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ABSTRACT
Single and multi-step time-series predictors were evolved for
forecasting minimum bidding prices in a simulated supply
chain management scenario. Evolved programs were allowed
to use primitives that facilitate the statistical analysis of his-
torical data. An investigation of the relationships between
the use of such primitives and the induction of both accurate
and predictive solutions was made, with the statistics cal-
culated based on three input data transformation methods:
integral, differential, and rational. Results are presented
showing which features work best for both single-step and
multi-step predictions.

Categories and Subject Descriptors
I.2 [ARTIFICIAL INTELLIGENCE]: Automatic Pro-
gramming

General Terms
Algorithms, Performance, Economics, Management

Keywords
Prediction/Forecasting, Statistical Time-Series Features,
Single-Step Prediction, Iterated Single-Step Prediction

1. INTRODUCTION
In today’s highly dynamic, time-constrained environment,

developing effective and efficient decision support systems is
a key challenge. In the domain of supply chain management
(SCM) concerns include the planning and coordination of
the activities of organizations from getting raw materials,
manufacturing goods to delivering them to customers, sup-
porting dynamic strategies is a major but unresolved issue.
The ability to learn and adapt to new conditions in the envi-
ronment is of paramount importance as the complex nature
of the domain renders the application of analytical algo-
rithms for decision-making problematic.
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There is obviously a great need to simulate such dynamic
environments and provide test-beds in order to evaluate the
applicability and efficiency of various machine learning ap-
proaches to the problem. The TAC SCM (Trading Agent
Competition - Supply Chain Management) game was in-
troduced by Carnegie Mellon University and the Swedish
Institute of Computer Science in 2003. Ever since, it be-
came an annual event in which a number of teams from
around the world compete against each other in a simu-
lated supply chain domain. The game is now probably the
best vehicle for testing SCM agents as it encapsulates many
of the tradeoffs that could be found in real SCM environ-
ments (time-constraints, network latency, unpredictable op-
ponents, etc.). All constituent parts of a supply chain are
highly connected and interdependent. Being competent in
one of them does not guarantee improvement of the overall
performance. Many researchers follow a divide-and-conquer
strategy by decomposing the problem and tackling each sub-
task using the most appropriate method with the expecta-
tion that the final integration will be able to reach an opti-
mal or near-optimal performance.

The TAC SCM scenario is very briefly defined
as follows (a detailed description can be found in
http://www.sics.se/tac/): Six agents compete in the game,
acting as PC manufacturers. They buy components from
suppliers, assemble them in PCs and sell them to customers.
The behaviour of both suppliers and customers are simu-
lated by the TAC server. The aim of each participating
manufacturer is to maximize their profit; the agent with
the highest bank balance at the end of the game wins. The
game lasts for 220 simulated days. On every day of the game
each agent is faced with the following challenging tasks: (i)
component procurement, (ii) product sales, (iii) production
scheduling, and (iv) delivery scheduling. During procure-
ment, an agent sends request-for-quotes (RFQs) for compo-
nents and decides on which supplier offers to answer with
order. On the sales side, an agent gets customers RFQs
for PCs, decides on which RFQs to respond with an offer
along with the offer price to set. To deal with customer
orders, an agent makes decisions on which PCs to produce
and which PCs to deliver. Potential expenses are attributed
to component purchase, storage cost for keeping an inven-
tory of components and PCs, penalties for late deliveries
of customers’ orders and bank overdrafts. Income sources
consist of revenue from PCs sales and interest on positive
bank balance. One of the most important phases of the
SCM life cycle deals with submitting bidding prices during
auctioning of customer offers. Each customer sends RFQs
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for PC manufacturing and participating agents offer their
bids. The lowest price proposed wins the auction and the
respective agent is allocated the manufacturing task.

This paper deals with the problem of predicting winning
bidding prices for customer offers. For this purpose, we have
formulated the problem of price prediction into the prob-
lem of time-series modeling and forecasting based on his-
toric data of auction winning prices in order to pursue prof-
its increase. We treat the SCM environment as a dynamic
black-box system that generates time-series in terms of win-
ning bidding-price reports that reflect the variable macro-
economic factors influencing the market at a particular point
in time. Genetic Programming (GP) [6] has been success-
fully applied to the induction of programs that perform time-
series trend modeling tasks, and has, in many cases, shown
to outperform other traditional techniques in this problem
domain. Representative, recent studies include [6, 16, 14, 8,
5, 13, 2, 9, 15, 10, 4, 3, 17, 12, 11, 7]. An aspect of funda-
mental engineering significance is to structure the represen-
tation space in such a way so as to increase the evolvability
of solutions in that space. In the GP paradigm, the care-
ful design of language constructs can greatly increase the
range and behavioural diversity of possible programs within
a programming space, rendering their discovery possible as
opposed to a programming space that does not get to include
them in the first place. The majority of previous GP systems
have been exploring a search space populated by programs
representing non-linear combinations of elementary mathe-
matical functions and time-series terminal data. However,
notable exceptions tackled the time-series modeling task via
the use of technical-analysis primitives [3] or high-order sta-
tistical features [14]. In this paper we attempt a further
step towards better understanding the issues involved in the
area of time-series analysis and modeling via statistical lan-
guage constructs in GP. Furthermore, we are investigating
their effectiveness in short-term (prediction of only the next
value) and long-term (prediction of 2 or more steps) predic-
tions. A significant issue in the development of GP models
for financial data processing is how to prepare the raw input
observables in order to facilitate their subsequent learning.
Previous work [5] has shown that different program repre-
sentations are sensible to different data preprocessing tech-
niques. Intuitively, there is a strong coupling between the
data processing toolbox available to an evolved program and
the nature of data presented to it during fitness evaluation.
We similarly raise this issue in the present study, and in-
vestigate the impact of data transformation techniques for
extracting significant information from the observables to
the performance of programs that are equipped with statis-
tical processing capabilities. Finally, a literature review of
the previous approaches to the task of bidding price pre-
diction in the SCM TAC community has not revealed any
work that exploits the use of GP. The contribution towards
that direction is to study a different family of predictor rep-
resentation and uncover its merits and deficiencies in that
particular problem domain. There thus exist ample benefi-
ciary potential from the current study.

2. TIME-SERIES MODEL LEARNING
In time-series prediction the task is to learn a model that

consists of the best possible approximation of the stochastic
system that could have generated an observed time-series.
Given delayed vectors v, the aim is to induce a model f that

maps the vector v to the value xt+1. That is,

xt+1 = f(v) = f(xt−(m−1)τ , xt−(m−2)τ , . . . , xt) (1)

where m is embedding dimension and τ is delay time. The
embedding specifies on which historical data in the series the
current time value depends. This empirical study uses delay
vectors with parameters m = 20 and τ = 1. Additionally,
we are interested in testing the scalability of our approach
using both short-term and long term predictions. Single-
Step Prediction (SSP) is used to predict one value xt+1 of
the time series when all inputs xt−m, . . . , xt−2, xt−1, xt are
given. Iterated Single-Step Prediction (ISSP) is employed to
forecast further than one step in the future. Each predicted
output is fed back as input for the next prediction while all
other inputs are shifted back one place. As a result, the
input consists partially of predicted values as opposed to
observables from the original time series. That is,

x′
t+1 = f(xt−m, . . . , xt−1, xt); m < t

x′
t+2 = f(xt−m+1, . . . , xt, x

′
t+1); m < t

...

x′
t+k = f(xt−m+k−1, . . . , x

′
t+k−2, x

′
t+k−1); m < t, k ≥ 1

(2)

where k is the prediction step. By applying ISSP to the
evolved predictor we can predict time series values further
than one step into the future. Here, k is set to 10. Long-
term predictions involve a substantially more challenging
task than short-term ones. The fact that each newly pre-
dicted value is partially dependent on previously generated
predictions creates a reflexive relationship among program
outputs, often resulting in inaccuracy propagation and an
associated rapid fitness decrease with each additional fitness-
case evaluation. It has been shown [10, 9] that long-term
predictors are sensitive in their initial output values and
that inaccuracies of initial predictions are quickly magnified
with each subsequent fitness evaluation iteration.

3. METHODS

3.1 Data transformation
Data transformation deals with techniques for extracting

significant information from the observables, rendering them
more amenable to training a learner. Three techniques are
considered in this paper and compared in terms of their
influence in learning efficient time-series predictors. Prior
to each transformation, normalisation is performed to miti-
gate effects due to the magnitudes of time-series values. We
simply scaled each value by dividing it with the maximum
value in the time-series, thus converting the input values
in the 0 < x ≤ 1 range. Statistical stationarity has been
shown to be of great importance in the domain of time-
series modeling. A stationary time series is one whose sta-
tistical properties such as mean, variance, autocorrelation,
etc. are constant over time. Most statistical forecasting
methods are based on the assumption that the time series
can be rendered approximately stationary through the use
of mathematical transformations. A stationarised series is
relatively easy to predict: you simply predict that its sta-
tistical properties will be the same in the future as they
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have been in the past. The predictions for the stationarised
series can then be “untransformed” by reversing whatever
mathematical transformations were previously used, to ob-
tain predictions for the original series. The transformations
and their respective reversals are presented below:
Differential Transformation. Differencing is a simple op-
eration that involves calculating successive changes in the
values of time-series (yt ← xt − xt−1). It results in a sta-
tionary series. We consider a transformation by which each
value is substituted by its variance from the mean of its
neighboring data within a predefined interval l [5].

xd = xt − 1

l

t−1X
i=t−l

xi (3)

where xd is the difference obtained from its initial value xt

minus the average of the time-series fragment that includes
l previous neighbors. The advantage of such differencing is
that it makes the series smoother than using (yt ← xt −
xt−1), thus relaxing the requirement of closely fitting the
trend. The reverse transformation for obtaining predictions
for the original series is as follows:

Revd = P +
1

l

lX
i=1

xi (4)

where P is the prediction value using equation 3, l is the
number of neighbours and xi is the ith element of the de-
layed vector.
Rational Transformation. The effect of this transforma-
tion is similar to this of equation 3 but results in series with
weaker oscillations by smoothing large magnitudes in the
differences of consecutive values [5].

xr = ln

„
xt

xt−1

«
(5)

where xt and xt−1 are consecutive data values in the se-
ries. The reverse transformation is as follows:

Revr = e[P+ln(x1)] (6)

where P is the prediction value using equation 5 and x1

is the first element of the delayed vector.
Integral Transformation. This technique eliminates
noise from the series (but does not stationarise the series)
replacing each value by its moving average computed with
a smoothing period of l neighbours according to [5]:

xi =
1

l

t+(l−1)/2X
k=t−(l−1)/2

xk (7)

where l is the number of neighbours that are considered
in the moving average filtering and xk is the kth series value.
The reverse transformation takes the following form:

Revi =
1

l − ˚
l
2

ˇ
0
B@P · l ·

l−� l
2�X

k

xk

1
CA (8)

where P is the prediction value using equation 7, l is the
number of neighbours, and xk is the kth element of the de-
layed vector.

3.2 Program Representation Language
Evolvable individuals employ an expression-tree represen-

tation. The primitive language is depicted in Table 1. Time-
series data is presented to the program in two forms. Firstly,
as scalar values representing the previous 20 data points.
Secondly as a list (indexed from zero) of 20 values where the
first data element (in index 0) represents the series value at
time t, the second element represents the series value at time
t−1 and so on up to time t−19. The implementation of lan-
guage constructs for time-series statistical analysis require
information about the data points these statistics should be
calculated on. Statistical primitives accept 3 arguments, the
first being the time-series and the remaining two define the
left start (left) and end (right) bounds of the fragment of
the time-series to consider in the statistical function. Start
specifies how many steps back from the prediction (at time
t + 1) the statistics should be calculated from, while end
specifies the number of data points to include in the statis-
tics, given by: datapoints = end−start+1. If the start and
stop positions specify a negative fragment then the opposite
interpretation is taken, also, if they are out of time-series
length bounds, their values are induced by taking the mod-
ulus to the time-series length. The statistical function diff

is the difference between the average values of two halves of
a time-series fragment:

Diff(L, s, e) =

0
@ 1

e−s
2

e−s
2 +sX
k=s

Lk

1
A−

0
B@ 1

e−s
2

eX
k= e−s

2 +s

Lk

1
CA
(9)

where L is the input list representing the time-series and
s, e are the start and end indices respectively. First order
moment pdm1 and second order moment pdm2 are position
dependent statistics that measure how the high-valued series
points are distributed away from the center of a time-series
fragment. The first order moment is the average of the time-
series values weighted by their absolute distance from the
middle point of the fragment and the second order moment
is the variance of these values:

pdm1(L, s, e) =
1

e− s

eX
k=s

h
Lk ·

˛̨̨
k −

“e− s

2
+ s

”˛̨̨i
(10)

pdm2(L, s, e) =

1

e− s

eX
k=s

nh
Lk ·

˛̨̨
k −

“e− s

2
+ s

”˛̨̨i
− pdm1

o2

(11)

where Lk is the kth input list element and s, e are the
start and end indices respectively.

3.3 Fitness functions
The fitness function used during training of single-step

predictors takes the form of Mean Squared Error (MSE)
defined as:

MSE =
1

N

NX
k=1

(xk − x′
k)

2
(12)
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Table 1: Language for evolving Predictors

Method Argument(s) Return

+, −, ∗, / double, double double
exp, ln, sqrt, sin, cos double double
mean, std.dev., skewness

List, double, double doublekurtosis, min, max, diff
pdm1, pdm2

Terminal Value Type

Constant 25 rnd. in [0,100] double20 previous values
Parameter 1 time-series List

where xk and x′
k are the actual and predicted values re-

spectively, and N is the number of training cases. For iter-
ated single-step predictions we used an augmented version
of mean squared error which rewards programs that make
more accurate predictions in the far future. The rationale
for this selection pressure is that forecasts in the near future
are easier than in the long term. Augmented Mean Squared
Error (AMSE) takes the following form:

AMSE =
1

N

NX
i=1

(1 + P ·A) · (xk − x′
k)

2
(13)

where xk and x′
k are the actual and predicted values re-

spectively, N is the number of training cases, P is the pre-
diction step and A is an augmentor coefficient which is set
to 0.05.

3.4 Evolutionary Algorithm, Variation opera-
tors, and Run Parameters

For evolutionary algorithm we used a panmictic, genera-
tional genetic algorithm combined with elitism (0.5%). The
algorithm uses tournament selection with a tournament size
of 4. The evolutionary run proceeds for 50 generations and
the population size is set to 500 individuals. Evolution halts
when all of 50 generations have elapsed. Ramped-half-and-
half tree creation with a maximum depth of 7 is used to
perform a random sampling of program space during the
initial generation. During the run, expression trees are al-
lowed to grow up to depth of 17. Our search employs a
mixture of mutation-based variation operators [1]: (i) All
Nodes Mutation, (ii) Macro Mutation, (iii) Point Mu-
tation, (iv) Swap Mutation, (v) Grow Mutation, (vi)
Truncation Mutation, (vii) Gaussian Mutation. These
variation operators are applied in the following way: A sam-
ple S from a Poisson random variable with a mean of 2 was
generated. S random mutation operators were uniformly
picked (with replacement) from the set of available oper-
ators and were applied in sequence using a pipe-and-filter
pattern (i.e. Mutant=(Swap(Grow(Parent)))). Let this type
of mutation be called Variation-Bundle. In order to ac-
count for the exploration-exploitation trade-off we allow for
the selection of either a Variation-Bundle or a single point-
mutation (each node is being mutated with a probability
of 15%) using an adaptive probability that is induced as
follows: Probsingle−mut = k ∗ (gencurrent/genmax), where
gencurrent and genmax are the current and maximum num-
ber of generations in the evolutionary run respectively, and
k is a discount coefficient which is set to 0.55.

Table 2: Summary of prediction performance
Training Testing

MSE RSE MSE HIT APC

Single-Step Prediction

Rational .0035 .4088 .0045 .9274 .1896
Differential .0009 .7650 .0051 .9200 .1889

Integral .0004 .9928 .0081 .9128 .1871

Iterated Single-Step Prediction

Rational .0375 .4231 .0401 .4686 .0136
Differential .0110 .7606 .0223 .5063 .0156

Integral .0314 .9385 .0469 .5021 .0155

3.5 Training/Test data sets
Training sets have been generated within the TAC SCM

simulation. Information available during the game includes
the lowest and highest order prices for each PC type from
the previous day, and also the request volume, order volume,
and average order price during the reporting period. Price
reports are available to all competing agents on a daily basis.
Information on bidding prices of competitors is not available
to TAC agents. Using the price reports we built the time
series of the lowest prices and these were used during the
training phase. Thus, the training set consisted of 65 price
series for each PC type, collected in 65 independent SCM
simulation runs. Testing involved utilising evolved predic-
tors in the TAC SCM simulation live (against the same set of
competitor agents). Results are based on 20 games. Data-
sets have been derived from log files generated while playing
against agent distributions published by participating teams
and can be available upon request.

3.6 Prediction performance measures
We evaluated the evolved predictors in terms of MSE (de-

picted in equation 12), Ratio of Squared Errors (RSE) [5],
Hit Percentage (HIT) [5] and Average Percentage Change
[14] (APC).

Like MSE, RSE is used to evaluate the level of fitting,
but in addition, it is able to show an improvement over a
random walk model [5]. It is defined as:

RSE =

NP
i=1

(xi − x′
i)

2

NP
i=2

(xi − xi−1)
2

(14)

where x and x′ are the actual and predicted values respec-
tively, and N is the number of training cases.

HIT provides an indication of the accuracy that the
evolved model has followed the trend of the observables. It
is defined as [5]:

HIT =
1

N − 1

NX
i=2

8>><
>>:

1 if Δxi > 0 ∧Δx′
i > 0

∨ Δxi < 0 ∧Δx′
i < 0

0 if Δxi > 0 ∧Δx′
i < 0

∨ Δxi < 0 ∧Δx′
i > 0

(15)
where N is the number of points in the time-series and

Δxi = xi − xi−1 is defined as the difference of two consec-
utive points. Finally, APC is a performance measure that
takes into consideration the magnitude of the incorrect pre-
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Figure 1: Average percentage of coverage of time-series points (TSP) by different statistical primitives. (a)
Differential-Single; (b) Rational-Single; (c) Integral-Single; (d) Differential-Iterated; (e) Rational-Iterated;
(f) Integral-Iterated.

Table 3: Average depth of best-of-run predictors
(std. deviation in parentheses)

Single-step Iterated Single-step

Rational 9.49 (4.13) 8.69 (4.32)
Integral 6.55 (4.49) 5.12 (4.67)

Differential 7.64 (5.11) 6.05 (4.52)

diction. It is defined as:

APC =
1

N − 1

NX
i=2

8>>>>><
>>>>>:

+
“ |xi−xi−1|

xi−1

”
if Δxi > 0 ∧Δx′

i > 0

∨ Δxi < 0 ∧Δx′
i < 0

−
“ |xi−xi−1|

xi−1

”
if Δxi > 0 ∧Δx′

i < 0

∨ Δxi < 0 ∧Δx′
i > 0

0 if xi−1 = 0
(16)

where N and Δxi are defined as in equation 15. The
bigger the value of this metric, the better the predictor’s
performance.

3.7 Context of genotypic analysis
Evolved predictors are subjected to genotypic analysis

in order to infer relationships between the properties of
their constituent expression-tree nodes and prediction per-
formance. These quantitative properties concern:
(i) Average use of statistical primitives (U) within the
expression-tree structure. This is simply the count of dis-

tinct statistical tree-nodes in the whole population divided
by the number of individuals. We calculate one average per
statistical primitive included in the primitive language.
(ii) Percentage of time-series coverage (C). During program
execution, the invocation of a statistical function requires
that the start and end bounds of the list (representing the
time-series) should be specified. We monitor every such
function invocation during program evaluation and calcu-
late both the percentage of individual point usage, and the
coverage (in terms of the number of points used) of the time-
series as a whole. Averages are maintained for the coverage
for each statistical primitive separately.
(iii) Skewness of distribution of temporal position of series
values (S). The List representing the time-series stores the
value of the series xt in index 0, while the value at time
xt−i in index i. Every time a point is being accessed we
record its index in the List. The skewness of the distribu-
tion of the values of these list indices gives an indication of
the historic information that the prediction is based on. A
positive skewness indicates that more series values are being
accessed from the beginning of the List while a negative one
indicates that the prediction is based more on values of the
distant past. The skewness is calculated for every evolved
predictor based on each different statistical primitive (note
that in order to calculate the skewness we include the ex-
tremities in the sample, which are the values 0 and 19 – the
List bounds). Subsequently, averages are induced. Let us
illustrate this with an example. Suppose a statistical prim-
itive is applied to a time-series covering values with indices
0,1,2,3,4. The skewness of list {0,0,1,2,3,4,19} is 2.38. On
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Figure 2: Average usage of statistical features. (a) Single; (d) Iterated. Average percentage of coverage of
time series points. (b) Single; (e) Iterated. Average depth of statistical features within the expression-tree
structures. (c) Single; (f) Iterated.

the other hand if the primitive is applied to values residing
in indices 10,11,12,13, the skewness of list {0,10,11,12,13,19}
is −0.91. This indicates how the skewness of the distribu-
tion of series points covered can reveal temporal information
of historical data used for prediction.
(iv) Average depth of statistical primitives (D) within the
expression-trees. The hierarchical nature of a tree data
structure imposes a concomitant effect on the level of im-
pact of various tree-nodes in the overall program fitness. It
is generally true that, in the absence of side-effecting primi-
tives, tree-nodes near the root contribute to a greater degree
than tree-nodes in lower tree-levels. When combined with
the average primitive usage, this genotypic property cap-
tures information about the effectiveness of specific statisti-
cal primitives within the current evaluation context, which
in turn provides an indication of their overall appropriate-
ness to the prediction task. Average statistical primitive
depths are recorded both in individual and population lev-
els.

4. RESULTS
We performed 80 independent experimental runs for each

single-step and iterated single-step prediction (with a max-
imum step of 10) tasks under every data transformation
technique. As already mentioned (section 3.5), learning was
based on 65 time-series of minimum bidding prices. For
testing, we used the best evolved predictors of each type and
ran 20 additional simulations in order to collect performance

statistics. The genotypic analysis (discussed in section 3.7)
is based on 80 evolved programs for each prediction type.

Table 2 illustrates training and testing performance re-
sults. An initial, general observation is that both single-
and multi-step predictors achieved competent results under
all three data transformation techniques. During the train-
ing phase of simple-step predictors, an initial observation
concerns potential overfitting under differential and integral
transformations as this is evidenced by the very low mean
square error. Despite this observation, their evolved solu-
tions show a similar, good generalisation capability as this
is measured by HIT and APC. Finally, we observe that
single-step predictor training with the rational series yielded
an overall better performance in the test data. In the case of
multi-step prediction the differential series appear to achieve
better generalisation results despite the low training error
possibly indicative of overfitting. As before, the magnitude
of differences is small, rendering all three data transforma-
tion techniques amenable for use in learning multiple-step
predictors.

Figure 1 shows the average percentage of time-series
points used by statistical primitives as measured during
genotypic analysis. The first observation is that in both
prediction types, under all transformations, statistical oper-
ations are being applied the most to series values closer to
the present. It appears that all cases make heavy use of the
last 5 days. We also calculated the skewness of the distribu-
tion of the used points’ temporal characteristic (as defined
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Table 4: Pearson correlation coefficients between genotypic features and prediction performance
SINGLE-STEP PREDICTORS (sample size in parentheses)

Mean Squared Error (MSE)

S diff C pdm1 U pdm1 C sdev D sdev S sdev S skew S min S mean
Rational -.461 (30) -.241 (57) -.158 (57) .167 (38) .253 (38) -.333 (38) -.392 (47) -.303 (29) -.202 (29)

U min S sdev D min S pdm1 C kurt C sdev S kurt S pdm2 C pdm1
Integral -.465 (28) -.456 (40) -.380 (28) -.372 (23) -.316 (28) .213 (40) .306 (23) .395 (23) .730 (23)

S diff S pdm2 S min U diff U min U pdm2 D min C sdev C kurt
Different. -562 (25) -551 (21) -511 (54) -240 (25) -230 (54) -228 (21) -213 (54) .630 (22) .481 (21)

Hit Percentage (HIT)

C sdev D sdev S diff S sdev S pmd1 U kurt S mean U mean C kurt
Rational -.260 (47) -.196 (47) -.172 (29) .138 (47) .120 (30) .121 (29) .153 (46) .244 (29) .290 (57)

D pdm1 D sdev C min S min U min C kurt S sdev S pdm1 U pdm1
Integral -.180 (17) -.104 (17) .359 (40) .366 (40) .441 (40) .520 (18) .581 (17) .677 (17) .880 (17)

S kurt D sdev D kurt S sdev S kurt S pdm2 C pdm2 S diff S min
Different. -.26 (20) -.325 (20) -.144 (20) -.112 (20) .197 (20) .243 (19) .313 (19) .389 (25) .471 (21)

ITERATED SINGLE-STEP PREDICTORS (sample size in parentheses)

Mean Squared Error (MSE)

S pdm1 S diff C sdev S max U pdm1 U sdev U kurt D kurt S sdev
Rational -.269 (39) -.231 (38) -.230 (18) -.226 (18) -.208 (39) -.181 (18) .241 (38) .434 (38) .455 (18)

U kurt C kurt U pdm2 U skew D kurt D skew S pdm2 S min S skew
Integral -.567 (13) -.489 (13) -.472 (16) -.466 (13) -.205 (13) .328 (13) .330 (16) .337 (27) .408 (13)

U kurt D kurt S kurt U sdev C diff C sdev D diff D sdev S diff
Different. -.528 (31) -.407 (31) -.377 (31) -.353 (17) -.278 (20) -.228 (17) .202 (20) .258 (17) .263 (20)

Hit Percentage (HIT)

S sdev D diff D sdev S diff S kurt U kurt C sdev S pdm1 S max
Rational -.318 (38) -.254 (18) -.246 (38) -.173 (18) -.159 (19) .302 (19) .334 (38) .341 (19) .462 (18)

D skew D pdm2 D min C pdm2 S kurt S min U min S skew S kurt
Integral -.353 (16) -.167 (16) -.149 (13) -.142 (16) .148 (27) .163 (13) -.388 (13) -.404 (16) .487 (27)

D sdev S diff C kurt D diff S kurt S sdev U kurt S diff C diff
Different. -.312 (31) -.182 (31) -.157 (14) -.154 (31) -.105 (14) .165 (31) .174 (14) .487 (31) -.480 (31)

by the List index in which they reside), we found that for
the multi-step predictors the distribution is more positively
skewed (avg. of 0.69) as opposed to the single-step predic-
tors (avg. of 0.63). This indicates that the multi-step the
predictors are using more series values towards the present
(List index 0). This can be particularly observed in Fig-
ure 1(f), leaving us with the impression that predictors rely
heavily on a very short 5-day-time-window.

A key issue addressed in this paper is the appropriateness
and impact of including statistical primitives when tack-
ling the problem of evolving programs for forecasting. Ta-
ble 4 presents the most interesting relationships that were
revealed between best-of-run predictors’ genotypic charac-
teristics (discussed in section 3.7) and MSE/HIT metrics
used during testing. We calculated Pearson correlation co-
efficients to identify linear relationships using sample sizes
that are indicated in the parentheses next to respective co-
efficients. An important item to note is that when using cor-
relation we do not infer causation rather an “is seen with”
relationship.

The case of single-step predictors under the rational data
transformation showed a negative correlation between C
(percentage of time-series coverage, −0.167), S (skewness of
distribution of temporal position of series values, −0.333) of
std.dev. statistical primitive and MSE. This suggests that
low MSE (good predictor) is seen with high skewness (pre-
diction is based on first indices of the input List) and high
coverage of the input List size. This is also illustrated in
Figure 2(a) which shows that std.dev is frequently used in
the population and that its frequent appearance is justified

by its impact on the overall prediction performance. The
fact that a good predictor bases its future guesses on a time-
window which is placed in the first indices of series values
is also supported by the positive correlation between S and
HIT (0.138), suggesting that high HIT is seen with high
S. This is also illustrated in Figure 2(b) which shows that
under the rational transformation std.dev is being applied
in a small portion of the input list (15% coverage). Another
interesting correlation of negative sign is observed between
D (average depth of statistical primitives) of std.dev. and
HIT (−0.196), which suggests that high coverage is seen
with low depth of std.dev. tree node. This is also apparent
in the positive correlation between D and MSE (0.253). As
one might expect, this claim needs to be made from within a
context identifying the average depth of std.dev. tree-node
within the evolved expression-trees. Figure 2(c) illustrates
that the average depth of std.dev nodes is 2.2 which further
suggests that such nodes reside in the upper tree levels and
they are more likely to have a significant impact in perfor-
mance.

Single-step predictors under the integral data transfor-
mation showed, among others, an overall relationship with
the use of min and std.dev. language primitives. The
average use U of min is negatively correlated with MSE
(−0.465) and at the same time, positively correlated with
HIT (0.441). So, low MSE and high HIT is seen with
high use of min.

In the case of single-step predictors under the the differ-
ential transformation we distinguish the impact of the use
of kurtosis which shows a quite strong positive correlation

1169



(0.481) C and MSE as well as a positive correlation S and
HIT (0.197) suggesting its application to a small interval of
series points near the first indices of the input List. The
negative correlation between D and HIT (−0.144), and the
low average depth depicted in Figure 2(c) supports the ar-
gument of its impact in performance.

Following a similar train of thought, the genotypic analy-
sis of multi-step predictors distinguished:
(i)std.dev. applied under the rational transformation with
high time series coverage (correlation between C and HIT
is 0.334) towards the final indices of the List (correlation
between S and MSE is 0.455). The correlation between D
and HIT is 0.246. Also, diff plays an important role with
a negative correlation between D and HIT (−0.254).
(ii)min applied under the integral transformation shows a
negative correlation between D and HIT (−0.149), and a
negative correlation between U and HIT (−0.388) which
suggests that high average usage of this primitive yields a
high hit percentage. The positive correlation between S
and HIT suggests that this primitive accesses series ele-
ments residing in small indices. In addition, skew appears
to be promising with a positive correlation between D and
MSE (0.328) that is supported by the negative correlation
between D and HIT (-0.353) as well as the average depth
of this statistical primitive in the population (0.94). The
positive correlation between S and MSE (0.408) which is
supported by the negative correlation between S and HIT
(−0.404) suggests that the application of such a statistical
function considers series values in high (towards the end of
the List) indices.
(iii)std.dev. appears valuable when applied under the dif-
ferential transformation showing a positive correlation be-
tween D and MSE (0.258) as well as a negative correlation
between D and HIT (−0.312). The positive correlation be-
tween S and HIT (0.165) suggests that high hit percentage
is seen with the application of this statistical operation in
small indices of the input List.

5. CONCLUSIONS
This paper presented an empirical study on the auto-

matic induction of both single- and multi-step time-series
predictors by means of genetic programming. Constructs for
performing statistical operations on the input series where
included in the primitive language and their effectiveness
has been demonstrated by the evolution of both accurate
(low testing MSE) and predictive (high HIT/APC) mod-
els. Three data transformation techniques were assessed in
terms of their impact on the learnability of the task, all yield-
ing quite similar results, distinguishing rational and differ-
ential transformations for the evolution of single- and multi-
step prediction models respectively. Genotypic analysis of
evolved predictors addressed various aspects of the use of
such statistical primitives and revealed relationships with
observed performance.
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