Adapting Palettes to Color Vision Deficiencies
by Genetic Algorithm

Luigi Troiano
University of Sannio
Dept. of Engineering

Viale Traiano
82100, Benevento — Italy
troiano@unisannio.it

ABSTRACT

In choosing a color palette, it is necessary to take into ac-
count the needs of color vision impaired users, in order to
make information and services accessible to a broader au-
dience. This means researching a space of color palettes
aimed at finding a color combination which represents a
good trade-off between aesthetics and accessibility require-
ments. In this paper, we present a solution based on genetic
algorithms. Experimental results highlight this approach to
be an efficient and at the same time effective way to assist
user interface designers by suggesting appropriate variations
of color palettes.
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1. INTRODUCTION

In the Information Society, making information and ser-
vices accessible to the widest audience possible represents an
important social conquest. This requires that new issues be
addressed in the designing of user interfaces. Among these
there is the need of balancing aesthetics and functionality in
choosing interface colors. Indeed, although attractive user
interfaces are highly desirable (attractiveness is one of the
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attributes defining usability in the ISO/IEC 9126-1 quality
model), they should be made accessible to the largest au-
dience possible in order to realize barrier-free services and
applications. In this spirit, W3C has established guidelines
[1] for designing accessible user interfaces. Among these,
great relevance has been given to the selection of colors.

Color blindness, or Color Vision Deficiency (CVD), is known
to be a significant barrier to effective computer use. A re-
cent usability study conducted by the UK Disability Rights
Commission [3] reported color accessibility to be the second
most recurrent accessibility barrier to the Web for disabled
users. Therefore a need exists to model CVD, simulate its
effects and correct for them. This need is challenging be-
cause there are different types of CVD and the degree of
CVD can vary from person to person.

Color vision impaired users perceive colors differently from
normal users. This means that although original colors could
meet the required luminance contrast ratios for a normal
user, the same colors, as perceived by visually impaired
users, might not meet all those requirements: perceived col-
ors can show up with a lower contrast ratio, making it diffi-
cult for some audiences to access information and services.
This requires the adoption of color palettes that do not cause
significant discomfort to users with color vision deficiencies.

This does not mean renouncing the original chromatic idea
and making interfaces that are unattractive or boring. It is
possible to look for a trade-off between chromatic choices
and accessibility for impaired users. This requires finding
among the possible color combinations, the palette which
provides a high luminance contrast ratio, while still preserv-
ing the original chromatic choice.

Until now, this problem has been addressed mainly by
providing recommendations for content creators or design-
ers, and tools for simulating how people with CVD perceive
colors. However, the choice of color palettes is left solely
to the ability of interface designers. In this paper, we test
the application of genetic algorithms in order to explore the
palette space, and in order to automatically identify alter-
natives to the initial palettes that can be suggested to the
designer. The advantage of this approach is two-fold: (i) the
designer’s attention is kept focused on the creative thought,
leaving the algorithm to explore suitable alternatives, and
(ii) alternative palettes can be automatically identified and
used by a system in order to render a user interface, even
though that particular user interface was not originally op-
timized for CVD users. The solution forseen in this paper,
can also serve to optimize a color palette for normal users,



Color vision deficiencies:

Figure 1: normal (top-
left), deuteranopia (top-right), protanopia (bottom-
left), and tritanopia (bottom-right) .

when color usability aspects are not taken into account at
the very beginning of color selection, or when it is necessary
to optimize the interface for different uses.

The remainder of this paper is organized as follows: Sec-
tion 2 provides a brief overview of color deficiencies and how
these have been addressed, together with preliminary infor-
mation on color models; Section 3 describes how the problem
has been modeled in our research; Section 4 presents the ex-
perimental results of this study; in Section 5 conclusions are
drawn and future direction outlined.

2. PALETTES AND COLOR DEFICIENCIES
2.1 Color Vision

Color vision is normally trichromatic, as it is obtained by
the absorption of photons in three classes of cones, whose
peak sensitivity lie in the long-wavelength (L), middle- wave-
length (M), and short-wavelength (S) regions of the visible
spectrum. Reduced forms of color vision arise from the ef-
fective absence of one of the retinal photopigments, of type
L, type M, and type S. The specific absence of one or more
types of photopigments leads to the classification of different
color vision deficiencies.

The three main types of abnormal color vision system are

called anomalous trichromatism, dichromatism and monochro-

matism. Anomalous trichromatism results when one of the
fundamental cones has had its peak sensitivity shifted. The
types are classified as protanomaly and deuteranomaly de-
pending on whether the L or M cones have been affected.
Anomalous trichromats’ perception of color ranges from al-
most normal to dichromatic depending on the extent to
which the defective cone has had its peak sensitivity shifted.
Dichromatism is a severe form of CVD that results when one
of the fundamental cones is missing. Dichromats are clas-
sified as protanopes, deuteranopes or tritanopes, depending
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on whether the LM or S cones are missing. Monochroma-
tism is the most severe form of CVD and is characterized by
a total inability to distinguish colors. Monochromats typi-
cally have a complete lack of cone receptors in the retina.

An example of how colors are perceived by CVD users is
provided by Fig.1.

Visual color deficiency can become an impairment in ac-
cessing information and services. Indeed, legibility is related
to the spatial visual capabilities of observers. If a sufficient
font dimension is assured, luminance contrast between fore-
ground and background colors is a fundamental factor, and
it is generally recognized that high luminance contrast en-
hances legibility [10]. According to recent studies on leg-
ibility and contrast [16] [6], legibility of a Web page text
presented on a CRT display is significantly affected by color
combinations. Color difference plays a more important role
in legibility when luminance contrast is low.

In a recent work, Gradisa et al. [6], a lighter text on a
darker background resulted in a lower mean score than a
darker text on lighter backgrounds. Furthermore, results
showed that the mean score of combinations with black text
color was higher than the mean score of combinations with
white text color. The main problem arises when a CVD user
has to distinguish text or has to use an interface built by a
developer who did not take color accessibility into account.
Chromatic contrast has an unclear effect. Equiluminant col-
ors of high chromatic contrast can also generate legible text,
but no advantages of color contrast have been found for low-
vision reading [11].

According to these studies, we can conclude that focusing
only on color contrast is not a good strategy in designing vi-
sual displays because of the limiting effect this has on people
affected by Color Vision Deficiencies. It is, however, possi-
ble to compute color confusions and to simulate dichromatic
color vision, in this way respecting Chromatic contrast and
luminance contrast at the same time, and enabling the de-
signer to guarantee information accessibility.

2.2 Methods for simulating CVD

Color blindness, or color vision deficiency (CVD), is known
to be a significant barrier to effective computer use. A re-
cent usability study conducted by the UK Disability Rights
Commission [3] reported color accessibility to be the second
most recurrent accessibility barrier to the Web for disabled
users. Therefore a need exists to model CVD, simulate its
effects and correct for them. This need is challenging be-
cause there are different types of CVD and the degree of
CVD can vary from person to person.

Methods for simulating CVD date back to the beginning
of the 19th century, when Goethe produced a water-color
landscape painting in colors intended to demonstrate the
view as seen by a blue-blind CVD observer. More recently,
it is possible to map colors in digital images to permit a
normal color viewer to experience color as seen by a CVD
viewer.

Brettel [2] presents a computerized method that allows
color-normal observers to appreciate the range of colors ex-
perienced by dichromats. The algorithm is expressed in the
LMS color space as three piecewise projections, one for each
type of dichromacy. The algorithm has three parts:

e compute the LMS tristimulus values from RGB data

e apply the projection



e compute the RGB color values from the resulting LMS
coordinates.

Vienot [4] proposes replacement color-maps that allow a

designer to check which colors are effectively seen by protanopes

and deuteranopes. He constructs colormaps for replacing a
standard palette of 256 colours, including 216 colours that
are common to many graphics applications of MS Windows
and Macintosh computing environments, and shows how a
colour image would look for protanopes and for deutera-
nopes.

In his work Vienot adopted a seven-step method to simu-
late the color-map seen by visually impaired people such as
protanopes and deuteranopes. The method is based on the
LMS system, which specifies colors in terms of the relative
excitations of the longwave sensitive (L), the middlewave
sensitive (M), and the shortwave sensitive (S) cones. As
dichromats lack one class of cone photopigment, they con-
fuse colours that differ only in the excitation of the missing
class of photopigment. Therefore from the original RGB val-
ues given by 8 bit DAC values for each of the RGB video
channels, Vienot et al. construct a computational proce-
dure in order to simulate dichromatic vision. The result is
a reduced colourmap with real sighted colors.

Recently, a number of automatic adaptation algorithms
have been proposed to modify content for CVD viewers.
Yang et al.[12] propose methods to adaptively change colors
in images for people with CVD. The proposed adaptation
allows for the adapting of color anytime and anywhere ac-
cording to the type and severity of CVD. To solve the prob-
lem of discrimination between two often confused colors, the
authors propose the adaption of saturation of these confused
colors. The saturation of color is reduced to give discrimina-
tion between the hue-adapted colors and the original colors
with the same hue. This aims to decrease the chromatic
component of the colors. So the adaptation for dichromat is
as follows:

H =H+AH,S"=S+AS,I'=1 (1)

where H, S and I are the hue, saturation and intensity of
a color and H', S’ and I’ are those of the adapted color, and
AH and AS are the variations of the hue and saturation.
In the proposed adaptation, they use magenta, cyan and
yellow ratio of color. The magenta, cyan and yellow ratio
represents the amount that of a color contains of magenta,
cyan and yellow, respectively. Regarding the CVD, they fix
the AH and AS value.

Jefferson [8, 9] formulates the problem of adapting the
colors of images for CVD viewers as one of optimization.
The goal is to modulate colors in the image so that when
they are viewed by a CVD person, the perceived difference
between any pair of colors is of the same magnitude as that
perceived by a normal color viewer. This algorithm uses
the World Web Consortium (W3C) accessibility evaluation
criteria to re-color images for dichromatic viewers. The al-
gorithm has four parts:

1. select a subset of key colors from the problem image

2. compute the target differences using color and bright-

ness differences between key colors

develop an optimization to find an adaptation of the
colors for the dichromatic CVD viewer
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4. interpolate the resulting colors across the remaining
colors in the image using inverse-distance weighted in-
terpolation

In the work of Karl Rasche, Robert Geist, and James
Westall [13] the optimization is constrained by restricting
the mapping to be a composition of two transforms con-
taining twelve parameters, which reduces the search space.
Although this method has considerable computational ad-
vantages, it has not been extended to handle common prac-
tical problems such as the desire to force certain colors to
have particular mappings.

The problem of finding the right palette for the user inter-
face is a common problem for a designer. Although transfor-
mation techniques exist in literature, finding an appropriate
color palette is an optimational and combinatorial problem.
It is necessary to provide a set of colors which respects some
requirements which are:

e Luminance contrast among correlated colors (e.g. fore-
ground and background) to improve legibility

e Preservation of chromatic choices and requirements as
planned by interface designers (e.g. to preserve the
meaning of colors)

e Guarantee color accessibility to a broader audience (e.g
color vision impaired users).

These requirements can often be conflicting.

Such considerations suggest that genetic algorithms are
able to solve the problem. This approach has been tested
by Ichikawa [7] who describes manipulation of Web page
color for color-deficient viewers and designs a fitness func-
tion to preserve detail and minimize the distance between
an input color and its corresponding remapped color. He
first decomposes the page into a hierarchy of colored regions.
These spatial relations determine important pairs of colors
to be modified.

For our research we start with an initial palette used in a
Graphical User Interface and with a model which describes
the relationship among the colors, e.g. a color could be re-
lated with two colors. In other words, we optimize a given
color palette which can be composed of several different col-
ors and correlated according to a simple or more complex
schema. Ichikawa’s objective function is:

Fitness=a - fo+(1—a)- fo (2)

where f. evaluate color C; represented by an individual,
fv» evaluate the brightness of the color properly to control
it depending on the brightness of color C; and the bright-
ness difference between Cy and C2, whilst « is a weighting
coefficient.

The function (2) is minimized by Ichikawa using a GA-
SRM with proportional selection [7]. According to the re-
search of Ichikawa et al., we choise a function to maintain
distances between colors. This attempts to preserve both
the original naturalness of the colors and the detail in the
remapped color image.

3. PROBLEM DEFINITION

Color palettes are arrays of colors. Several color models
exist, each aimed at describing colors as tuples of numbers
(typically three or four values), called color components.



RGB and CMYK are well known color models. In RGB,
a color is described by three primary components R=red,
G=green, B=blue. A color is obtained by additively com-
bining intensities of the primary components. Vice versa
in CMYK, primary components are C'=cyan, M =magenta,
Y =yellow, B=black, and colors are obtained by a subtrac-
tive aggregation of components. Both RGB and CMYK
models are good for describing how to produce or print col-
ors through devices. But besides them, there are also other
models that refer to how colors are perceived. For this pur-
pose, the CIE (International Commission on Illumination)
introduced the XYZ model in 1931. Despite its age, it is
still widely used in practice, especially as a reference for
converting colors from one model into another. Similarly
to RGB, XYZ adopts a system of additive primary compo-
nents, namely X, Y, and Z. Each of these components rep-
resents the power perceived when RGB primaries are emit-
ted. However, XYZ does not represent the response of cones
at short, middle and long wavelengths. To better address
the human perception of colors, in 1976 the CIE introduced
the the CIELab model. In this model, color components
are Lx that is a measure of color luminance, ax being its
position of red/magenta and green, and bx its position be-
tween yellow and blue. When L* = 0, color is equivalent to
black, whilst L+ = 100 describes white. Uniform changes of
components in the CIELab model aim at corresponding to
uniform changes in the perceived color. Therefore, this color
model is suitable for measuring the perceptual distance be-
tween colors by means of the Euclidian distance AFE between
points in L * Xa * Xbx, that is

AFE = \/(L *1 —L*2)2 =+ (a *1 —a*2)2 + (b *1 —b*2)2 (3)

The maximum distance AE™ is between green and blue
values.

Distance AFE provides a measure of both hue and density
changes. According to recent studies, an average observers
are able to notice differences above AE = 5 or 6, whilst a
trained eye can notice differences from AE = 3 or 4. The hu-
man eye, however, is much more sensitive to changes in gray
levels and mid-tones; in that case differences of 0.5 delta-E
may be noticed. The advantage of the CIELab model resides
also in it being device-independent, thus resulting in more
objective measures of colors. The same combination of Lsx,
ax and bx will always describe exactly the same color. Color
spaces are generally homeomorphic. Thus, there are formu-
las for transforming a color representation in one model, into
an equivalent representation in another model.

The other key metrics we consider is the color contrast
between contiguous colors. The W3C’s WCAG [1] defines
the contrast ratio as

o max(Ll, LQ) + 005
o min(Ll, Lg) + 0.05

(4)

1

where L is the relative luminance™ computed as

L=0.2126-7+0.7152- g + 0.0722 - b (5)

'Relative luminance is defined as the relative perceived
brightness of any point, normalized to 0 for black and 1
for maximum white. We notice that relative luminance L as
defined by W3C’s WCAG differs from luminance L* defined
in CIELab.
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and

r,g,b= {
(6)

Contrast ratios can range from 1 to 21 (commonly written
1:1 to 21:1). According to W3C to reach level AAA of acces-
sibility:” text (and images of text) must have a contrast ratio
of at least 7:1, except if the text is pure decoration. Larger-
scale text or images of text can have a contrast ratio of 5:17.
This means that solution utility passing the contrast ratio
threshold T, is C, = 1, decreasing below T.. In our problem
we assumed the utility function described in Fig.2

R,G,B/12.92
((R,G, B 4 0.055)/1.055)%*

R,G, B <0.03928
otherwise

Figure 2: Contrast ratio utility function.

Contiguity of colors depends on the position of elements
on the interface, as depicted in Fig.3. For this, a contiguity

ful

l<——>

A2

B

B

A4

-

A3

Figure 3: UI Color Model, an example.

matrix holding 1 for contiguous colors, 0 vice versa, is built
as part of the problem definition.
In summary, we adopted:

e RGB, for describing the palette colors
e CIELab, for measuring the distance between colors

e CIEXYZ, as the means for transforming RGB into
CIELab

The model for representing colors having been chosen, the
palette chromosome coding is straightforward, as depicted in
Fig.4. In particular, the chromosome is a bit string, reserv-

phenotype
COLOR 1 COLOR 2 COLORN
[ 8bits | 8bits ; Bbits | 8bits | 8bits ; 8bits | [ 8bits | 8bits | 8hbits |

chromosome

Figure 4: Chromosome structure and phenotype
mapping.



ing 24 bits (8 bits per component) to represent each color in
the RGB space.

Our aim is to find a palette that improves the luminance
contrast between contiguous colors, while still preserving the
original chromatic setting. This is done considering a fitness
function depending on color distances and contrast ratios.
The fitness function we adopted is

n

(1

=1

(7

~—

k E
(1 — dl) H Cj)
j=1

where d; is the distance of resulting color ¢ from the original
one, and c¢; the contrast ratio of the k pairs of contiguous
colors. In particular,

_AE;
" AE*

d; (8)

20 + min(C; — 15,0
¢ = (= 1.0 ©)

where C) is the contrast ratio as defined in Eq.4 and T} is the
contrast threshold (i.e. 7 or 5) as recommended by W3C’s
guidelines. It results that f,d;,c¢; € [0,1]. The maximum
fitness value is f = 1, but this value is ideal as it is only
reachable when ¢; =1 and d; = 0 for all ¢, j, leading to the
conclusion that the original palette is already optimal, thus
not requiring any variation. In general, this value is below
1 because there is a need to vary colors (d; > 0 for some i),
or because some contrasts are below the threshold (¢; < 1
for some j).

3.1 Vision Deficiency Model

In the case of color vision deficiencies, distance d; is still
computed between the palette color and the original one,
as we are interested in preserving the original palette chro-
maticity. Instead, the contrast ratio is computed between
contiguous colors as they are perceived by the user. For this
purpose we adopted the model proposed by Vienot et al. [4].

Given (R, G, B) as the 8-bit DAC values for each of the
(R, G, B) video channels, Vienot computes the relative pho-
tometric quantities R1, G1, B1. Then, in order to produce
reduced colors that are included in the color gamut of the
monitor, the author slightly reduces the color domain of the
initial palette. This is achieved through the appropriate
scaling of the relative photometric quantities, obtaining Ra,
G2, B;. According to what is described in Smith et al.[14],
following the transformation technique proposed by Vienot
[4], we get:

L R
M | = (RGB_to.LMS) | G2 | =
S B2
17.8824 43.5161 4.11935 R
= 3.45565 27.1554  3.86714 G2
0.0299566 0.184309 1.46709 By
(10)

Vienot considers the following linear transformations in
the LMS color space for reducing the normal color domain
to the dichromat color domain, in particular for protanopes:
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L, 0 2.02344 - 2.52581 L
M, | =10 1 0 M (11)
Sp 0 0 1 S

Whilst for deuteranopes:
Lgq 1 0 0 L
Mg | = 0.494207 0 1.24827 M (12)
Sa 0 0 1 S

Transformation of Lqy Mg Sq or L, M, S, to RGB is
obtained using the inverse matrix of matrix :

Rd Ld
Gi | = (RGB_to.LMS)™ " | My (13)
Bd Sd

The components R4, G4 and By have been obtained, we
can compute an appropriate contrast ratio, following the
scheme outlined previously.

4. EXPERIMENTAL RESULTS

In our experimentation we implemented a Simple GA as
described in Goldberg [5], and depicted in Fig.5.
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Figure 5: Algorithm structure.

Genetic operators are the single point crossover and bit
switch mutation. Selection is a 2-way tournament, in order
to make the algorithm less sensitive to the distribution of
fitness values; elitism is 5. Parameters are summarized in
Tab.1.

Parameter Value
Crossover rate 0.8
Mutation rate 0.2
Selection tourn. | 1
Elitism 5

Table 1: Algorithm parameters.

These parameters have been chosen by a preliminary qual-
itative analysis, proving to be a good trade-off between ex-
ploration and exploitation behavior. In particular, a higher
rate of mutation helped to keep the genetic diversity high,
keeping the target focused on the optimization goal by a
higher elitism.

The algorithm was tested against two palettes, respec-
tively made of 6 colors (132 bits) and 16 colors (372 bits). In-
deed, palettes of 4-6 colors are common in user interface de-
sign. The 16-color palette serves to study the robustness of



MO M1 M2

Figure 6: Color contiguity models.

the algorithm when the number of colors increases. For color
relationships, we considered 3 models: simple (MO), inter-
mediate (M1), and complez (M2), as described in Fig.6.

In the simple model (MO0), each pair of colors is put in
the relationship of contiguity. In M1, triples of colors are
made contiguous. M3 is aimed at stressing the algorithm in
more complex cases. We repeated 10 runs for different prob-
lem configurations. The average behavior of the algorithm
is depicted in Fig.7. We note that generally the population
size does not play a relevant role in the algorithm conver-
gence, and also with small populations it is possible to obtain
good results. This is also confirmed by the fitness behavior
when deuteranopia and protanopia are simulated, as shown
in Fig.8 and Fig.9.

Normal Color Vision _Model: 0 Colors: 6 Normal Color Vision _ Model: 0 Colors: 16

21.00 $1.00
| P:1000 E
E095 L 095 P00
P: 100 P: 500
090 080 oY)
085 / 085
080 080
075 075
070 070
065 065
1 10 100 1000
generations generations
100 Normal Color Vision _Model: 1 Colors: 6 2100 il il Bt s I
: £
& P:1000
Eo095 SO 095
P:200
090 £ 100 090
085 085 e
P.200
080 080 2100
075 075
070 070
065 065
generations generations
Normal Color Vision Model: 2 Colors: 6 Normal Color Vision Model: 1 Colors: 16
2100 21.00
H H
E095 Eo95
P:1000
090 - Fop
P11000 P: 100
085 B3 085
P: 100
080 = 080
075 075
070 070
065 065
generations generations

Figure 7: Average fitness behavior for normal vision.

Algorithm convergence is also confirmed by a comparison
with random search, summarized in Fig.10, where average

Model: 0 Colors: 6 ia_Model: 0 Colors: 16

2 2
1000
E095 o So9s 00
P 200 P 500
0.90 P00 0.90 2200
085 085
080 080
075 075
070 070
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g
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070 070
065 065
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& &
095 “o095
090 090
Pr1000 P:1000
085 Pro0 085 .
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Figure 8: Average fitness behavior for deuteranopia.

with standard deviation of fitness is plotted in the case of
genetic algorithm and random search.

As an example of application we can consider an initial
palette of N colors ¢, and the proposed algorithm provides
a final accessible palette as a solution. As shown in Fig.11,
starting with a set of 6 colors, related according to model
M1, we observe how (c1, c2, c3), whose contrast ratio is 2.3 :
1 and 1.3 : 1 with c3, evolves into (g1, g2, g3) with contrast
ratio of 9.8 : 1 and 7.1 : 1. Furthermore c4, which has a
contrast ratio of 1:1 with ¢s and 2.7:1 with c¢ evolves into
g4, g5 and ge¢ with a contrast ratio of 5.2 : 1 and 6.5 : 1
respectively.

1 = (255,128, 128)

ca = (255, 255, 0)

cs = (51,220,0) 14)
cs = (204,0,0)

¢s = (204,0,0)

6 = (0,204, 0)

where color ¢; (with ¢ = 1...IN) is represented by the RGB
components.

g1 = (127,15,31)

g2 = (255, 255,0)

gs = (79,243, 48) 1)
ga = (99,0,0)

g5 = (255,119, 55)

g6 = (15,208,11)

The original palette and solution (f = 0.94601) are shown
in Fig.11. In Fig.12 and in Fig.13 we present the optimiza-
tion results for deuteranopes and for protanopes. Starting
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P
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Figure 9: Average fitness for protanopia.

with the same palette (Eq.14) we adapt the colors in or-
der to satisfy contrast luminance requirements for deutera-
nopes while preserving chromatic choices and requirements
as planned by interface designers. We show in Eq.16 the
values of the fitness for the two optimization problems.

fitnessdeuteranopes = 0.953255

16
fitnessprotanopes = 0.961878 (16)

Although the initial palette is unreadable for most of the
users, thanks to the proposed algorithm the palette satis-
fies accessibility requirements. For instance, the first two
colors (c1, c2) have at the beginning a low contrast ratio
for a normal viewer (r12 = 2.3), for deuteranopes (s1,2 =
2) and for protanopes (pi,2 = 2.8), whilst after the pro-
posed algorithm the two colors increase their contrast ratio
(Ti,2:7.3,8/1’2:6.1,pl1,2:6).

5. CONCLUSIONS AND FUTURE WORK

Addressing color vision deficiencies is a key point in pro-
viding accessible information and services. Designing ac-
cessible interfaces does not necessarily mean making them
boring, and abandoning an original color scheme. In this pa-
per we presented an approach that explores the color palette
space, searching for a solution that represents a good com-
promise between aesthetics and accessibility requirements.
This search is performed by using a genetic algorithm. Ex-
perimental results prove that this approach is feasible, lead-
ing automatically towards solutions that otherwise would be
time consuming for the interface designers. Future work will
address questions that have here been left unanswered. The
reference color palettes are assumed to be fully defined be-
fore the optimization begins. However, we know that chro-
matic choices can change when alternatives are proposed
to users. Thus, it would be worthwhile to introduce the
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Figure 10: Comparison to random search.

Figure 11: Optimization of the original palette for
normal color viewers.



Figure 12: Optimization of the original palette for
deuteranopes. The 1°' column is the original palette,
the 2"¢ column is the perceived palette for deuter-
anopes, the 3™ and 4** columns are the optimized
result seen by deuteranopes and by normal color
viewers respectively.

Figure 13: Optimization of the original palette for
protanopes.

user into the development process, as described by Takagi
in Interactive Evolutionary Computation [15], leading to the
application of interactive genetic algorithms. On the other
hand, simulation proved to be expensive, especially for larger
populations and color palettes. This requires a reduction of
the search space, so that smaller populations can effectively
lead to an optimal solution. This result can be achieved by
reducing the color space, as small variations are not per-
ceived by the user in any case.
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