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ABSTRACT
Self-adaptation is used a lot in Evolutionary Strategies and
with great success, yet for some reason it is not the mu-
tation adaptation of choice for Genetic Algorithms. This
poster describes how a self-adaptive mutation rate was used
in a Genetic Algorithms to inverse design behavioral rules
for a Cellular Automata. The unique characteristics of this
search space gave rise to some interesting convergence be-
havior that might have implications for using self-adaptive
mutation rates in other Genetic Algorithm applications and
might clarify why self-adaptation in Genetic Algorithms is
less successful than in Evolutionary Strategies.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: ARTIFICIAL INTEL-
LIGENCE—Problem Solving, Control Methods, and Search

General Terms
Algorithms, Experimentation, Theory
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1. THE PROBLEM
The Majority Problem can be defined as follows:
Given a set A = {a1, ..., an} with n odd and am ∈ {0, 1}

for all 1 ≤ m ≤ n, answer the question: ‘Are there more

ones than zeros in A?’.

The challenge as discussed in this poster is to solve this
problem by inverse designing rules for Cellular Automata
using a Genetic Algorithm.

The genetic algorithm for all experiments is a (10, 100)
strategy where 100 stands for the number of individuals in
the pool and 10 for the number of parents that is selected
from that pool. Parents are selected by selecting the ten
fittest individuals from the population. Every parent is then
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copied ten times every generation and all individuals are
mutated using a mutation operator.

A self-adaptive method is used first proposed by Bäck
et al. [2] which suggests to add a floating point value to
every individual which represents their mutation rate. The
individual will then be mutated using a probabilistic bit flip
operator using that mutation rate. The mutation rate in
turn is mutated using the following formula:

p′ =
“

1 +
1 − p

p
· (−γ · N(0, 1))

”

−1

Where γ is a constant to impact the convergence speed
of the mutation rate and is usually set to 0.22. N(0, 1)
represents a random value from a normal distribution with
mean 0 and standard deviation 1.

2. EXPERIMENT
Figure 1 shows the average mutation rate of the self-

adaptive method compared to the three fixed mutation rates.
And the important thing to notice here is that not only does
the mutation rate go down quickly and constantly, but it hit
the minimum of p = 1/n as early as generation 50. This is
surprising given the fact that in the first 100 generation a
mutation rate of p = 4/n and even p = 8/n clearly out
performs p = 2/n. Mutation using those settings should
have been better during this part of the algorithm and self-
adaptive mutation should have evolved into something close
to this mutation rate. There clearly is another force pulling
the mutation rate down.

3. HIDDEN PLUS STRATEGY
Even though every individual is mutated in a comma

strategy, there is always the possibility that non of the bits
is flipped, even though p ≥ 1/n.

Let pclone be the chance that an individual is not changed
by mutation. Then: pclone = (1 − p)n, where p is the mu-
tation rate and n is the bit string length. This means that
for p = 1/n (minimum allowed in experiments) and n = 128
(true for all experiments):

pclone = (1 −
1

128
)128 ≈ 0.3664
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Figure 1: Shows the average mutation rate of the

self-adaptive methods compared to the three fixed

mutation rates.

Every parent in the experiments above was copied 10
times. This means that if the mutation rate p = 1/n in
for an individual and that individual is chosen to be a par-
ent, then on average 3 to 4 copies of this parent will reside in
the next generation, unaltered. Making the comma strategy
effectively some kind of “probabilistic plus strategy”.

4. COUCH POTATOES
An important aspect of the self-adaptive mutation rule is

that the rule should have the same probability to change
up, as it has to change down. This ensures that the search
for an optimal mutation rate is not biased in any way. The
experiments in this poster suggest that the self-adaptive mu-
tation used does seem to have such a bias. Surprisingly the
“probabilistic plus strategy” as explained above could create
such a bias.

Every parent in the experiments was copied ten times.
And right before the bit flip mutation is employed, the mu-
tation rates are themselves mutated. If the mutation rate of
a child is decreased its pclone increases and it is more likely
to stay identical than an child of which the mutation rate
is increased. This simple fact makes that the average mu-
tation rate of the children that are unchanged is lower than
the mutation rate of their parent and the average mutation
rate of the changed children is higher than that of their par-
ent. At the beginning of the algorithm there are still a lot
of improvements to be made and they are relatively easy to
find. In a “rugged” landscape though, the success rate of a
mutation might go down drastically. In a comma strategy
the fitness of the next generation is allowed to be lower than
that of the previous one, but if pclone is high enough, enough
clones will be generated such that the fitness will in prac-
tise only go up. This means that the harder it becomes to
find an improvement, the more appealing it will be to stay
where you are. Which will decrease the mutation rate and
only make it harder to leave the comfort of the “couch”.

5. CONCLUSIONS
Self-adaptive mutation rates have been successfully ap-

plied to the inverse design of rules for Cellular Automata.
The mutation rates adapted from an initial very high rate
to a level that was usable to run the Genetic Algorithm.
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Figure 2: Shows the average fitness of the two self-

adaptive mutation experiments with different γ set-

tings vs. fixed mutation rates tested with p = 2/n.

Self-adaptive mutation rates as it was applied here, did
have some problems with the complexities of the search
space of the Majority Problem. In particular there was a
premature convergence measured that did not seem to be
the effect of any speed setting of the algorithm or noise level
on the fitness function.

The“Couch Potato”-effect as described in section 4 fits the
measured effect in the experiments and therefore seems to be
a viable explanation of the convergence behavior. Further
and more general research seems needed to understand this
potentially important convergence force.
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[1] Bäck, T.: Evolutionary Algorithms in Theory and

Practice. Oxford University Press, NY (1996)
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