Evolving Machine Microprograms

P.A. Castillo
Department of Architecture
and Computer Technology

University of Granada (Spain)
pedro@atc.ugr.es

J.J. Merelo
Department of Architecture
and Computer Technology

University of Granada (Spain)
jmerelo@geneura.ugr.es

ABSTRACT

The realization of a control unit can be done using a complex
circuitry or microprogramming. The latter may be consid-
ered as an alternative method of implementation of machine
instructions that can reduce the complexity and increase the
flexibility of the control unit. The microcode efficiency and
speed are of vital importance for the computer to execute
machine instructions fast. This is a difficult task and it re-
quires expert knowledge. It would be interesting and very
helpful to have automated tools that, given a machine in-
struction description, could generate an efficient and correct
microprogram. A good option is to use evolutionary com-
putation techniques, which have proved been effective in the
evolution of computer programs. In this paper, we intend to
show how evolutionary computing techniques could be used
to face this problem of generating efficient microprograms.
We have developed a microarchitecture simulator of a real
machine in order to evaluate an individual and to assign it
the fitness value (to determine whether this candidate so-
lution correctly implements the instruction machine). The
proposed method is successful in generating correct solu-
tions, not only for the machine code instruction set, but for
new machine instructions not included in such set. We have
shown that our approach can generate microprogramms to
execute (to schedule microinstructions) the machine level
instructions for a real machine. Moreover, this evolutive
method could be applied to any microarchitecture just by
changing the microinstruction set and pre-conditions of each
machine instruction to guide evolution.

Categories and Subject Descriptors

B.1.4 [Microprogram Design Aids]: Firmware engineer-
ing; D.2.2 [Design Tools and Techniques]: Evolutionary
prototyping

General Terms
Design

Copyright is held by the author/owner(s).
GECCO’08, July 12-16, 2008, Atlanta, Georgia, USA.
ACM 978-1-60558-130-9/08/07.

G. Fernandez
Department of Architecture
and Computer Technology

University of Granada (Spain)
gerfer@correo.ugr.es

J.L. Bernier
Department of Architecture
and Computer Technology

University of Granada (Spain)
jbernier@atc.ugr.es

1103

A. Mora
Department of Architecture
and Computer Technology

University of Granada (Spain)
amorag@geneura.ugr.es

A. Prieto
Department of Architecture
and Computer Technology

University of Granada (Spain)
aprieto@ugr.es

Keywords

computer architecture, microprogramming, microarchitec-
ture, evolutionary computation techniques, optimization, au-
tomatic design

1. INTRODUCTION

Building the control unit using microcode, the hardware
design becomes simplified. However, microprogramming is a
difficult task because writing good microcode requires an in-
timate knowledge of the hardware. Compilation from higher
level languages is generally not an option, since the gener-
ated code is usually not enough quality. It would be interest-
ing and very helpful to have an automated tool that, given a
machine instruction description, could generate an efficient
and correct microprogram.

In this paper we propose an evolutive method that could
be applied to any microarchitecture just by changing the
requirements (pre-conditions) of each machine instruction to
guide the evolutionary method. We have analyzed in detail
the microarchitecture of a real basic computer (Elemental
Didactic Computer, CODE2). As an evolutionary problem,
we have carried out the evolution of the microcode for every
machine-level instruction, taking each one at a time. To test
the proposed method, new machine code instructions have
been defined.

2. ARCHITECTURE OF CODE2

Processor microarchitecture the is level below the macroar-

chitecture. The macroarchitecture corresponds to the assembly-

language level. Code and data are transferred between main
memory and the CPU.

At the microarchitecture-level, the control unit manages
the fetch-decode-execute instruction cycle. It includes a
memory of control where the microcode for all machine in-
structions is stored. Each control word stored in this mem-
ory includes some fields that along with the flag register
control the sequencing logic to determine the next microin-
struction to be executed. Bits in the control word are sent
to the control bus as control signals.

CODE2 implements a register-register architecture. At
the assembly-language level this machine has 16 general pur-
pose registers (r0 to rF) and 16 machine instructions. Some
registers have a special role: rE register is usually used as

stack pointer, and rD register as address register. The data
path also includes the instruction register (IR) and the pro-
gram counter (PC). The ALU is capable of the following
operations: adition, substraction, logic NAND, logic right
and left shift, and aritmetic right shift. The ALU also in-
cludes zero, sign, carry and overflow flags. Main memory
size is 65536 16 bits words. Finally, CODE2 can handle 256
input ports and 256 output ports.

3. PROPOSED METHOD

The proposed method we have implemented is based on
an evolutionary algorithm. In this approach, an individual
codifies the sequence of microinstructions that implements
every machine instruction. We have used a numeric rep-
resentation to encode the list of microinstructions. An in-
dividual encodes a list of numbers, each of one represents
a microinstruction. As different machine instructions have
variable lengths (number of microinstructions), individual
sizes are randomly initialized.

As variation operators, our method uses mutation, crossover,

gene insertion and gene deletion. Mutation randomly changes
a gene (microinstruction) taking into account the mutation
rate. Crossover carries out the multipoint crossover between
two individuals, exchanging their microinstructions. Inser-
tion operator inserts a new microinstruction into the individ-
ual, while the last operator (insertion), randomly removes a
microinstruction.

The fitness evaluation is based on simulating microinstruc-
tions. For every machine instruction, we have defined the set
of resources that should be used or avoided (operations al-
lowed and forbidden to guide the evolutionary search). The
fitness function takes into account four values: 1) whether
the implementation is correct, 2) how many forbidden op-
erations are included, 3) how many allowed operations are
included, and 4) individual length (the shorter, the better,
if it is correct). In the case of non-correct solutions, the one
that includes less forbidden operations is taken as the best.

As an example, suppose the following individual:

RA=ra id of the 1st register used
RT:RF[RA] using a temporary register
WA=rx id of the register used as destination
RA=rs id of the 2nd register used

RF[WA]=RF[RA]+RT

the ALU carries out the operation

It is coded as (24,16,33,9,14). In this case, the fitness value
obtained after simulation was (1, 0, 3, 5). That means that
this individual, the implementation using microinstructions,
is correct (1) and the number of microinstructions is 5.

The source code of the proposed method is available for
download at http://atc.ugr.es/pedro/ev-micropr/

4. EXPERIMENTS AND RESULTS

The target of the experiment was to optimize the CODE2
machine instruction set. Each machine instruction is taken
separately, the pre-conditions are set and the evolutionary
method is run to design that machine instruction using a se-
quence of microinstructions (search for a correct implemen-
tation). The second experiment is based on defining and op-
timizing new instructions for CODE2 (the architecture was
not thought to include these new machine instructions).

1104

Obtained results show that in nearly all runs (8 out of 10),
the evolutionary method is able to find a correct solution
that is, a set of correct microinstructions:

| Instruction | Obtained implementation |
ADDS RA=ra
RT=RF[RA]
WA=rx
RA=rs
RF[RA]=RF[RA]+RT
LLI WA=rx
RF[WA]|=0x00FF##IR
IN AR=0x00FF##IR
WA=rx
DR=IP[AR]
RF[WA]=DR
SHRA WA=rx
RA=rx
RF[WA]=shra(RF[RA])

The second experiment is based on defining new machine
instructions (not included in the original instruction set of
CODE2). In the case of the NOT instruction, correct (and
optimal) solutions were obtained. In the case of the logical
AND instruction, although the solution obtained is not cor-
rect, just by including (by hand) an extra microinstruction
we could obtain the optimal implementation.

5. CONCLUSIONS

In this work, an evolutionary approach has been applied to
the problem of designing the microarchitecture of a basic real
computer. We have evolved microprograms that implement
not only CODE2’s machine code instruction set, but new
machine instructions.

Obtained results show that EAs provide for machine mi-
crocode optimizations; moreover it is usually possible to gen-
erate correct and efficient solutions.

Our approach needs some guidance introduced related to
which resources should be used or avoided in the fittest solu-
tions. This evolutionary guidance is derived automatically
from the specifications of macroinstruction behavior, and
does not require any "intelligent” input from human oper-
ators. Thus, the method could easily be applied to other
microarchitectures by changing the pre-conditions and mi-
croinstruction set.

As a future line of work, it would be interesting adding
new machine instructions and designing their microprograms
using the evolutionary method. We also intend to apply our
method to more complex real architectures.

6. ACKNOWLEDGMENTS

This work has been supported by the Spanish MICYT
project TIN2007-68083-C02-01, the Junta de Andalucia CICE
project P06-TIC-02025 and the Granada University PIUGR
9/11/06 project.

