with level values
that differ greatly are unlikely to produce efficient schedules
by scheduling them in reverse topological order. Figure 3
shows a DAG and an optimal 2-processor schedule.

A B

E

F G

C D P0

P1

10

10 10

10

10

10

10

1

10 200

200

200200 10

10 20

PT = 60

 B A C E D G

 F

40 6030 500

Figure 3: DAG from Figure 1 and optimal sched-

ule. This differs from the schedule in Figure 2 by

reversing tasks D and E.

Critical to the optimality of the schedule presented here
is the fact that task E is scheduled before task D on the
same processor (as task F must wait 10 time units after E
is finished), despite the fact that task E is situated a level
below task D in the DAG. As a result it was felt that a sys-
tem capable of constructing schedules with this characteris-
tic should be investigated. However, it should be noted that
checking all possible configurations of schedules involving in-
dependent tasks is unnecessary as many produce inefficient
schedules e.g. scheduling task F before task D on the same
processor will produce an inefficient schedule. The system
presented here gives the GA room to explore the scheduling
of sensible configurations of independent tasks on the same
processor and unlike the typical deterministic approaches, is
not reliant on localised information in making such choices.

To achieve this, a bi-levelling procedure on the input
DAG is presented, identifying with each node, an upper and
lower bound on the level that the node can exist on. Conse-
quently, nodes are perceived to possess vertical mobility in a
discrete level sense and hence, are not restricted to occupy-
ing a single level. The system presented orders the execution
of the tasks on each processor on the basis of task level, but
the introduction of a level mobility for the nodes allows for a
certain amount of flexibility in terms of which tasks may be
scheduled before others, assuming there are no dependencies
between them (achieved by the system always adhering to
the precedence constraints of the DAG. The bi-levelling is
carried out as follows:

First, a Down levelling is applied to the graph whereby
a lower bound is acquired for each node level [Figure 4]. This
is initialised by labelling entry nodes (nodes of in-degree zero
i.e. nodes A and B) with level one. All nodes directly con-

nected to these with an edge, i.e. immediate successors, are
(at least temporarily) assigned a level value of two. This is
repeated recursively until all nodes have been visited in turn
and assigned a permanent level. The temporary nature of
the assignment is due to the fact that some nodes’ level val-
ues will change as the graph is traversed due to the presence
of long edges (edges that span more than one level) e.g. task
G would initially be assigned a temporary level value of 3,
due to its incoming edge from D, however this is a long edge
because task E (on level 3) is also its predecessor. Hence, G
is assigned a permanent level of 4.

A B

E

F G

C D

1 1

2 2

3

44

Figure 4: Down Levelling

A subsequent Up levelling is also carried out to acquire
an Initial set of task level values in a similar manner to the
Down levelling but this time starting with the exit nodes
(nodes of out-degree zero i.e. nodes F and G) and working
upwards. Now, a tranformation of these Initial level values is
performed which produces a set of Final Up levels [Figure 5],
which represent a set of upper bounds on the nodes’ levels.
The tranformation is obtained by the following mapping:

Final uplevel[i] = (num levels + 1) − Initial uplevel[i]

Here, num levels refers to the total number of distinct
levels in the graph (e.g. 4 levels).

A B

E

F G

C D

4 4

3

32

11

Figure 5: Up Levelling: Final

1043

The two sets of levels generated are combined in Figure
6. They independently reveal a levelling that is consistent
with the precedence constraints of the DAG and depict a
sense of how vertically mobile or unconstrained a node is in
a level sense within the graph. Here, task D can be seen
objectively to exist on either level 2 or 3 while task E can
only exist on level 3. This has significance when it comes
to ordering the two tasks on the same processor. Because
both tasks can exist on the same level, the system presented
makes no distinction as to which must be scheduled before
the other. As we saw earlier, for optimality task E must be
scheduled before task D [Figure 2]. However, the inefficient
scheduling of task F before task D on the same processor is
impossible as the tasks have no levels in common.

A B

E

F G

C D

4

11

1 1

2

3
3

3
2

2

4
4
4

Figure 6: Bi-levelled DAG

This characteristic of the system tailors the search to the
exploration of sensible schedules, dependent on extracting
information based solely on the structure of the graph, which
subsequently provides a platform on which the GA can po-
tentially optimise incorporating graph node and edge weight
specifics. To ensure the production of legal schedules, a
deadlock-detection mechanism was incorporated into the sys-
tem. Deadlock may occur in two ways:

(a) Intra-processor deadlock occurs where the scheduling
of two dependent tasks on the same processor conflicts with
the precedence constraints of the DAG. Figure 7 shows a
different bi-levelled DAG. As a result of the bi-levelling pro-
cedure carried out, it can be seen that tasks A and C can
exist on common levels 3 and 4. Because of this overlap, the
system presented here is capable of scheduling the tasks in
any order, which will clearly lead to deadlock if task C is
scheduled before A on the same processor. This is avoided
however, by deploying a Deadlock detection mechanism

for each individual before fitness evaluation. The procedure
checks each pair of tasks on each processor in the final sched-
ule for DAG precedence violations and swaps the positions
of any pair found to be non-compliant. This guarantees that
all individuals with deadlock of this nature still get to con-
tribute to the evolutionary process.

(b) Inter-processor deadlock occurs where the arrange-
ment of tasks between two or more processors makes the

2

4

1
1

2

3
5

4
6

3
5

4A

C

7
7

6
6

5
5

4
4

3
3

2
2

6

4

Figure 7: Intra-processor Deadlock

schedule invalid. Figure 8 shows a schedule for the DAG in
Figure 7 that displays this type of deadlock. Here, task C
must be executed before task B on one processor and at the
same time task D is inhibiting task A’s execution on another
processor. While no processor in isolation has violated the
precedence constraints of the DAG, clearly all four tasks are
mutually inhibited from executing. This type of deadlock
has extremely low incidence (0.04 percent) and therefore in-
dividuals with such a characteristic are given a fitness of zero
and killed off.

B

C

A

D

 Task Execution Sequence:

P C B

P D A
0

1

Figure 8: Inter-processor Deadlock

Some schedules can benefit from the allocation of multi-
ple instances of certain tasks to a number of processors in
an effort to further reduce the PT. This is known as Task
Duplication. Ordinarily, the communication delay between
dependent tasks that are scheduled on different processors,

1044

dictated by the weight of the connecting edge in the DAG,
must be taken into account. However, by creating duplicates
of the source task (that distributes the data) on different
processors, the destination tasks (that receive the data) are
not required to wait since all the data is retrieved from local
memory. It should be noted that duplicates must also re-
ceive data from their predecessors (where they exist) residing
on different processors and can therefore delay the schedule.
Figure 9 shows (a) a DAG (b) an optimal 2-processor sched-
ule without duplication and (c) a schedule benefitting from
duplication of task C.

0

1

P A C D

P B C E

0

1

P A C B E

P D

10 20 30 40

WITHOUT Duplication:

PT = 40

10 20 30

21 31

PT = 31

A B

C

D E

10 10

10

10

1

10
20

20

WITH Duplication (C):

11

10

Figure 9: Duplication Benefitting a Schedule

Note that the duplication of task C means that the edges
CD and CE have effectively been zeroed because the data
generated from the execution of task C is available in local
memory of both processors. In addition, despite the fact
that task C must wait one time unit on processor 1 for the
data to arrive from task A, it still results in an overall re-
duction in the PT. While duplication can potentially reduce
the Parallel Time, it is possible for it to increase it signif-
icantly also. Figure 10 displays the scheduling effects of a
poor choice of task (task E) to duplicate as it must wait 20
time units for the data from task B before it can execute on
processor 1.

While there may be many factors that determine the suit-
ability of a task for duplication, it was decided to favour
those with a larger ratio of outgoing edges to incoming edges.
In Figures 9 and 10 above, task C has more outgoing than
incoming edges compared with task E and therefore it is
more likely to be a better choice of task to duplicate. Fur-
thermore, duplication rates (where it is applied) are kept
quite small as duplication increases the search space for the
GA considerably.

5. REPRESENTATION
This section describes a representation that exploits the

information that the methods in the previous section ex-
tract from the DAG. Specifically, the levelling information
is used in two ways. First, to specify a sensible range of
possible scheduling choices for each task, and second, to or-
der the tasks on each processor. This is necessary because

0

1

P A C B E

P D

10 20 30 40

WITHOUT Duplication:

PT = 40

10 20 30

0

1

P A C B E

D E

40 50 60

P

A B

C

D E

10 10

10

10

1

10
20

20

PT = 60

WITH Duplication (E):

10

Figure 10: Duplication Inhibiting a Schedule

rather than evolving absolute schedules, we instead evolve
sequences of grabs that cluster the tasks on the various pro-
cessors.

The genome is divided into two parts [Fig. 11], one deal-
ing with the level information and the other dealing with the
association of tasks to processors and to other tasks. The
chromosome uses the level information to map the tasks onto
a Virtual Parallel Machine (VPM). At this stage, informa-
tion such as Parallel Time can be measured.

1

P P TTPT

B C1 2 3 3 4 4 1 00 G

 Levels Transformations

 TASKS

A B C D E F G

A B

E

F G

C D

4

11

1 1

2

3
3

3
2

2

4
4
4

Figure 11: Genome Structure

(i) The first section is of fixed length and comprises a list
of level values, one for each node in the DAG. These are
generated randomly from within each node’s level range for
all individuals in the first generation (as dictated by the bi-
levelling procedure referred to earlier). Each chromosome
is generated such that there is a lower bound on its length.
This minimum length comprises the first section of the chro-
mosome.

(ii) The second section consists of none or more pairs
of integers which represent Processor-Task transformations.
These transformations dictate how tasks are moved about
between processors on the VPM. Once the genome has been

1045

read, the configuration of tasks that results constitutes that
particular individual’s schedule.

The key here is that only two transformations are neces-
sary to produce valid and highly efficient schedules. Where
task duplication is opted for, one extra transformation suf-
fices.

5.1 Task List Construction
Initially, all tasks are attached to the first processor on the

VPM. This creates what is referred to as the processor’s task
list. Transformations present in the second section manipu-
late the location of the tasks so that the final configuration
determines which processor each task is to be executed on.
The first and generally more abundant form of transforma-
tion, referred to as a grab is where the designated task is
removed from the processor on which it is currently located
and is appended to the last task of the task list of the speci-
fied (destination) processor. This provides a chronologically
constructed list of tasks for each processor. Figure 12(a)
shows 2 partial task lists, constructed from the transfor-
mations of the sample genome sub-section (included in the
figure).

1

P P TTPT

A B C D E F G

C1 2 3 3 4 4 1 00

 Levels Transformations

P T P T

FG A 0 1 F

Tasks:

P

P

G A

C F

0

1

 Task List (Final)

0

1

P

P C F

A G

 Execution Sequence

(a) (b)

Figure 12: Sample partial genome resulting in a par-

tial schedule

5.2 Task Ordering
This time-ordered list of tasks has two functions: The first

determines the execution sequence of the tasks previously
assigned to each processor. The sequencing is based on the
level information from the first section of the genome. Fig-
ure 12(b) shows the partial execution sequences arising from
the genome levelling information being applied to each pro-
cessor’s task list. Processors are taken in isolation and each
task is taken in turn from the processor’s task list (starting
with the earliest task) and scheduled on the basis of level
(i.e. each task is scheduled directly before the earliest task
on the list with greater level. If there are no tasks present, it
is scheduled at the start of the sequence, whereas if there are
no tasks present with greater level, it is scheduled at the end

of the sequence). Each processor’s execution sequence rep-
resents the final order of execution of its tasks. The schedule
produced is then checked for deadlock and corrected where
necessary resulting in a phenotype whose fitness is evalu-
ated.

Note that Processor 0’s execution sequence requires that
task A be executed before task G because it has a lower
level value, despite A being acquired by the processor with
an earlier transformation. Note also that task F is acquired
by Processor 0 initially but subsequently moved to Processor
1 in the final configuration. The second function of the list
of chronologically acquired tasks is central to the role of the
remaining transformation.

5.3 Task Clustering
The second transformation, referred to as a cluster, whose

rate of occurrence is controlled by an external parameter, is
identified by a special task value on the genome and ap-
plies solely to the processor gene which is situated just prior
(due to the processor-task pairing). This specifies (using
the chronologically ordered list of tasks) that the proces-
sor, where applicable, clusters its two most recently acquired
tasks together. The coalition is treated in exactly the same
manner as a single task entity for the remaining set of trans-
formations for the individual. In particular, if a task that
is grouped in this way is to be relocated by a subsequent
grab transformation on the genome, all tasks belonging to
its cluster are relocated too. In addition, cluster sizes may
be increased for an individual by assimilating other tasks
or indeed other clusters as dictated by subsequent cluster-
ing genes on the genome. In all cases, the transformations
maintain genome integrity by preserving the chronology of
all clustered tasks.

The idea here is to encourage the formation of subsets of
tasks that work well together on the same processor that the
GA can exploit.

5.4 Task Duplication
The final transformation is only necessary where task du-

plication is desirable. Similar to the cluster transformation
above, the rate of occurrence of this duplicate transforma-
tion is also controlled by an external parameter but this time
it is identified by a special processor value on the genome
and therefore applies only to tasks. The task value that im-
mediately follows is ignored because the duplication mecha-
nism presented must specify a processor value. This dupli-
cate transformation overrules the next transformation on the
genome (providing it is a grab) by duplicating the specified
task on the designated processor (i.e. similar to the stan-
dard grab except it does not remove the task from its current
location). Where the next transformation on the genome
instead turns out to be a cluster or does not exist, the du-
plicate transformation has no effect. Multiple instances of
contiguous duplicate transformations have the effect of a sin-
gle duplicate.

Where many instances of a particular task exist, it be-
comes necessary for subsequent grab transformations of that
task to identify which instance of the task is being relo-
cated. The congruency is broken by first identifying how
many duplicates of the chosen task are indeed present on
the VPM, obtaining the gene value immediately before the
current gene and modding this value by the number of du-
plicates identified. This yields a value n. The nth instance

1046

of the task encountered as the processors are visited in turn
is the one that is relocated. The value obtained from the
previous gene being contiguous to the grab ensures a very
high likelihood of preserving context from one generation to
the next.

Once the genome has been processed, since multiple in-
stances of the same task on the same processor are unnec-
essary, the earliest instance of each task on each processor
is kept while the later ones are removed in one final sweep
before deadlock checking and fitness evaluation is carried
out.

6. FITNESS EVALUATION
After the resulting phenotype has been checked for intra-

processor deadlock and rectified where necessary, the deter-
mination of the exact start times of all nodes completes the
scheduling. This is achieved by visiting the head node of
each processor’s execution sequence in turn, allocating the
Earliest Start Time (EST) possible to the node, removing
such nodes from the sequence and repeating the process.
The EST value of a node later in the sequence will depend
on the EST values of its predecessors, their computation
times and whether a communication delay is to apply where
they reside on different processors to the task in question.
The EST value of the final node to be scheduled added to
its computation time results in the schedule length (Parallel
Time). The fitness of an individual is given by the ratio
of the Serial Time divided by its Parallel Time, where the
Serial Time is the time taken to complete the program on a
uniprocessor i.e. the sum of the node computation times.

Where a predecessor of a given task is duplicated on a
number of processors, all duplicates except the one that
yields the smallest EST value for the task in question are
temporarily ignored from the viewpoint of determining that
particular task’s EST.

7. EXPERIMENTAL SETUP
It was decided to focus on a number of standard bench-

mark DAGs from the literature. These graphs vary consider-
ably in terms of their characteristics such as size, granularity
and overall structure and therefore deemed to be relevant in
terms of determining an initial impression of the overall per-
formance of the system under investigation.

A standard Genetic Algorithm was applied to each prob-
lem with 50 generations per run with a total of 50 runs.
A special one-point crossover operator was used whereby
equivalent sections of the levels section of both parents are
swapped (i.e. same cut point locations) or Processor-Task
transformations are swapped with cut-points either between
or within transformations. Crossover and bit-wise muta-
tion rates were kept constant at 0.7 and 0.01 respectively.
Population size was also kept constant at 400 for compar-
ison purposes with other GA approaches in the literature,
although in our case, populations only evolved for 50 gener-
ations instead of the 3000 generations used by [2]. Cluster
and duplication rates varied between 0.01 and 0.05.

We compare against a variety of methods to show how
general our scheme is. These include List Scheduling, Criti-
cal Path and Graph Decomposition methods as described in
section 3.

8. RESULTS
The first 3 tables below compare the best Parallel Times

for the different approaches for the various benchmark prob-

lems in the literature, including the performance of the sys-
tem presented here (Sheahan/Ryan - SR). In all cases, a
lower value for the Parallel Time implies it is a better sched-
ule.

The first table makes a set of benchmark comparisons
with some deterministic approaches across a range of diverse
graphs [1]:

Graph LC LAST CLANS DSC MCP SR

K1 11 17 11 10 11 14
FFT1 172 146 124 124 148 146
FFT2 225 240 200 205 205 215
FFT4 710 170 405 710 710 160
SUM1 50 50 42 34 67 34
SUM2 50 55 42 34 35 34
IRR 710 840 725 605 605 680

Table 1: Comparison with Deterministic Ap-

proaches.

LC - (Critical Path) LAST - (List Scheduling) CLANS -
(Graph Decomposition) DSC - (Critical Path) MCP - (Crit-
ical Path)

Table 1 shows that the system presented (SR) surpassed
all other methods for one particular Fast Fourier Transform
problem (FFT4), by finding a schedule (PT = 160) that
completed 10 time units before its closest rival (LAST). For
two other problems (SUM1 and SUM2), it matched the lead-
ing Critical Path Technique (DSC) in schedule length.

Table 2 compares the performance of the current system
with a set of Critical Path techniques from the literature
for two more benchmark problems, [4](A) and [5] (B) re-
spectively. In both cases, the current system outperforms
existing techniques.

Graph Nodes MCP DSC MD DCP SR

A 18 520 460 460 440 410
B 9 14 14 15 14 12

Table 2: Comparison with Critical Path Ap-

proaches.

MD - (Critical Path) DCP - (Critical Path)
The next table makes a set of benchmark comparisons

with a GA approach [2] along with some traditional list
scheduling approaches:

Graph Nodes ISH DSH CPFD Wu SR

P1 15 300 300 300 300 300
P2 15 500 400 400 400 420
P3 14 260 260 260 260 260
P4 14 400 310 330 330 350
P5 15 650 539 446 438 361
P6 17 41 37 37 37 36
P7 18 450 370 330 350 360
P8 16 760 760 760 760 760
P9 16 1220 1030 1040 1040 1110

Table 3: Comparisons with a GA and List Schedul-

ing methods

1047

ISH - (List Scheduling) DSH - (List Scheduling) CPFD -
(List Scheduling) Wu - (GA)

Table 3 indicates the potential of the system to outperform
the GA method, as seen in specific cases P5 and P6 above.
The results also show that the system presented (SR) is
capable of matching performance when compared with rival
list scheduling methods (specifically problems P1, P3 and
P8 above).

The final table (table 4 makes a direct comparison between
the results obtained by [2] and the system presented for the
same set of benchmarks. This time the average performances
are compared with populations of 400. In this case we see
that for the majority of the cases presented, the current
system (SR) produced PT values that averaged out ahead
of Wu over the 50 runs.

Wu SR
Graph Best Average Best Average

P1 300 300 300 300
P2 400 430 420 440
P3 260 263.4 260 260
P4 330 370 350 360.4
P5 438 445.92 361 361
P6 37 37.78 36 36.86
P7 350 380.6 360 374.9
P8 760 782.8 760 775.1
P9 1040 1101.8 1110 1130.4

Table 4: Set of Average Parallel Time Comparisons

9. CONCLUSION AND FUTURE WORK
We have described a GA approach to scheduling that em-

ploys a representation which is a sequence of transformations
that can be applied to a DAG that can always produce valid
schedules. We have shown that by extracting information
about the mobility of nodes in the DAG, the GA can tread a
fine line between being constrained into the space of useful
schedules yet still given enough freedom to explore.

We have compared this method to existing determinis-
tic approaches on 18 different graphs and found that in
the majority of cases, the method has performed remark-
ably well in terms of matching most of the leading methods,
and in many cases has surpassed them. In making a direct
comparison with another GA method, we found that while
neither method clearly outperformed the other, the system
presented here invariably had a lower average Parallel Time
score, suggesting that it may be more robust. Our system
also ran for 50 generations while the other GA system ran
for 3000, with identical population sizes.

This paper has served to introduce our system. Future
work will include more comparisons with existing techniques,
scaling to larger problems and an investigation into the char-
acteristics of the graphs that these systems find difficult.

10. REFERENCES
[1] A.A. Khan, C.L. McCreary, M.S. Jones, A comparison

of Multiprocessor Scheduling Heuristics International
Conference on Parallel Processing, Vol. 2, pp. 243-250,
1994

[2] A.S. Wu, H. Yu, S. Jin, K. Lin, G. Schiavone An
Incremental Genetic Algorithm Approach to
Multiprocessor Scheduling IEEE Transactions on
Parallel and Distributed Systems, Vol. 15, No. 9, 2004

[3] Sugiyama, Kozo, Shoijro Tagawa and Mitsuhiko Toda,
Methods for Visual Understanding of Hierarchical
System Structures, IEEE Transactions on Systems,
Man and Cybernatics 11(2), pp. 109-125, 1981

[4] Y. Kwok and I. Ahmad, Static Scheduling Algorithms
for Allocating Directed Task Graphs to Multiprocessors,
ACM Computing Surveys, Vol. 31, No. 4, pp. 406-471,
1999

[5] J.Y. Colin and P. Chretienne, C.P.M. Scheduling with
Small Communication Delays and Task Duplication
Operations Research, Vol. 39, pp. 681-684, 1991

[6] E. Coffman, Computer and Job-Shop Scheduling
Theory, John Wiley and Sons, 1976

[7] T. Yang and A. Gerasoulis, A Fast Scheduling
Algorithm for DAGs on an Unbounded Number of
Processors, 5th ACM International Conference on
Supercomputing, pp. 633-642, Association of Computing
Machinery, 1991

1048

