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ABSTRACT
Given the importance of optimization and informatics which are
the two broad fields of research, we present an instance of Optin-
formatics which denotes the specialization of informatics for the
processing of data generated in optimization so as to extract pos-
sibly implicit and potentially useful information and knowledge. In
particular, evolutionary computation does not have to be entirely a
black-box approach that generates only the global optimal or good
quality solutions. How the solutions are obtained in evolutionary
search may be brought to light through Optinformatics. In this pa-
per, we present a Frequent Schemas Analysis (FSA) technique for
extracting knowledge from the search process by using the histor-
ical optimization data, which are otherwise often discarded. FSA
bring about greater understanding of GA dynamics through mining
for frequent schemas that exists implicitly within the optimization
data via the design of frequent pattern techniques (LoFIA) in infor-
matics. To illustrate the principle of optinformatics, a case study
using the Royal Road problem is used to explain the search perfor-
mance of Genetic Algorithm (GA) in action.
Categories and Subject Descriptors: I.2.m [Artificial Intelligence]:
Miscellaneous
General Terms: Algorithms, Performance, Experimentation
Keywords: Genetic Algorithms, Frequent Pattern Mining, Schema
Theory, Royal Road problem

1. DEFINITION OF FREQUENT SCHEMA
Let function Freq(s, t) define the frequency of the schema s

in the population at generation t and Freq(s, [m, n]) denote the
frequency of schema s in the populations over generations m to n.

Freq(s, [m, n]) =

∑n
t=m Freq(s, t)

(n−m)
(1)

We define a schema s as frequent schema with a level θ in the
period [m, n] if and only if Freq(s, [m, n]) ≥ θ. One possible
interpretation of a frequent schema s is that GA has spent at least
θ percentage of its sampling budget on the hyperplane defined by
s; or θ is a lower bound of the probability that a point in the hyper-
plane s is sampled by GA during the period [m, n].

As stated in Holland’s book [1], "..., if some schema begins to oc-
cupy a large fraction of the population (through consistent above-
average performance), its rate of increase will come very close to
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[µξ(t)/µ(t)] − 1", it is expected that the frequencies Freq(s, t)
of a schema with consistent above-average performance in a period
will form a non-decreasing sequence and the set of consistently
above average schemas would likely contribute to the set of fre-
quent schemas.

2. FREQUENT SCHEMAS ANALYSIS

Figure 1: Frequent Schemas Analysis

In our technique of frequent schemas analysis (FSA) as shown in
Figure 1, data which is collected from the evolution process is di-
vided into consecutive and non-overlapping periods. The sampling
of GA in each period of the search space is analyzed by investi-
gating on the set of frequent schemas (Freq(s, P ) ≥ θ) found in
that period. Alternatively, frequent schemas can also be compared
across periods to understand the change in GA dynamics. Large
value of θ gives more confidence on the located convergence re-
gions but the frequent schemas are generally less specific (lower
order schemas), thus, interesting information may be not captured.

Each chromosome (binary string) in the data generated by GA
in the period is first transformed to a set of items, so as to allow a
two-way transformation from a chromosome or schema to an item-
set and vice versa. From the possibly numerous frequent schemas,
it is up to the analyzer to select interesting schemas from the pool
to investigate. In this paper, the interestingness metric is defined as
the longest frequent schema (LFS) which provides a sketch on how
GA progressively reduces the number of dimensions of its search
space or biases its search towards promising regions. Most specific
frequent schemas are then found using our LoFIA algorithm which
employs bottom-up and depth-first approach to quickly identify the
longest frequent schemas from the optimization data. A visualiza-
tion method is also introduced to capture the change of the schemas
across the periods of evolution. Scalar vector x of length L repre-
sents the set of M most specific frequent schemas. The value of
element xi for loci i is then calculated by xi = N1−N0

M
where N1

and N0 are the number of schemas in the set has value 1 and 0,
respectively, at loci i. Vectors x of consecutive periods are plotted
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Methods Royal Road (32K4) Royal Road (64K8)
GA 7587.32± 7045.26 102880.96± 71723.45

RMHC 412.22± 206.61 5876.86± 2595.55

Table 1: Hill-climbing outperforms GA on Royal Road prob-
lem

against the time axis in the final visualization. Through this visu-
alization, the plot of one period displays the current convergence
regions of GA and the differences observed across periods serves
to provide hints to the dynamics of GA.

3. FREQUENT SCHEMA ANALYSIS
OF GA ON ROYAL ROAD PROBLEM

It is worth noting that Random Mutation Hill Climbing (RMHC)
outperforms GA on the Royal Road problem. Table 1 shows the av-
erage number of evaluations incurred by each algorithm in reaching
the optimal solution on the problem of 32 bits (block size K = 4)
and 64 bits (block size K = 8) over 50 independent runs. Our
configuration of GA is one-point crossover pcross = 0.8, bit-flip
mutation pmut = 0.003 and fitness-proportional selection with
popsize = 50.
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Figure 2: Frequent schemas analysis of GA at θ = 0.8

To investigate what slowed down GA on the Royal Road prob-
lem, Frequent Schemas Analysis (FSA) was used to analyze the
archived optimization data of a GA run on the problem (32 bits,
K = 4). Here, the evolutionary search is divided into 10 peri-
ods, with each period consisting of 15 GA search generations. The
most specific frequent schemas of each period at θ = 0.8 were
then obtained and the results are then plotted against time in Figure
2. Firstly, the plot well illustrates the Building Block Hypothesis
where blocks are shown to have been discovered and combined in
reducing the complexity of the problem. As expected, the length
of longest frequent schemas increases as the search progresses. In
Figure 2, note that block s6 was incorrectly identified in Period
2, containing three 0 bits (x21,22,24 = −1). While other correct
blocks of 1′s were quickly found in early periods of the evolution-
ary process, GA took approximately 8 periods P2-P9 (120 gen-
erations) to correctly identify the good configuration of block s6

and were able to locate the global optimum afterward. Here, the
block with incorrect alleles which hitchhikes in the previous gener-

ations took a long time to be corrected, thus highlighting a possible
premature convergence of GA on the Royal Road problem. The
supposition was confirmed when FSA was used to investigate the
situation in which GA could not find the global optimum within the
limited time (150 generations), as shown in Figure 3. In Figure 3,
block s6 took 5 periods to be repaired while blocks s4 remained
incorrect till the end of the search.
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Figure 3: Frequent schemas analysis of GA at θ = 0.8

Here, the regions of many blocks of 1′s with some 0′s incor-
rectly identified at one block are considered as convergence regions
of GA on the Royal Road landscape. When a population is in the
region with high probability, mutating other bits of 1 will decrease
the fitness of an individual significantly due to the loss of correct
building blocks. Therefore, the mutated individual will cease to ap-
pear in the reproduction pool, thus also the next generation. Since
one-point crossover working on the reproduction pool is also un-
likely to be helpful in this case, an event of improvement which is
defined as when an individual with less number of 0′s appearing
in the reproduction pool of the subsequent population can only be
achieved but at a small probability by mutating bit 0 → 1 while not
changing other bits of 1.

4. CONCLUSIONS
In this paper, a Frequent Schemas Analysis (FSA) technique,

which takes its roots from informatics, is introduced for analyz-
ing GA dynamics through mining of frequent schemas that exists
implicitly within archived optimization data. In particular, FSA
is used to mine for interesting frequent schemas from Binary GA
data that is often discarded and investigate the schemas of different
search periods visually. FSA provides a comprehensive picture of
how the search process evolves, hence bringing new insights into
the properties of GA on different problem landscapes. Using the
Royal Road problem, we demonstrated the ability of FSA in iden-
tifying the premature convergence of GA search which is also con-
firmed by previous studies. Note that FSA represents an instance
of Optinformatics which aspires to make the evolutionary search
more transparent instead of being an entirely black-box approach
that serve only to provide good quality solutions.
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