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ABSTRACT 
This paper presents a new method for solving discrete deceptive 
problems using a genotype to phenotype mapping where a new 
replacement and shift operator is applied. The method is evaluated 
using different deceptive problems. Experimental results show 
how our method obtains a speed-up of 94% with respect to other 
approaches. 

Categories and Subject Descriptors 

I.2.8 [Artificial Intelligence]: Problem Solving, Control 
Methods, and Search—Heuristic methods; G.1.6 [Numerical 
Analysis]: Optimization—Global optimization 

General Terms 
Algorithms, Measurement. 

Keywords 
Genetic algorithms, deceptive problems, genotype and phenotype 
mapping. 

1. INTRODUCTION 
Different techniques have been proposed to tackle deceptive 
problems. Among them, some papers presented techniques that 
work with different encodings and representations. In [1] Chow 
proposes a new encoding technique, the Evolutionary Mapping 
Method (EMM), to tackle some deceptive problems. Chow uses 
multiple chromosomes in a single cell for mating with another cell 
within a single population. As he claimed, the mapping from 
genotype-to-phenotype is explicitly evolved and maintained. 
Although this works improved previous reported results, it fails 
on solving some deceptive problems and the method does not 
assure a 100% of optimal solutions for all of the tests solved. We 
present a new method to solve deceptive problems by modifying 
EMM, called EMM with Replacement and Shift (EMMRS). 

2. EVOLUTIONARY MAPPING WITH 
REPLACEMENT AND SHIFT 
We present a variation of the genetic operator applied to the 
mapping chromosome in [1] by means of which the number of 
evaluations needed to find the global optimum is reduced. Figure 
1 depicts the genetic operators applied to the mapping 
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Figure 1: EMMRS. Genetic operators. 

chromosome. The crossover operator is a 2-point integer 
crossover operator. The mutation operator is an integer mutation 
operator that randomly changes a gene of the mapping 
chromosome. Finally, we apply a third operator named 
replacement and shift. This operator randomly picks up two genes 
at random positions i and j and makes m[j]=m[i], where m is the 
mapping array. Next, it moves j to follow i, shifting the rest along 
to accommodate. 

By using replacement we reinforce the movement from one 
schema to another schema in the mapping chromosome. 

3. EXPERIMENTAL RESULTS 
The experiments were set up to compare our EMMRS algorithm, 
the dynamic mapping approach (EMM) as in [1] and the 
traditional GA approach. First, we built two trap-functions using 
the following equation: 
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with d=1, k=4 and k=8, named f4 and f8, respectively. In addition, 
the 4 and 8 bits of the parameters were concatenated 20 times, 
extending the chromosomes to 80 and 160 bits. Second, we used 
two 40 and 60 bits deceptive functions fU and fB defined as in [1] 
(named fU40, fU60, fB40, and fB60). Finally, to test our algorithm in 
continuous domain, we selected two GA-Hard functions: the 
Schwefel’s and Rastrigin’s function [2] [3], where an additional 
local hill climbing was incorporated (for the Rastrigin’s problem 
the threshold ε was lowered from 10-12 to 10-6). 

For the traditional GA and EMMRS, the crossover rate was set to 
0.9 and mutation rate was set to 1/m, where m is the length of the 
chromosome. For the EMMRS mapping chromosome, the 
crossover rate was set to 0.9 and the mutation was set to 0.2/m. 
The RS probability was set to 1/m after several tests. In the EMM 
algorithm, the values for the genetic operators were the same as 
used in [1]. Each of the results is based on data averaged over 100 
separate runs. All the experiments used population sizes of 200. 
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Table I. Optimization functions 

 GA EMM EMMRS 
% Avg. % Avg. % Avg. 

f4 100% 1690 100% 916 100% 179 
f8 0% n/a/ 78% 8291 100% 1040 

fU40 0% n/a 100% 1593 100% 105 
fU60 0% n/a 100% 2739 100% 253 
fB40 0% n/a 100% 4578 100% 380 
fB60 0% n/a 64% 9353 100% 550 
fS 83% 3756 74% 1874 82% 2137 
fR  0% n/a  0% n/a 100% 3105 

Table I shows the percentage of optimal runs and the average of 
generations needed to reach the global optimum. The averages 
were calculated for successful runs only. EMMRS successfully 
found the global optimum in all the discrete deceptive functions. 
In this case, comparing EMM and EMMRS, the number of 

evaluations needed to find the global optimum is reduced by 94% 
in the best case. Table I shows that EMMRS obtains quite better 
results than EMM and GA implementations in f4, f8, fU40, fB40, and 
fB60 functions. Figure 2 depicts the best chromosomes found by all 
the three algorithms for f8, fU40, fB40, fB60, fS and fR, using 
executions close enough to the average values shown in Table I. 
For the Schwefel’s function, 83% of the traditional GA trials 
found solutions close enough to the optimum, 74% in the case of 
EMM, and 82% for EMMRS. It should be noted that in this case, 
EMM obtained the global optimum earlier, as Figure 2e depicts. 
For the Rastrigin’s function, just the EMMRS algorithm found 
solutions close enough to the optimum (Figure 2f). The traditional 
GA did not find any optimum even with the lowered threshold, as 
well as the EMM approach. However, in [1] it is stated that EMM 
is able to find the global optimum running it for 20000 
generations. 
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Figure 2. Fitness values of the current best chromosomes for f8, fU40, fB40, fB60, fS, and fR, 
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