
Is “Best-So-Far” a Good Algorithmic Performance Metric?

Nathaniel P. Troutman
Southern Nazarene University

Bethany, Oklahoma, USA
ntroutman@acm.org

Brent E. Eskridge
Southern Nazarene University

Bethany, Oklahoma, USA
beskridge@snu.edu

Dean F. Hougen
School of Computer Science

University of Oklahoma
Norman, Oklahoma, USA

hougen@ou.edu

ABSTRACT
In evolutionary computation, experimental results are com-
monly analyzed using an algorithmic performance metric
called best-so-far. While best-so-far can be a useful
metric, its use is particularly susceptible to three pitfalls:
a failure to establish a baseline for comparison, a failure to
perform significance testing, and an insufficient sample size.
The nature of best-so-far means that it is highly suscepti-
ble to these pitfalls. If these pitfalls are not avoided, the use
of the best-so-far metric can lead to confusion at best and
misleading results at worst. We detail how the use of mul-
tiple experimental runs, random search as a baseline, and
significance testing can help researchers avoid these com-
mon pitfalls. Furthermore, we demonstrate how best-so-
far can be an effective algorithmic performance metric if
these guidelines are followed.

Categories and Subject Descriptors: I.2.8 Artificial In-
telligence: Problem Solving, Control Methods, and Search

General Terms: Experimentation, Algorithms, Performance

Keywords: Empirical study, Genetic algorithms, Machine
learning, Performance analysis, Working principles of evolu-
tionary computing

1. INTRODUCTION
Performance graphs, such as the one in Figure 1, are often

used to illustrate the effectiveness of evolutionary computa-
tion methods, such as genetic algorithms. However, graph-
ing best-so-far results in this way can be highly deceptive.
Note that Figure 1 shows what appears to be impressive
performance for an algorithm. Surprisingly, it is nothing
more than the best-so-far results for random search. This
work focuses on three common pitfalls of some algorithmic
performance metrics: failing to establish a baseline for com-
parison (see Section 2), failing to perform significance testing
(see Section 3), and insufficient sample size (see Section 4).

In the literature, raw fitness values for individuals are gen-
erally not shown. Instead, results commonly are presented
using the best-so-far algorithmic performance metric [?,
3, 4, 7], which is a metric for comparing the performance
of an algorithm, not of a single individual. The analysis of
results, comparisons of methods and discussions on an algo-
rithm’s traction on a problem, frequently refer to best-so-
far fitness results. As with other algorithmic performance

Copyright is held by the author/owner(s).
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
ACM 978-1-60558-130-9/08/07.

 2200

 2220

 2240

 2260

 2280

 2300

 2320

 2340

 0  20  40  60  80  100 120 140 160 180 200
Fi

tn
es

s
Generation

Figure 1: A regular best-so-far curve from an arbi-
trary problem

metrics, misused results from the best-so-far metric can
be misleading and result in incorrect conclusions.

2. NO BASELINE COMPARISON
The term traction is commonly used when analyzing ex-

perimental results. However, what is traction? How is it
defined? A plausible definition of traction is finding better
and better solutions as learning progresses. Hence, traction
on an arbitrary problem using search method X is defined
to be: BSFX(g+1) ≥ BSFX(g) where BSFX(g) is the best-
so-far fitness at generation g. Such a simple definition of
traction on a problem is of questionable usefulness as best-
so-far is always monotonically increasing. The particular
choice of search method is irrelevant as even random search
shows traction on every problem.

Instead we propose that traction be defined as an algo-
rithm having a best-so-far fitness that outperforms ran-
dom search. Traction using search method X is defined to
be: BSFX(g) ≥ BSFrandom(g) where BSFX(g) is the best-
so-far fitness at generation g.

Traction is now a comparative term, not an absolute one.
A particular method, such as a genetic algorithm, would
be said to have traction on a problem relative to another
method, like random search. This definition of traction re-
quires another method for comparison, hence the need for a
baseline method to compare to. Random search is a logical
choice since it is the simplest search method and is trivially
implemented. Also, any decent search method should out-
perform random. This new definition of traction provides
us with a much stronger and less ambiguous term.
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3. NO SIGNIFICANCE TESTING
This new definition of traction has introduced an unde-

fined term. Traction on a problem is said to outperform
random, but what does it mean to “outperform” another
method? If the results are drawn by a simple visual com-
parison of plots or of final best-so-far fitness values, the
conclusion may be unsound and statistically false. A differ-
ence between the final best-so-far values does not guaran-
tee a difference in the means of the underlying distributions.
Performing statistical confidence tests on experimental data
will improve the quality of the conclusions. The simplest
statistical significance test to use is the Student’s t-Test at
a minimum of a 95% confidence level to test the final best-
so-far fitness of all runs [5]. A more sophisticated and
detailed approach using a randomized ANOVA is proposed
by Piater et al. [9].

4. INSUFFICIENT SAMPLE SIZE
The solution spaces of most problems for which genetic

algorithms are applied are too large to practically perform an
exhaustive search, thus genetic algorithms search a relatively
small number of solutions. The final fitness of a population
is dependent upon the individuals in the initial population
and the random choices made throughout the run. Thus, a
very poor initial population can hamstring the ability of a
genetic algorithm to find good solutions [2, 6, 8].

The independence between runs makes it difficult to make
a good estimation of the expected performance of on a given
problem since there is the potential for a large variance be-
tween runs. Error in estimation can come from the samples
being clustered together at one extreme of the range of fit-
ness values. This clustering can have a very small variance
in the best-so-far fitness values. However, this does not
actually indicate that the observed median is close to the
actual median as the sample consists of outliers. Another
source of error in estimation comes from the samples possi-
bly covering a wide range of values. This results in a very
large variance, meaning the actual difference between the
observed median and actual median is irrelevant as there
can be no confidence in the observed median.

Small sample sizes and the stochastic nature of genetic
algorithms makes them susceptible to bad statistics. Since
a majority of the analysis performed on the experimental
results in evolutionary computation is of a statistical nature,
it is important that the sample size be large enough for the
statistics to be meaningful. It is recommended that multiple
runs, at least 30, be done so as to have a sufficiently large
sample size and ensure statistical significance [1, 7]. With a
large number of runs supporting the results, the conclusions
drawn from the results are much better supported.

5. CONCLUSIONS
Many papers in the evolutionary computation literature

use the best-so-far algorithmic performance metric to an-
alyze their results. It produces pleasing plots by remov-
ing the noise that is frequently seen in other metrics such
as current-population-mean or current-population-
best. Intuitively, best-so-far is a good algorithmic per-
formance metric. However, there are serious problems if it
is used incorrectly. Sense it is monotonically increasing and
never shows a degradation in algorithm performance, best-

so-far can lead to a false sense of success of in regards to
an algorithm’s performance.

There are three common pitfalls researchers can run into
when presenting their experimental results using best-so-
far. These pitfalls are: no baseline comparison, lack of sig-
nificance testing, and insufficient sample size. Best-so-far
is particularly susceptible these pitfalls because it is mono-
tonically increasing. The use of a baseline for comparison
makes best-so-far a meaningful metric for comparisons.
Traction on the problem is thus defined as outperforming
the baseline. Random search is suggested as a baseline since
any viable search method must be able to outperform it.
Comparisons made by simply observing the difference of
two fitness values are not always accurate since the num-
bers being compared are from multiple independent runs.
Therefore, significance testing, such as the Student’s t-test,
is important as it indicates whether or not the observed dif-
ference is significant. When comparisons between methods
are made, a single run is insufficient as there can be no sta-
tistical confidence in any conclusions drawn from a single
data point. Hence, a large number of runs, at least 30, is
needed for statistical confidence in any conclusions. Despite
the potential pitfalls of using best-so-far, it is still a useful
algorithmic performance metric when used cautiously, and
is best utilized when comparing two different methods and
not as a stand-alone metric.
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