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ABSTRACT

This paper studies the issue of space coordinate change in
genetic algorithms, based on two methods: convex quadratic
approximations, and principal component analysis. In both
methods, the procedure employs only the objective function
samples that have already been obtained through the usual
genetic algorithm operations, without the need of any addi-
tional function evaluation. The two procedures have been
tested over a set of benchmark problems, and the data has
been analyzed via a stochastic dominance analysis proce-
dure. In both cases, the results suggest that in the trans-
formed coordinates the genetic algorithm can able to deal
with ill-conditioned problems in less iterations and with greater
proportion of successful attempts, in comparison to the ge-
netic algorithm without coordinate transformation.
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sis—Optimization
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1. INTRODUCTION
Coordinate change procedures have been applied in many

optimization techniques. In the majority of the cases, an ap-
proximation for the function is built and is used to change
the coordinates of the variable space. In the context of ge-
netic algorithms, a previous work has already studied co-
ordinate change, for enhancing the algorithm convergence
properties: the paper [4] has proposed quadratic approxi-
mations for coordinate correction, inside the iterations of
genetic algorithms, leading to coordinates in which the con-
tour surfaces are maximally regular.

This paper presents a further refinement of the procedure
proposed in [4], and proposes another possibility of employ-
ing coordinate change inside the iterations of genetic algo-
rithms: the matrix of Principal Component Analysis of the
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current population is used for coordinate correction. Us-
ing the individuals, a Principal Component Analysis (PCA)
procedure is employed and the coordinate change matrix of
PCA is used to change the coordinates of the variable space.
This leads to coordinates in which the variables are approx-
imately uncorrelated.

The coordinate changes, based on the quadratic approxi-
mation and on the PCA, have been coupled to a real-coded
GA and have been tested with some analytical functions
found in the literature. A stochastic dominance analysis
procedure has been employed on the results, suggesting that
both methodologies of coordinate change, when coupled with
GA, can outperform the simple GA.

2. COORDINATE CHANGE MATRIX
The quadratic approximation for the function is built us-

ing only the current population and the function evaluations
over previous populations, in order to fit a convex quadratic
approximated function for the objective function. In this
way, no additional function evaluation is necessary. The co-
ordinate change methodology intends to define new coordi-
nates for the problem in such a way that the contour surfaces
of the quadratic approximation become spheres. The Hes-
sian matrix of this approximation is used in the coordinate
change procedure. For more detailed information, see [4].

Principal Component Analysis (PCA) [1] is a procedure
that is employed to transform a set of correlated variable
into a new set (sometimes smaller) of uncorrelated variables.
The procedure of PCA is employed here with the purpose
of re-scaling the space directions, reducing the difference be-
tween the data variances in the different directions (the data
variance becomes similar in all space directions). The elim-
ination of some dimensions is not employed here.

3. COORDINATE CHANGE OPERATION
Consider the nonlinear unconstrained problem where f(·)

is a real-valued nonlinear function. The coordinate change
methodology intends to define new coordinates that are fa-
vorable for the application of further algorithm operations.
In both cases of quadratic-approximation and PCA coordi-
nate change, the variable transformation becomes:

x̃ = V x

x = V −1x̃

(1)

The coordinate change is expected to enhance the motion
of the GA population toward the point of minimum of the
objective function, by performing an operation that becomes
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favorable in an “average” sense, over the regions of the space
that have been already visited by the GA populations. It is
worthwhile to notice that the coordinate change only affects
the coordinates of the population. The objective function is
always evaluated in the original coordinates. The proposed
methodology, in any case, is very simple and can be included
in the iteration cycle of any genetic algorithm.

4. RESULTS
The comparison approach proposed is an adaptation of

the multiobjective procedure for evaluation of evolutionary
algorithms described in [3]. An algorithm is evaluated by
two different cost factors:(i) the number of function evalua-
tions needed to reach a stopping criterion; and (ii) the value
of the objective function that is found after the optimization
procedure. The algorithm is run until the objective value is
not enhanced after 100 generations. When this condition
occurs, the number of function evaluations that is assigned
to the algorithm as a cost function is the number of func-
tion evaluations that was necessary for reaching at the first

time such objective function value. If the algorithm exceeds
a maximum of 100 generations without reaching a stable
objective function value, then the function evaluation cost
factor becomes 100 × popsize, and the algorithm stops.

The pair of merit functions (i) and (ii) makes possible the
comparison of algorithms when some of them are not able, at
all, to find the best solutions, up to a reasonable number of
function evaluations. Such comparison makes sense under
the assumption that an algorithm that does not find the
best solution is still useful if it can find a sub-optimal “good
solution”with a reasonable computational effort. Such merit
factors, instead of being evaluated via their average values,
are evaluated here via an approximation of the first-order
stochastic dominance concept [2].

In order to implement the methodology, the experiments
described in this section employ a simple version of a Genetic
Algorithm with real encoding. The purpose of these exper-
iments is to determine the effect of the coordinate change
procedure on the performance of the simple GA. For brevity,
the standard GA is denoted by sGA, the GA with coordi-
nate change based on quadratic approximation is denoted
by qaGA and the GA with coordinate change based on prin-
cipal component analysis is denoted by pcaGA

The three algorithms have been tested with quadratic
functions with minimum at the space origin, with dimen-
sion equal to 2, 3 and 4, and different sets of eigenvalues
(see Table 1). Such functions, although presenting a very
particular structure, are suitable for evaluating the ability of
the proposed methodologies for dealing with ill-conditioned
problems. The algorithms have been tested also with a set
of benchmark functions found in the literature (only the re-
sults with the Rastrigin function are commented here). For
each test function, all algorithms (the sGA, the qaGA and
the pcaGA) have been executed 50 times, starting with the
same basic parameters and the same initial population and
the comparisons have been made following the approach dis-
cussed previously.

In all quadratic problems, the algorithms qaGA and pcaGA

have outperformed the sGA in both merit functions consid-
ered (fo and ne). However, the algorithms qaGA and pcaGA

are not ordered by a relation of “better than”: the qaGA has
presented a smaller number of function evaluations up to the
convergence, while the pcaGA has presented a convergence

Table 1: Set of eigenvalues for the Hessian matrix,

for quadratic problems of dimensions 2, 3 and 4.

Problem Dimension Eigenvalues

P1 2 1,100

P2 2 1,1000

P3 3 1,10,100

P4 3 1,100,1000

P5 4 1,10,100,1000

to better objective function values. It can be seen that,
with the usage of the two coordinate change methodologies
described in this work, the proposed algorithms qaGA and
pcaGA become less sensitive to the condition number of the
problem than the original GA.

In the case of the Rastrigin function, the pcaGA dominates
the qaGA, which in turn dominates the sGA.

5. CONCLUSIONS
The idea of transforming the coordinates of the decision

variable vector for enhancing optimization procedures has
been investigated in the context of a GA. This paper has
proposed two methods for performing such transformation:
(i) using the Hessian matrix of a convex quadratic approxi-
mation of the objective function, and (ii) using the principal

component analysis coordinate transformation matrix, ap-
plied over the population of the GA. The results obtained
here suggest that such coordinate transformation can be ef-
fective for dealing with ill-conditioned functions.
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and P. F. Fleming. Quadratic approximation-based
coordinate change in genetic algorithms. In Proceedings

of the IEEE Congress on Evolutionary Computation,
Vancouver, CA, 2006. IEEE Press.

1150


