
Parameter-Less Evolutionary Search

Gregor Papa
Computer Systems Department

Jožef Stefan Institute, Ljubljana, Slovenia
gregor.papa@ijs.si

ABSTRACT
The paper presents the parameter-less implementation of an
evolutionary-based search. It does not need any predefined
control parameters values, which are usually used for ge-
netic algorithms and similar techniques. Efficiency of the
proposed algorithm was evaluated by CEC2006 benchmark
functions and a real-world product optimization problem.
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1. INTRODUCTION
The aim was to develop a quick algorithm that would solve

any problem without a specialist intervention for setting the
suitable control parameters [1], [2], [3]. Parameter-less GA
in [3] used fixed parameters. Authors found some values of
the selection rate and crossover probability that ensure ro-
bust behavior of the algorithm. The self-adaptive differen-
tial evolution in [1] varied the value of amplification factor
and crossover parameter, while population size was never
changed during the optimization.

The Parameter-Less Evolutionary Search (PLES), initially
proposed in [5], is based on GA, but control parameters are
not set in advance. They are set according to complexity of
the problem and according to statistical properties of the so-
lutions. The suitability and efficiency of the proposed algo-
rithm were evaluated by the CEC2006 benchmark functions
[4], and one industrial optimization problem [6], [7].

2. PLES
The main advantage of PLES over the basic GA is the

fact that PLES can set the control parameters like popula-
tion size, number of generations, probabilities of crossover
and mutation by itself, during the optimization process. The
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values of parameters depend on the statistical behavior and
convergence of the solutions. In PLES; elitism, selection,
and crossover are implemented through forcing of better in-
dividuals, while mutation is split between forcing of better
individuals and moving of individuals. The control parame-
ters are never set in advance and are not constant.

2.1 Setup
For n independent variables the chromosome looks like

the string of n values, while for n dependent variables n
positions and the order in the chromosome would represent
dependencies described in the input specification. In the
second case the interdependent variables are placed together
or closer in the chromosome.

2.2 Initialization
The population size (PopSize) is proportional to chromo-

some size, i.e., problem complexity

PopSize = n + log10(n) + 2log10(Range) (1)

where n is the number of variables to be optimized and

Range =

nX
i=1

(maxi −mini)10decplci (2)

where maxi and mini are the upper and the lower limit
of the i-th variable, respectively, and decplci is the number
of decimal places (the resolution) of the i-th variable.

2.3 Stopping criterion
The number of generations depends on the convergence

of the best solution found. Optimization is running while
better solution is found every few generations. The Limit
(i.e., number of generations since the last improvement) for
stopping the optimization process is defined as

Limit = 10log10(PopSize) + log10(Resting + 1) (3)

where Resting is the number of generations since the last
improvement of the global best solution.

2.4 Force better solution
In every generation the worse solutions are replaced with

better solutions. Here, each sij (variable j of the solution i)
is randomly moved up to 10% of the difference between the
variable and the limit (upper or lower, regarding the move
direction) of that variable.
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2.5 Solution moving
Mutation is realized by moving of some positions in the

chromosome according to statistical properties. Only the
solutions that were not moved by ”Force better” operator
are handled here. The number (Ratio) of the positions in
the chromosome to be moved is

Ratio = tanh

�
1− StDevi−1

StDevmax

�
× n (4)

where StDevi−1 and StDevmax are the standard devia-
tion of the solution fitness of the previous generation, and
the maximal standard deviation of all generations, respec-
tively. The size of the move is

Move = tanh

����� sbestj − sij

averagej − sij

����
�

(5)

where sij is the value of the parameter j of the current so-
lution i, and sbestj is the value of parameter j of the globally
best solution, averagej is the average value of the parameter
j in the previous generation.

Range = sbestj − sij (6)

sij = sij + Direction×Move×Range (7)

where Direction is randomly selected number {−1, 1} to
determine the direction of the move.

2.6 Statistical evaluation
Each population is statistically evaluated. Here the best,

the worst, and average fitness value in the generation is
found. Furthermore, the standard deviation of fitness values
of all solutions in the generation, maximal standard devia-
tion of fitness value over all generations, and average value
of each parameter in the solution is calculated.

3. EVALUATION RESULTS
The first experiment for the evaluation of the PLES was

performed by some CEC2006 benchmark functions defined
for constrained real-parameter optimization [1], [4]. In the
second experiment we optimized geometrical parameters of
the electrical motor rotor and stator [6], [7].

Table 1: Results for CEC2006 functions: g01 – g03
g01 g02 g03

Optimal -15.000000 -0.803619 -1.000500
Best -14,892690 -0,733780 -1,000350

Worst -10,715800 -0,314170 -0,984590
Average -13,586952 -0,604088 -0,998541
Mean -14,042460 -0,641730 -0,999570
St.dev. 1,191597 0,105540 0,005256

Evaluations 11.336 19.996 10.037

The best, worst, average, and mean value of the solutions
after 20 runs are presented in Table 1, Table 2, and Table 3.
Further also standard deviation of solutions and the average
number of evaluations is presented.

The results presented in Tables 1 and 2 show that PLES is
able to come close to the optimal solution very quickly, even
it the optimal solution is surrounded by unfeasible regions.

Table 2: Results for CEC2006 functions: g04 – g06
g04 g05 g06

Optimal -30.665.53867 5.126.49671 -6.961.81387
Best -30.856,52391 5.134,20061 -6.970,11257

Worst -30.817,80674 5.693,79575 -7.527,66061
Average -30.836,55150 5.317,69385 -7.334,02541
Mean -30.839,10520 5.272,10264 -7.507,03885
St.dev. 9,73687 153,69495 273,44339

Evaluations 15.082 6.245 4.811

Table 3: Results for motor geometry optimization
PLES GEA MASA

Best 135.4 131.3 114.2
Worst 147.9 139.9 135.9

Average 141.1 132.9 128.9
Mean 140.2 – –
St.dev. 3.7 3.3 7.8

Evaluations 1692 1400 1400

Comparing to [7] the PLES is able to find solutions as fast
as the other GA-based approaches.

4. CONCLUSION
The presented algorithm does not need any predefined

control parameter values, and no special knowledge is needed
to effectively use the algorithm. The efficiency of the algo-
rithm was evaluated and proved by CEC2006 benchmark
functions and a real-world industrial problem.
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