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ABSTRACT

The correct choice of an evolutionary algorithm, a genetic repre-

sentation for the problem being solved (as well as their associated

variation operators) and the appropriate values for the parameters

of the algorithm is a hard task and it is often considered as an opti-

mization problem itself.

In this contribution, we propose a new theoretical formalism,

called Multiple Offspring Sampling (MOS). This new technique

combines different evolutionary approaches taking advantage of

the benefits provided by each of them. MOS dynamically bal-

ances the participation of different mechanisms to spawn the new

offspring population, according to the benefits provided by each

of them in previous generations. This approach evaluates multiple

offspring generation methods (for example different coding strate-

gies), and configures appropriate sampling sizes.

This formalism has been applied to a well-known permutation

problem, the traveling salesman problem (TSP). The results on sev-

eral instances of this problem show that most of the combined tech-

niques outperform the results obtained by single ones.
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1. MULTIPLE OFFSPRING SAMPLING
MOS could be defined as a mechanism to create new individu-

als, i.e., (a) a particular evolutionary algorithm model, (b) with an

appropriate coding, (c) using specific operators (if required), and

(d) configured with its necessary parameters.

In our algorithm we have redefined the way the offspring and

recombination of populations phases of a traditional Evolutionary

Algorithm are performed. MOS proposes the definition of multiple

mechanisms to generate new individuals, and makes them compete
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during the evolutionary process. Each mechanism creates its own

offspring O
(j)
i (i is the generation and j is the mechanism).

The fitness of the individuals generated is used to evaluate the

quality of each recombination technique. The most obvious mea-

sure that could be used for this purpose is the average fitness of the

population, but more sophisticated measures can be proposed to

take into account not only the current performance of the technique

but its potentiality. This quality measure dynamically determines

the participation of each of the available techniques.

2. EXPERIMENTATION
We have tested our approach with three standard datasets for the

TSP that can be downloaded from the TSPLIB repository.

Equation 1 presents the fitness function used in our experiments.

It has been normalized within the interval [0−1] what makes it eas-

ier to interpret how good the results are regardless of the different

optimal tour lengths of each instance.

length(tourbest)

length(tour)
(1)

The experimentation carried out in this study tries to confirm that

MOS approach of combining different genetic codings and varia-

tion operators, under some circumstances, can improve the perfor-

mance of these codings and operators when used separately.

To test our approach, we have considered two different genetic

codings: path and ordinal representation which are used simulta-

neously through all the execution of the algorithm. Both codings

allow different variation (crossover and mutation) operators. For

ordinal representation, traditional 1-point crossover and uniform

mutation described by [3] have been used. For path representa-

tion we have considered two crossover operators: Order Crossover

(OX) by [2] and Cycle Crossover (CX) [4]; as well as two mutation

operators: Repeated Exchange Mutation (REM) by [1] and Simple

Inversion Mutation (SIM) by [3].

With all these alternatives we have constructed the following set

of techniques: (a) t0: Integer Coding + OX + REM (b) t1: Inte-

ger Coding + CX + SIM (c) t2: Real Coding + 1-point Crossover

+ Uniform Mutation (d) t3: Integer Coding + OX + SIM (e) t4:

Integer Coding + CX + REM.

2.1 Results and Discussion
The results of this experimentation are too extensive to be re-

ported in this paper. Instead of providing a large table with the re-

sults of each combination of techniques we propose a mechanism

to rank the results obtained for each combination. The procedure to

deal with this analysis, for each of the problems, is the following:

1. all the combinations of techniques are considered,
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Table 1: Average Number of Wins Compared with the Number

of Techniques

Number of Average Number of Wins

techniques Swiss42 Brazil58 GR120

1 -14.6 -12.8 -26

2 -3.9 -2.5 -0.8

3 6.3 4 0.4

4 7.8 8.4 21.8

5 10 7 25

Table 2: Average Number of Wins for Each Technique

Number of Wins Corrected Number of Wins
Swiss42 Brazil58 GR120 Swiss42 Brazil58 GR120

t0 4.44 -0.06 5.75 0.74 -3.69 0.35
t1 3.19 7.06 4.94 0.07 6.83 -0.35
t2 -0.69 -0.44 5.37 -2.17 -5.23 0.05
t3 10.56 7.50 5.12 4.02 7.39 -0.27
t4 -2.25 -1.00 5.50 -2.67 -5.23 0.22

Best combination(s) of techniques t0t2t3 t0t1t2t3 t0t1t2t4
t0t1t3t4

Average p-value against all the other 0.02 0.06 0.06
combinations 0.06

2. for each combination, 20 independent executions are run un-

til convergence,

3. the fitness results obtained for each of the combinations are

pairwise compared using a Wilcoxon non parametric t-test.

Both fitness and p-values are stored for the following analy-

sis,

4. a global analysis is performed for all the combinations. If

one combination of parameters is significantly better than an-

other (p-value < 0.01), the winning combination is granted

with +1 wins and the losing combination penalized with -

1 wins. As all the combinations are compared against each

other, they are ranked (depending on how many other com-

binations are better/worse).

In table 1, the average number of wins obtained by all the sin-

gle techniques is compared with the average number obtained with

2, 3, 4 and 5 techniques. These numbers show that the higher the

number of techniques is the better the average performance. The

only exception is Brazil58 dataset, in which 4 techniques combina-

tions have better performance than the 5 techniques together. In all

the cases, single techniques perform worse, on average.

Table 2 presents a comparison of the performance of the differ-

ent techniques. For each technique, the table shows the average

number of wins of all the combinations in which it participates. A

corrected version of this number of wins is also provided, in this

case each technique only counts the proportional part of wins de-

pending on how many techniques take part in the combination, for

example if combination t1t3t4 score 12 wins, each of the three tech-

nique receives 12/3 wins. The average of these corrected wins is

also weighted by the number of techniques in the combination. In

the previous example, the number of wins has weight 1/3 to com-

pute the average. The sum of this corrected average of wins is zero

(the sum of all the wins is 0).

The behavior of the different techniques, when they are com-

bined with others, computed by the corrected average number of

wins keeps a close relationship with the best combination, but it is

important to highlight the presence of techniques with worse per-

formance in the best combinations. For example, in Swiss42, tech-

nique t2 obtains poor results, but it seems to deeply improve the

results of some combinations of techniques (t0t2t3 is better than

t0t3 with p-value = 0.00431†). In Brazil58, in which t1 and t3

outperform other single techniques, the combination of both is im-

proved when t0 and t2 are also included (t0t1t2t3 is slightly better

than t1t3 with p-value = 0.31976).

†represents statistically significant tests (p-value < 0.01). Reader

should take into account that transitivity is not guaranteed by this

statistical relationship.

In all the cases, the combination of multiple techniques performs

better than the best of the single techniques.

3. CONCLUSIONS
The general schema of an evolutionary technique carries out an

iterative loop of (i) creation of new individuals (offspring spawn-

ing), (ii) evaluation of these new individuals, and (iii) selection of

the new population from the individuals in the previous and off-

spring populations. In this contribution we have explored the pos-

sibility of using more than one mechanism to create new individ-

uals. This possibility allows us to introduce Multiple Offspring

Sampling, a theoretical framework that provides the tools to deal

with multiple individual creation methods, even if different coding

formats or representations are involved.

MOS is used in this paper to solve one of the most representa-

tive permutation problems, the TSP, using a parallel asynchronous

genetic algorithm as the evolutionary model. From the results dis-

cussed in section 2 we can see that the combination of several off-

spring techniques tend to improve the results of the genetic algo-

rithms. We can also observe that the combination of techniques

reporting the best performance in different TSP instances is not

always the same: different instances present different exploratory

characteristics that can be exploited by different subsets of tech-

niques. In general, the most suitable individual techniques usually

appear in the best combination but, in some cases, the inclusion of

an average technique can remarkably improve the overall perfor-

mance.

Further work will include a deeper analysis of the influence of lo-

cal search mechanisms in the performance of single techniques and

combination of techniques. It would be also interesting to exper-

iment with combinations of techniques where some of them only

include one or none variation operators. Finally, we could think

of a scenario where the number of available techniques is bigger

than the number of techniques being used simultaneously and the

algorithm could exchange the worse performing ones by some of

the waiting techniques or, even, generate new techniques from the

available ones.
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