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ABSTRACT 
A genetic algorithm (GA) is utilised to discover known and novel 
PROSITE-like sequence templates that can be used to classify the 
sub-cellular location of eukaryotic proteins. While traditional 
machine learning techniques present a black-box approach to this 
problem, the current method explicitly represents the discovered 
localisation motifs. A combined multi-class location classifier is 
presented and compared to other techniques based on genetic 
programming. Without consideration of additional structural 
information the presented method outperforms the alternative 
techniques. 

Categories and Subject Descriptors 
J.3. [Computer applications]: Life and Medical Sciences – biology 
and genetics. I.2.6 Learning 

General Terms:  
Algorithms, Experimentation 

Keywords 
Genetic Algorithm, Protein Localisation, Classifier Learning. 

1. INTRODUCTION 
The common approach to determining the location of a protein 
within a cell is to use sequence motifs – sequence templates 
typical of proteins of a specific sub-cellular location. However, 
this is not always satisfactory as newly discovered proteins may 
not contain any of the known motifs, but some others, which have 
not yet found their way into the databases. 
A number of methods exist to predict the location of eukaryotic 
proteins within the cell. Hidden Markov Models [12], Neural 
Networks [1, 10] and Support Vector Machines [5] are widely 
used. Although these approaches are based on well understood 
mathematical models they share one drawback: they are based on 
a black-box approach and it is difficult to make sense of the 
internal rules such classifiers use. Another approach is to use a 
genetic algorithm (GA) to automatically evolve sequence patterns 
for proteins found in different sub-cellular locations. GAs and 
related techniques were previously used to automatically infer 
location motifs for eukaryotic proteins [3, 6]. 
The preliminary work presented here explores an alternative 
approach. Classifiers for the following four types of proteins are 
evolved. Proteins located in: (A) the cytosol, (B) inside of the 
nucleus, (C) inside of mitochondria and (D) extracellular proteins. 

Tested on a set of data not used during the learning process, the 
sensitivity of the classifiers was determined to be approximately 
40% and the specificity approached 95%. 

2. METHOD 
A classifier-pattern is an ordered list of items that can match 
specific amino acids. Four different types of items are used here: 

• Amino Acid: This item describes a specific amino acid. 
• Gap: Matches against any amino acid. 
• Property:  Describes one of the amino acid properties 

small, hydrophobic, polar, positive, negative, 
tiny, aliphatic and aromatic.  

• Group: Groups an arbitrary list of amino acids and 
matches against any amino acid in the group. 

A pattern matches a protein when the protein sequence contains a 
subsequence of amino acids that is exactly matched by a 
subsequence of the pattern. The aim is to evolve patterns that 
match proteins found in specific sub-cellular locations. An elitist 
GA with a promotion rate of 20% and a 3-tournament selection is 
used to evolve a population of 50 patterns over 1000 generations. 
The initial population of patterns consists of random patterns, 
whose lengths are uniformly distributed between 1 and 70 items. 
The fitness of a classifier-pattern for a particular sub-cellular 
location is determined using the MCC coefficient [8]: 

fitness = tp × tn − fp × fn
( )tn + fn  × ( )tn + fp  × ( )tp + fn  × ( )tp + fp

 

Here, tp denotes the number of true positives, tn – the number of 
true negatives, fp – false positives, and fn – false negatives. 

The confidence c of a classifier (estimated probability for the 
classification to be correct) is determined using a separate data 
set. For positive classifications: c = sensitivity = tp / (tp + fn). 
For negative classifications: c = specificity = tn / (tn + fp). 
The GA uses the following genetic operators: 
Crossover: A standard GA-crossover with probability 0.85. 
Elongation: At any position of a pattern a new random item is 
inserted with the probability 0.0005. 
Mutation: Each item in a sequence is mutated with the 
probability 0.1. The items are mutated differently depending on 
their type. The semantics of the mutation operator are inspired by 
the various processes that can lead to mutations in eukaryotic 
proteins. Each type of a pattern-item can be removed from or 
duplicated in the sequence. Amino acid items can in addition be 
replaced by another amino acid item probabilistically chosen on 
the basis of the BLOSUM62 [4] substitution matrix, or swapped 
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for an appropriate property or group-item. Gap items can be 
swapped for an amino acid or a group-item. Property pattern-
items can be swapped for a different property or for a group-item 
containing predominantly amino acids that exhibit the property 
described by this item. Group items can be modified by adding or 
removing group members. Groups can also be replaced by an 
appropriate property item. Short groups can be replaced by an 
amino acid or a gap and long groups can be split in two. 
The described approach is implemented using an open-source GA 
experimentation engine JAGA [9]. This engine was chosen as all 
of the required standard GA operators were readily available as 
part of the engine and due to the convenience with which the 
specific operators required here could be implemented using the 
JAGA API.  

3. EXPIREMENTAL DATA 
Classifiers are evolved for proteins of four types defined 
according to their sub-cellular location: 

A) Cytosol C) Mitochondria 
B) Nucleus D) Extracellular proteins 

 
Each classifier is evolved independently of the other classifiers to 
discriminate between proteins of a certain type 
T ∈ {A, B, C, D} against the proteins of all other types. 
Throughout the experiments a set of 1331 non-homologous 
proteins is used. A separate set of 145 proteins is used for 
validation.  The evolution process is started with 20% of the 
training set selected at random. As the fitness of the best 
individual in the population increased, the rest of the training set 
is added in 10%-steps. 

4. RESULTS 
The evolved classifiers are tested on the validation data. The 
results are summarised in table 1. 
Using these classifiers, a combined classifier is constructed based 
on a generalisation of the Dempster-Shafer theory [11].  
Here, the belief and the plausibility that a tested protein belongs to 
a type T are based on the results of applying each of the four 
classifiers to that protein. The confidence of each classification 
result (i.e. sensitivity or specificity values respectively) is used as 
a measure of evidence that the protein belongs or does not belong 
to type T. The evidence is collected from all classifiers and then 
normalised. 

Table 1. The sensitivity, the specificity and the MMC values 
of each evolved classifier evaluated on the validation 
dataset. 
Classifier Type Sensitivity Specificity MCC 

1 A vs. (B ∨ C ∨ D) 26.47% 98.20% 0.4206
2 B vs. (A ∨ C ∨ D) 32.88% 86.11% 0.2546
3 C vs. (A ∨ B ∨ D) 30.43% 90.16% 0.2314
4 D vs. (A ∨ B ∨ C) 60.00% 98.46% 0.6650

 

5. DISCUSSION & FUTURE WORK 
The above results can be compared to [3], where a different GA-
based approach is used to classify nucleic proteins. 
The method discussed here outperforms the results shown in [3] 
for all cases where no additional information about secondary 

structure is used. However, when additional information about 
protein structure is used to aid the evolutionary learning [3], the 
resulting classifier outperforms the current approach.  
In order to help the evolution to start of, patterns for known 
localisation motifs can be added to the initial population. In an 
initial set of experiments, some nuclear localisation signal motifs 
[2, 7] are added to the initial population used for the evolution of 
the classifier “B vs. (A ∨ C ∨ D)”. This increases the MOC 
coefficient value for the training set from 44% to 51%. Further 
studies are required to investigate the impact of this modification 
on the classification of the validation data for all four classifiers.  
Overall, the results show that the GA-approach to sub-cellular 
localisation of eukaryotic proteins has the potential to compete 
with more traditional methods. When extended to support all 
PROSITE-style regular expressions, the current strategy may 
discover new localisation motifs in known and unknown proteins. 
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