
CrossNet: A Framework for Crossover with Network-based
Chromosomal Representations

Forrest Stonedahl†, William Rand†‡, Uri Wilensky†‡

†Center for Connected Learning and Computer-Based Modeling
‡Northwestern Institute on Complex Systems

Northwestern University
Evanston, Illinois, USA

{forrest, wrand, uri}@northwestern.edu

ABSTRACT
We propose a new class of crossover operators for genetic
algorithms (CrossNet) which use a network-based (or graph-
based) chromosomal representation. We designed Cross-
Net with the intent of providing a framework for creating
crossover operators that take advantage of domain-specific
knowledge for solving problems. Specifically, GA users sup-
ply a network which defines the epistatic relationships be-
tween genes in the genotype. CrossNet-based crossover uses
this information with the goal of improving linkage. We
performed two experiments that compared CrossNet-based
crossover with one-point and uniform crossover. The first
experiment involved the density classification problem for
cellular automata (CA), and the second experiment involved
fitting two randomly generated hyperplane-defined functions
(hdf’s). Both of these exploratory experiments support the
hypothesis that CrossNet-based crossover can be useful, al-
though performance improvements were modest. We discuss
the results and remain hopeful about the successful applica-
tion of CrossNet to other domains. We conjecture that fu-
ture work with the CrossNet framework will provide a useful
new perspective for investigating linkage and chromosomal
representations.

Categories and Subject Descriptors: I.2.m [Artificial
Intelligence] Misc.

General Terms: Algorithms

Keywords: Genetic Algorithms, Recombination, Crossover,
Linkage, Networks, Graphs

1. MOTIVATION
From the early days of genetic algorithm research, it has

been known that the linkage between bits in the representa-
tion of solutions plays an important role in the GA’s effec-
tiveness at solving problems[7]. Preserving closely related

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-130-9/08/07…$5.00.

beneficial groups of bits from parent to child is generally
advantageous. During the creation of a new generation, if
the recombination operator is overly “disruptive” with re-
gard to a solution’s structure, highly fit individuals will have
more difficulty passing on their good genetic material. When
faced with a real world problem, practitioners of genetic al-
gorithms have several options for dealing with this issue:

1. They can use a standard crossover operator (e.g., one-
point) which has been theoretically and empirically shown to
perform well when the linked genes appear close together in
the chromosomal representation. In this case, the dilemma
is shifted to the best way of ordering a linear string of bits.
Practitioners may find it difficult to create a representation
that keeps all related bits close together.

2. They can use one of several extant genetic algorithm
variations that incorporate linkage learning techniques (cf.
[1]), and hope the algorithm is smart enough to uncover the
underlying structure. However, linkage learning techniques
often come at a substantial cost in running time.

3. They can choose to ignore the problem and trust that
evolution will overcome the problems of representation. Evo-
lution is versatile but its progress will inevitably be limited
by the efficacy of the representation choice.

We are proposing a fourth option, which involves a simple
and intuitive way to incorporate domain knowledge about
the structure of the solution into the simple GA, with only
a slight modification to the standard GA operators. The
engineer can draw (or otherwise construct) a network where
the genes are nodes, and two nodes are connected by a link
if the two genes are related.1 Weights may also be assigned
to the links to allow the engineer to describe a more fine-
grained level of gene epistasis. CrossNet-based crossover
uses this network to create children by splitting parents in
ways that should (probabilistically) maintain good linkage,
provided that the crossover network reflects the epistatic
relationships in the given problem.

At this point, the skeptical reader may be wondering if the
term “CrossNet” is merely disguising a mechanism for forc-
ing the user to do the difficult task of specifying the best
linkage between the genes. Not exactly. We are not asking
the user to fill in an L × L table of co-linkage entries – a
task we believe they would find extremely difficult. Instead,

1In this paper we will use the terms “network”, “node”, and
“link” interchangeably with the mathematical terms“graph”,
“vertex”, and “edge”.

1057

we are asking them to organize the genes with more free-
dom than is typically permitted when using a linear chro-
mosomal representation. This additional flexibility allows a
domain expert to use as many dimensions as necessary to
cluster related genes together and position unrelated genes
far apart. In essence, the practitioner is tasked with de-
scribing what the epistatic interactions between genes are,
and CrossNet attempts to use this information to maintain
good linkage. Oftentimes, this task will be almost as easy
for the user as determining a linear chromosomal structure,
which they would have needed to do otherwise. We note
that this technique gives up some of the biological plau-
sibility of some crossover operators since DNA strands do
have a linear structure. However, it is well-known that the
interaction of proteins happens in a non-linear way, and so
there may be a relationship between CrossNet and biological
genotype-to-phenotype mapping.

We hypothesize that a GA using the CrossNet representa-
tion should be able to outperform a simple GA. We will in-
vestigate this hypothesis using two example domains: evolv-
ing cellular automata (CA) rules for the density classifica-
tion problem (DCP), and finding maximally-valued strings
for randomly created hyperplane-defined functions (hdf’s).
We begin by backgrounding our discussion with some related
research, and then proceed to explain the CrossNet architec-
ture more precisely. After that we will present and discuss
the results from the experiments in the two domains, and
we will conclude by suggesting avenues for future research.

2. RELATED WORK
Our work is partially inspired by research on modified

crossover operators. There have been various permutation-
based recombination operators, such as partially mapped
crossover (PMX) which showed improved results on the trav-
eling salesperson problem [5]. Another example is Falke-
nauer’s grouping genetic algorithm, which was designed to
handle grouping problems (e.g., bin packing) [4]. Further ex-
amples of modified crossover operators can be found in Chen
et al.’s survey on linkage learning [1]. However, we propose
CrossNet not as a specific modification of the crossover op-
erator to accommodate a certain class of problems, but as a
generalized framework supporting the creation of crossover
operators custom-tailored (by the choice of network) for
many classes of problems. Nonlinear chromosomal struc-
tures have also been investigated in previous work. Var-
ious chromosomal representations have been employed in
the past, both to more closely mirror the structure of the
problem in question and to support crossover operators that
better preserve building blocks [16]. Kahng and Moon em-
ployed geographic crossover, in which bits were arranged
in 2D or 3D arrays [11]. Most recently, there has been
research into two chromosomal representations that spec-
ify all pair-wise genic distances, which may be viewed as a
weighted complete graph structure. These include Greene’s
GA with“self-distancing bits” [6], and the Voronoi quantized
crossover employed by Seo and Moon [15]. However, to our
knowledge, we are the first to investigate the use of arbitrary
network (graph) structures for chromosomal representation
and crossover. Other researchers have performed crossover
on networks for the sake of evolving the network (or graph)
itself (e.g., neural network topologies [17], turing machines
[13]). In contrast, we are not evolving the network, but us-

Figure 1: An example of one-point crossover on an
8-bit chromosome. For simplicity, parent A is all
zeros and parent B is all ones.

ing a network as a chromosomal representation.2 For a re-
cent comprehensive survey of work on different chromosomal
structures that exploit topological linkage, see [16]. Estima-
tion of distribution algorithm (EDA) researchers have also
addressed similar questions about interactions between al-
leles within chromosomes by either specifying or learning a
Bayesian probability network that describes relationships in
the chromosome (e.g. BOA [12]). While our approach lacks
the full expressive power of Bayesian modeling, it offers an
advantage of simplicity in that it uses a simple GA and a
straightforward graph-based representation for gene interac-
tions. However, given past research into network structures
in EDAs, the relationship between CrossNet and EDAs war-
rants further investigation.

3. THE CROSSNET FRAMEWORK
To understand the CrossNet framework, let us briefly re-

view one-point crossover (Figure 1) on an 8-bit chromosome.
In one-point crossover, a splitting point is chosen at random
on the linear chromosome. This splitting point defines a
mask that controls which genes will be taken from each par-
ent to form the two children. The mask specifies for Child
1 which parent (A or B) will be used as the source for each
gene, and the complement of the mask is used to create
Child 2. Compare this to CrossNet crossover on an 8-bit
network (Figure 2). The network topology would have been
provided by the human practitioner, and it is currently in-
variant across the population.3 The nodes of the network are
divided into two sets (shown as white and gray in Figure 2)
through a process that we will explain shortly. The division
of the nodes in the network defines a crossover mask. Two
child chromosomes are created from the two parent chromo-
somes using this mask. By using this “mask” mechanism,
the rest of the GA can remain unchanged. There is no ne-
cessity to complicate code by using a network structure to
store the genetic information for the individuals in the pop-
ulation. Individuals store their information as linear strings,

2However, the crossover network in CrossNet could be
evolved (or co-evolved), as we discuss in Section 6.
3Individuals could easily maintain heterogeneous network
structures, but a standard way of passing the network struc-
ture from parent to child would need to be devised.

1058

Figure 2: An example of CrossNet crossover using
a simple 8-bit network. The gray arrows show how
nodes were chosen by spreading from node 4.

and it is only the creation of the mask during the crossover
operation where the network topology matters.

Let us address the question of how the crossover network
should be divided in two. Our splitting algorithm is simple.
We choose the size of the splitting subset (B below) to be
between zero (0) and the number of nodes (exclusive). We
create B by starting with a random node, and repeatedly
add nodes by selecting random edges that lead to a node not
yet in B until we have reached the target size. The arrows
in Figure 2 show which edges were chosen to increase the
splitting set. Formally, the algorithm is specified below:

1. Input: a graph G = (V, E)
(the crossover network, with vertex set V , edge set E)

2. Let set A = V . Let set B = ∅.
3. Choose T (the target size for set B) randomly from

the integers 1 . . . (|V | − 1).

4. Choose a random vertex from set A and move it to B.

5. WHILE |B| < T :

(a) Choose an edge e = (a, b) randomly from E, such
that a ∈ A and b ∈ B

i. If G is weighted, use roulette selection.

ii. If no such edge exists (which may occur if G
is not connected), choose random a ∈ A.

(b) Move a from set A to set B.

6. Output: Sets A and B, from which a mask is created.

There are many other splitting methods that could be em-
ployed, such as breadth-first search starting from a random
node, a random walk on the nodes of the network, or choos-
ing a cutting edge set. We think the important feature of
any splitting algorithm is that it should (probabilistically)
divide the graph such that nodes are more likely to be in the
same set after splitting if they were closer to each other in
the crossover network. Defining this property of desirability
more rigorously and finding an optimal splitting algorithm
for crossover networks requires further research.

To test the CrossNet framework, we developed two ex-
periments which we will describe in Sections 4 and 5. We
implemented both experiments using NetLogo [21], which
provided us with parameter sweeping and data collection
facilities. We connected NetLogo with a custom Java ex-
tension to efficiently handle low-level (e.g., bit string) oper-
ations, and we devoted substantial computational effort to
our experiments.4 The basic parameters of our GA were
held constant for both experiments. We used a simple ge-
netic algorithm, with crossover rate 0.7 and mutation rate
1

2L
(where L is the length of the bit string). Our population

size was 100 individuals, and we used tournament selection
with tournament size 3 (no elitism).

4. EXPERIMENT 1: DCP

4.1 DCP setup
The density classification problem (DCP) for cellular au-

tomata has been the topic of several previous research stud-
ies, and considerable effort has been put toward evolving
high fitness solutions (e.g., [20]). The DCP can be described
in this way: Given an initial condition (IC) – a randomly
initialized lattice – we are looking for CA rules that cause
the lattice to converge to all ones if the initial density of the
lattice (number of ones in the IC) is more than half, and to
all zeros if the initial density is less than half. It is known to
be a difficult problem – in fact, it was shown that no two-
state CA rule exists that can perfectly solve the DCP [9].
We generally followed the experimental setup of Mitchell et
al. [10]. More advanced techniques (e.g., coevolution [20])
have been shown to give better results, but our goal is to
use the DCP as a benchmark to evaluate the effectiveness
of CrossNet crossover, rather than to find particularly high
performance solutions. We evolved a population of 100 rules
for 100 generations on a lattice of width w = 149. Each gen-
eration we tested the rules against 100 new ICs chosen with
uniform random density between 0.0 and 1.0 (with exactly
half the ICs guaranteed have density over 0.5.) Following
previous research [10] we evaluate the final state of the CA
lattice after 2w (298) time steps. Fitness was defined as the
number of ICs solved correctly, and no partial credit was
awarded for partial convergence.

For one-point and uniform crossover5, the genotype rep-
resentation was the traditional lexicographic ordering of the
bits of the CA rule table. Each bit corresponds to an input
configuration of the lattice cell’s neighborhood. A zero (0) or
one (1) for that bit specifies the value of the cell in the next
time step given that neighborhood configuration.6 For our
CrossNet crossover operator, we specified a 7-dimensional
hypercube (hepteract) network, where each node (gene) is
connected to those nodes whose configurations differ from
the given node’s configuration by exactly one bit. In a ra-
dius 3 CA rule, the gene specifying what to do with the
input configuration 1111111 is linked to the genes specify-
ing what to do with input configurations {0111111, 1011111,
1101111, 1110111, 1111011, 1111101, 1111110} (The simpler
analogous case of radius 1 CA rules is shown in Figure 3).

In any linear ordering, it is only possible to put each gene
next to (at most) two genes that control similar configura-

4Over 1000 hours of running time for Experiment 1.
5Actually, bit order is irrelevant for uniform crossover.
6For an introduction to 1-D cellular automata, see [10].

1059

Figure 3: A cube crossover network for elementary
(radius = 1) CA rules, compared to the standard
linear representation. A–H map to the 8 possible
3-cell neighborhood configurations. For example, if
B = 1, then the local lattice configuration 001 will
cause a cell to become 1 in the next time step.

tions. The standard lexicographic ordering for CA rules does
not even do this (e.g., the gene for configuration 00111111
is placed next to the gene for configuration 01000000, which
differs in 7 bit locations). Our choice of network is intuitive
because genes that correspond to similar local lattice config-
urations are placed close together. The assumption here is
that genes controlling similar configurations are more likely
to form good building blocks for CA rules. However, the
vital question is whether we are linking the genes that work
well together in the construction of a solution to the density
classification problem, and it is quite possible that a better
choice of crossover network exists. However, our hope was
that our intuition-based network structure would be better
than the (rather arbitrary) choice of a lexicographic ordering
used by one-point crossover and the structureless represen-
tation used by uniform crossover.

4.2 DCP Results
For each of the types of crossover (one-point, uniform, and

CrossNet), we ran 90 randomly-seeded repetitions of the ex-
periment. The resulting best-of-generation plot is shown in
Figure 4. In addition to measuring fitness, we also recorded
the performance of the best individual in each generation
when tested against 100 ICs drawn from an unbiased distri-
bution, which tends to have many more ICs close to the dif-
ficult 1

2
density threshold. The results on this unbiased dis-

tribution are similar to the results presented. The CrossNet-
based crossover provides modest but sporadic improvement
over uniform crossover. However, the improvement over one-
point is not significant.

4.3 Further discussion of DCP results
In addition to the results shown here, we also ran sev-

eral experiments with smaller lattice widths (99 and 49).
With lattice width 99, CrossNet-based crossover (using the
hypercube network) outperformed uniform, which in turn
outperformed one-point. With lattice width 49, CrossNet-
based crossover slightly outperformed uniform crossover in
the early generations, but the performance of the three was
very comparable. Since the DCP is easier to solve on smaller
lattices, such as width 49, it may be that the choice of
crossover operator does not have a large effect since all the
operators were able to climb the fitness landscape more
quickly. We also tried some experiments with a smaller pop-
ulation (50), and these generally showed that CrossNet had
lower performance than the other types of crossover. How-
ever, this would be consistent with previous work from De
Jong [2], which found that disruptiveness of crossover is ac-
tually a beneficial trait when population sizes are small.

Also, when we examined the histogram of best fitness val-
ues after the final generation, we discovered that the distri-
bution is decidedly two-peaked. This indicates that some
runs made an evolutionary break-through while others did
not. For CrossNet-based crossover, 29 final fitness values
were below 60, 7 were between 60 and 90, and 54 were above
90. For both uniform and one-point, 34 were below 60, 9
were between 60 and 90, and 47 were above 90. In other
words, out of the 90 runs, 7 more runs made a substantial
fitness breakthrough when using Crossnet-based crossover
than with either uniform or one-point crossover. We find
the current results on this problem to be somewhat promis-
ing, and worthy of future study. Even if the current hyper-
cube network does not greatly increase performance, using
CrossNet with a different network topology might facilitate
greater improvements. Perhaps a better network could be
constructed by examining the fitness landscape in the neigh-
borhood around previously discovered high performance so-
lutions, taking insight from the work on the DCP landscape
by Verel et al.[18]

5. EXPERIMENT 2: HDF’S

5.1 Setup for hdf’s
Hyperplane defined functions (hdf’s) were created by Hol-

land [8] to facilitate the study of genetic algorithms. The
difference between this test suite and most other test func-
tions is that the underlying representation of this suite is
schemata [7]. By utilizing functions that reflect the way the
GA searches, the GA’s performance can be easily observed.

An hdf is composed of positive schemata and negative
“pothole” schemata. For each schema that is matched by
the genotype, the individual is rewarded (the fitness value
is increased). And for each pothole that is matched, the in-
dividual is punished (the fitness value is decreased). There
are elementary level schemata, which are the foundational
elements, and intermediate-level schemata, which are com-
posed of pieces of the elementary schemata.

We examined two hdf’s with two levels of difficulty. These
two hdf’s were restricted from the general class of hdf’s
and corresponded to static instances of the shaky ladder
hyperplane-defined functions (sl-hdf’s) [14]. The first prob-
lem was a 100-bit hdf that contained ten (10) elementary
schemata, seven (7) intermediate schemata, and ten (10)
potholes. Elementary schemata were of length ten (10)

1060

 50

 55

 60

 65

 70

 75

 80

 85

 20 30 40 50 60 70 80 90 100

Fi
tn

es
s

of
 B

es
t I

nd
iv

id
ua

l

Generations

one-point
uniform

hypercube-crossnet

Figure 4: Best-of-generation plot for the DCP, with lattice width 149 and population 100. Points plotted
are averaged across 90 runs, with standard error bars shown. For clarity of presentation reasons, the first 20
generations are omitted.

and order eight (8). We also used a 200-bit hdf that con-
tained twenty (20) elementary schemata, seventeen (17) in-
termediate schemata, and twenty (20) potholes. Elemen-
tary schemata were of length twenty (20) and order eight
(8). The 100-bit hdf is substantially easier than the 200-bit
hdf. Unlike the DCP, for which the optimal solution remains
an open research question, we know the perfect solutions to
these hdf problems, and we know the components that make
up the solution.

In fact, we used our knowledge of the elementary schemata
when constructing the crossover networks for this experi-
ment. This is equivalent to knowing which bit locations are
involved in solving sub-problems of the larger problem, but
not having the global knowledge of how these sub-solutions
work together. Our plan was to start with a problem for
which we have some understanding of the interaction be-
tween genes. We constructed our crossover network by creat-
ing cliques among the loci that form the elementary schemata.
In other words, we create a link between two genes if the
genes are present together in one of the elementary schemata.
We also decided to test a weighted version of this crossover
network, where the weight for each link is the number of
elementary schemata in which both genes are present. In-
formation about potholes and intermediate schemata were
not taken into consideration when creating the network. The
unweighted crossover network for the easier 100-bit hdf prob-
lem is shown in Figure 5.

5.2 Shuffled hdf’s
Our initial experiments (that are not shown in this pa-

per) examined standard hdf’s and demonstrated that while
CrossNet (using both weighted and unweighted clique net-
works) generally outperformed uniform crossover, its perfor-

mance was similar to that of one-point crossover. In analyz-
ing these experiments, we realized that hdf’s have a natural
linear bias, since schema are comprised of nearby bits in
the linear representation. Thus, it is unsurprising that one-
point crossover performed well on these problems. Since we
wanted to test the CrossNet framework on a problem that is
not naturally biased toward one-point crossover, we changed
the standard representation of the hdf, by randomizing the
ordering of loci in our two original hdf’s. The results pre-
sented in the remainder of this paper use these “shuffled”
hdf’s.

5.3 Results for shuffled hdf’s
We evolved a population of 100 individuals for 2000 gen-

erations, and we ran 180 repetitions of the experiment with
different random seeds for each of the 4 types of crossover
(one-point, uniform, CrossNet with the clique-network, and
CrossNet with the weighted clique-network). The best-of-
generation plot for the easier problem is shown in Figure
6, and the best-of-generation plot for the harder problem is
shown in Figure 7.

A trend present in both problems was that in early gener-
ations uniform crossover outperformed one-point crossover
and the two CrossNet variants (the clique and weighted-
clique networks), but in later generations uniform crossover
appeared to converge on local optima, hindering further
progress.7

7For clarity of presentation, we omitted the first 400 gener-
ations in the figures. Thus we note that for the 100-bit hdf,
uniform crossover outperformed the other three crossover
operators by a small margin between generation 15 and gen-
eration 120. For the 200-bit hdf, uniform crossover still led
after roughly 1000 generations.

1061

Figure 5: Crossover network for the shuffled 100-bit
hdf. Isolated nodes represent genes not present in
any elementary schema. Genes not present in any
schema or pothole do not affect fitness.

5.4 Discussion of hdf results
For the easier (100-bit) hdf problem, the performance of

both CrossNet variants (weighted and unweighted clique
crossover networks) surpassed one-point crossover, which in
turn surpassed uniform crossover. It seems clear in this case
that the chromosomal network structures provide tighter
linkage, and this facilitates the GA in solving the problem.
For the harder (200-bit) hdf problem, the conclusions are
less certain. In the final generations, the CrossNet variant
using weighted-clique crossover gave slightly better results
than non-weighted, uniform or one-point crossover variants.
This suggests that for more difficult problems there may be a
benefit to quantifying the level of epistatic interaction. Uni-
form crossover does well, particularly for fewer generations,
but we hypothesize that its performance would be limited
in further generations because the high rate of disruptive-
ness prevents it from maintaining large building blocks. The
improvement in performance of uniform crossover is already
decreasing at the end of these runs relative to the other vari-
ants.

It is natural to ask why the Crossover networks fared bet-
ter on the easier hdf problem than on the harder one. One
explanation is that the harder problem contains more lev-
els of intermediate schemata and a greater quantity of pot-
holes than the easier problem, and therefore the information
about elementary schemata provided to the CrossNet-based
operator is less valuable in the harder problem. Further ex-
perimentation with hdf’s of varying levels of difficulty and
with alternative network representations is necessary to sub-
stantiate this hypothesis.

One concern that we have not yet mentioned is that a
crossover operator can provide linkage that is too tight. In
this case, a schema with the correct alleles would be nearly
indestructible, but this tight linkage would inhibit the GA
from forming schemata initially. We doubt this is a prob-
lem with CrossNet, but this hypothesis could be tested by
measuring the disruption rate for generated crossover masks.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have proposed the CrossNet framework,

and demonstrated how it could be used. In the DCP ex-
periment, we provided empirical results that suggest it may
be useful. In the shuffled hdf experiment, we showed that
a CrossNet variant was able to outperform both uniform
crossover and one-point crossover, by exploiting structural
information about the problem. These two examples have
provided a demonstration of the CrossNet framework, and
are suggestive of further applications of network-based chro-
mosomal representations.

Suppose there are many problems for which a CrossNet-
based operator provides superior performance. What are
the pragmatic drawbacks to using this mechanism?

1. You have to create an effective crossover network. This
may take substantial thought and effort.

2. The resulting GA is slightly less efficient, because it
introduces the mask-creation step into crossover.

Regarding the second point, the network splitting algorithm
we provided for creating a mask could run in worst case
O(|V ||E|) time. Whether this is significant depends mainly
on the proportion of running time used for fitness evalua-
tion. For the DCP, fitness evaluation completely dominated
running time, and the time spent doing CrossNet crossover
compared to the other crossovers was negligible. For the hdf
problems, fitness evaluation was not very time consuming,
and using CrossNet did substantially increase the overall GA
running time. We should also mention that so far we have
not attempted to optimize the CrossNet architecture. For
instance, one might select masks from a cache of precom-
puted masks, rather than repeatedly running the network
splitting algorithm.

A logical next step for future research is to examine ad-
ditional applications to see whether CrossNet can substan-
tially increase the performance of the GA in other domains,
such as graph coloring or partitioning problems, which have
a natural crossover network structure. The ultimate util-
ity of the CrossNet framework likely depends on the ease
of finding a suitable crossover network for a given problem.

There are 2
L(L−1)

2 possible crossover networks for a chromo-
some of length L. For most problems, this search space is so
large that it will be impossible to find an optimal crossover
network. However, it is not necessary to find an optimal
network; it is sufficient to find a network that is better than
any linear representation. The linear representation corre-
sponds to one limited class of networks out of all of the pos-
sible networks, and thus may be greatly biasing the kinds
of problems that the GA can easily solve. It is still an open
question whether domain knowledge can routinely provide
us with enough insight that we can construct superior chro-
mosomal representations using the CrossNet framework.

Even if practitioners cannot easily construct such a net-
work, perhaps computers can. In particular, it would be
possible to evolve or co-evolve crossover networks for a prob-
lem. This technique would be tantamount to solving a link-
age learning problem by reducing it to network evolution.
This new approach to linkage learning is intriguing, but it
gives the GA an additional problem to solve and may not
be worth the effort.

The CrossNet framework may also be useful as a lens for
studying existing crossover operators. As discussed in [3],

1062

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 400 600 800 1000 1200 1400 1600 1800 2000

Fi
tn

es
s

of
 B

es
t I

nd
iv

id
ua

l

Generations

one-point
uniform

clique-crossnet
weighted-clique-crossnet

Figure 6: The 100-bit shuffled hdf problem. Data points are averaged across 180 runs, and standard error
bars are shown. Fitness scores have been normalized to be between 0 and 1.

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 400 600 800 1000 1200 1400 1600 1800 2000

Fi
tn

es
s

of
 B

es
t I

nd
iv

id
ua

l

Generations

one-point
uniform

clique-crossnet
weighted-clique-crossnet

Figure 7: The 200-bit shuffled hdf problem. Data points are averaged across 180 runs, and standard error
bars are shown. Fitness scores have been normalized to be between 0 and 1.

1063

two-point crossover and uniform crossover are at opposite
ends of a spectrum of disruptiveness. Two-point crossover
is equivalent to CrossNet using a 1-D ring lattice crossover
network, and uniform crossover is equivalent to CrossNet
when using the (unweighted) complete graph. It might prove
interesting to examine network structures that lie between
these extremes – ring lattices with added connecting links
(i.e. the “small-world” networks of [19]).

Lastly, we are also interested in the idea of hierarchical
CrossNet, where the loci would be arranged in a network of
networks. When evolving specifications for designing an air-
plane, the genes controlling wing design could be connected
in one network, while the genes controlling tail design could
be in another. These two networks would themselves be
nodes in a larger crossover network for the design of the
whole plane. Crossover could occur at multiple levels within
the hierarchical network. This may facilitate the mainte-
nance of modular structure within individuals in a GA.

The CrossNet framework provides a method by which we
can easily integrate domain knowledge into the construction
of crossover operators, and place many different operators
within the same framework. By exploiting the representa-
tional power of networks to incorporate application-specific
information into the genetic algorithm, we can facilitate the
development of rich genomic representations, which have the
potential to reduce the complexity of the problem space.

Acknowledgments: We thank the Northwestern Institute
on Complex Systems for providing support for WR and Luis
Amaral for supplying the computational resources. This
work was also partially supported by NSF grant number
0713619. We also thank Sevan Ficici, Rick Riolo, and John
Holland for providing feedback on some of these ideas.

7. REFERENCES
[1] Chen, Y.-P., Yu, T.-L., Sastry, K., and

Goldberg, D. E. A survey of linkage learning
techniques in genetic and evolutionary algorithms.
Tech. Rep. 2007014, Illinois Genetic Algorithms
Laboratory, Urbana, Illinois, 2007.

[2] DeJong, K., and Spears, W. An analysis of the
interacting roles of population-size and crossover in
genetic algorithms. In Lecture Notes in Computer
Science (1991), vol. 496, p. 38.

[3] De Jong, K., and Spears, W. A formal analysis of
the role of multi-point crossover in genetic algorithms.
Annals of Mathematics and Artificial Intelligence 5, 1
(1992), 1–26.

[4] Falkenauer, E. A hybrid grouping genetic algorithm
for bin packing. Journal of Heuristics 2, 1 (1996),
5–30.

[5] Goldberg, D., and Lingle Jr, R. Alleles, loci, and
the traveling salesman problem. Proceedings of the 1st
International Conference on Genetic Algorithms and
Their Applications (1985), 154–159.

[6] Greene, W. A. A genetic algorithm with
self-distancing bits but no overt linkage. In
Proceedings of GECCO ’02 (2002), pp. 367–374.

[7] Holland, J. H. Adaptation in Natural and Artificial
Systems. University of Michigan Press, Ann Arbor,
MI, 1975.

[8] Holland, J. H. Building blocks, cohort genetic
algorithms, and hyperplane-defined functions.
Evolutionary Computation 8, 4 (2000), 373–391.

[9] Land, M., and Belew, R. No perfect two-state
cellular automata for density classification exists.
Physical Review Letters 74, 25 (1995), 5148–50.

[10] Mitchell, M., Crutchfield, J. P., and Hraber,
P. T. Evolving cellular automata to perform
computations: mechanisms and impediments. In
Proceedings of the Oji international seminar on
complex systems : from complex dynamical systems to
sciences of artificial reality (New York, NY, USA,
1994), Elsevier North-Holland, Inc., pp. 361–391.

[11] Moon, B., Lee, Y., and Kim, C. GEORG: VLSI
circuit partitioner with a new genetic algorithm
framework. Journal of Intelligent Manufacturing 9, 5
(1998), 401–412.

[12] Pelikan, M., Goldberg, D., and Cantu-Paz, E.
BOA: The Bayesian optimization algorithm. In
Proceedings of GECCO ’99 (1999), vol. 1, pp. 525–532.

[13] Pereira, F. B., Machado, P., Costa, E., and
Cardoso, A. Graph based crossover - a case study
with the busy beaver problem. In Proceedings of
GECCO ’99 (13-17 1999), vol. 2, pp. 1149–1155.

[14] Rand, W., and Riolo, R. Shaky ladders,
hyperplane-defined functions and genetic algorithms:
Systematic controlled observation in dynamic
environments. In Applications of Evolutionary Comp.,
Evoworkshops (2005), F. Rothlauf et al., Eds.,
vol. 3449 of Lecture Notes In Comp. Sci., Springer.

[15] Seo, D., and Moon, B. Voronoi quantized crossover
for traveling salesman problem. In Proceedings of
GECCO ’02 (2002), pp. 544–552.

[16] Seo, D., and Moon, B. A survey on chromosomal
structures and operators for exploiting topological
linkages of genes. In Proceedings of GECCO ’03
(2003), vol. 1, pp. 1357–1368.

[17] Stanley, K. O., and Miikkulainen, R. Efficient
reinforcement learning through evolving neural
network topologies. In Proceedings of GECCO ’02
(2002), pp. 569–577.

[18] Verel, S., Collard, P., Tomassini, M., and
Vanneschi, L. Fitness landscape of the cellular
automata majority problem: View from the
“Olympus”. Theoretical Computer Science 378, 1
(2007), 54–77.

[19] Watts, D., and Strogatz, S. Collective dynamics
of ‘small-world’ networks. Nature 393, 6684 (1998),
409–10.

[20] Werfel, J., Mitchell, M., and Crutchfield,
J. P. Resource sharing and coevolution in evolving
cellular automata. IEEE-EC 4, 4 (Nov. 2000), 388.

[21] Wilensky, U. NetLogo. Center for Connected
Learning and Computer-based Modeling,
Northwestern University, Evanston, IL, 1999.

1064

