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ABSTRACT
This article introduces our new approach to program rep-
resentation for genetic programming (GP). We replace the
usual s-expression representation scheme by a strongly-typed
abstraction-based representation scheme. This allows us to
represent many typical computational structures by abstrac-
tions rather than by functions defined in the GP system’s
terminal set. The result is a generic GP system that is able
to express programming structures such as recursion and
data types without explicit definitions. We demonstrate
the expressive power of this approach by evolving simple
boolean programs without defining a set of terminals. We
also evolve programs that exhibit recursive behavior without
explicitly defining recursion specific syntax in the terminal
set. In this article, we present our approach and experimen-
tal results.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming—
program synthesis; F.4.1 [Mathematical Logic and For-

mal Languages]: Mathematical Logic—lambda calculus
and related systems

General Terms
Experimentation, Languages, Theory

Keywords
genetic programming, lambda calculus, polymorphism, types

1. INTRODUCTION
A Genetic Programming (GP) [11] system must be able

to express a solution to the problem that it is computing.
To express problem specific behavior, the system must rely
on the set of primitives (terminals and functions) given to
it as input. However, a GP system often needs to also ex-
press more general programming behavior. If the problem
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requires branching, then the system needs to be able to ex-
press branching. If the solution requires the expression of
recursive behavior, then the system needs to be able to ex-
press recursion. The same is true for common data types
such as lists and pairs.

We have been searching for a generic way of expressing
computational structures in a GP context. We wanted our
representation scheme to have the ability to express general
programming behavior independently of the syntax defined
in its set of primitives and we wanted it to function in a mod-
ular fashion, where computational units would be combined
with other computational units to form complete programs.
We also wanted to retain the ability to include problem spe-
cific constants when needed.

In [2], we presented and motivated System F [5, 14] as our
representation scheme. The current paper describes a GP
system that uses System F as its representation scheme and
provides some preliminary results.

An extension of the simply typed λ-calculus obtained by
adding an operation of abstraction on types, System F pro-
vides a general form of polymorphism. In System F pro-
grams or terms are best seen as computational blocks that
may be plugged into each other to create new blocks [6].
Each term is associated with a type. The type of a program
is seen as a specification of what the program does. Types
also indicate when and how computational blocks may be
combined. We chose System F for the following reasons:

• Language lightness: The pure System F syntax uses
a very small set of symbols. Yet, it is possible to rep-
resent all normal programming structures (recursion,
lists, trees, booleans, looping and so on) from within
the language. In fact, all functions and terminals de-
fined for GP problems in other systems that are not di-
rectly related to the problem such as branching, loop-
ing and recursion constructs can be eliminated for the
same problems expressed in System F.

• Typing structure: System F has variables ranging
over functions, data and types, making the language
very expressive while still maintaining full static type-
safety.

• Strong Normalization: System F programs always
terminate. Partial normalization can be used to par-
tially evaluate parts of programs and can be combined
with abstraction support to devise a hierarchical evo-
lution mechanism that permits the evolution not only
of programs, but also of program patterns.
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In theory, we could do all our programming without going
outside the pure system. This research demonstrates this
by evolving binary boolean operations from empty terminal
sets. In practice, genetic programs need to include primi-
tive external functions and terminals in order to be able to
express a solution to a given problem. These are defined as
symbols and evaluated using a semantic evaluator that gives
them meaning outside their System F representation.

This article is structured as follows: Section 2 describes
System F; Section 3 summarizes related previous work; Sec-
tion 4 describes our use of System F in a GP context; Section
5 describes our experiments and the results we obtained and
section 6 is the concluding discussion.

2. SYSTEM F
A type system is a set of rules that specify how and when

independent computational units may be combined with
each other to form more complex modules. The most basic
combination rule is the rule that allows a function that takes
an object of type A as its first argument to be combined
with an object of type A. However, more complex rules
might be included. In a modular programming environment
where closed independent modules are combined with other
modules, some functions are more useful when the types of
some (or all) of their arguments are left unspecified. A clas-
sic example is an if/then/else function which expresses the
program: “take an argument a of type Boolean and two
arguments b and c as input. Evaluate to b if a evaluates to
true and evaluate to c otherwise”. By not specifying types
for b and c, the function can be used as a branching module
in any context. The only problem is that in order to use the
if/then/else module in a type system, it also needs to have
a type. System F provides a simple and elegant solution by
making it possible for functions to take types as arguments.
For example, in System F, we can express if/then/else by
the program: “Take a type X as your first argument, then
an argument a of type Boolean and two arguments b and c
of type X. Evaluate to b if a evaluates to true and evaluate
to c otherwise”. This is an abstraction. An abstraction is
a term that expresses behavior independently of the types
of some (or all) of the arguments that it may be applied to.
As another example, the System F term (ΛX.λxX .λyX .x)
expresses the program: “Take a type X as argument and
two arguments of type X and return the first of the two
arguments”. This program works the same, independently
of the type with which it is used. In this specific case, we
call this term a pure abstraction, because there is no depen-
dence between what the term computes and the types of its
arguments. It expresses only general program behavior and
because of this can be combined with any two computational
modules of the same type. None of the nodes of the expres-
sion’s parse tree (represented in figure 1) need to be labeled
with primitives defined and evaluated outside the system.
System F renders all the usual data-types definable as pure
abstractions and directly supports recursion without nam-
ing or special operators. The expressions of the system are
built using only the following operators: {Π, Λ, λ, .,→} and
a mechanism for generating named variables and constant.

2.1 Types
We write name

def
= E when we want to use the name

name as a shorthand for the expression E. By conven-
tion, the names of types begin with capital letters (as in

Figure 1: Parse tree for term (ΛX.λxX .λyX .x)

X, Y, Int, Bool). A type can be either a type constant, a
type variable or a composition of types assembled by the
following 2 rules:

1. If U and V are types, then U → V is a type. U → V is
the type of a function that takes an argument of type
U and returns a result of type V .

2. If V is a type, and X is a type variable, then ΠX.V is
a type. The type ΠX.V is called an abstract type, and
X is bound in V . The names of the bound variables
are unimportant as long as we remain consistent; for
example ΠX.X → X and ΠY.Y → Y are the same
type.

The function plus takes two arguments of type Int and
returns a result of type Int. The type of this function is
Int → Int → Int. The → operator is binary, and is right
associative. This is important because it affects the system’s
behavior. For the plus example, Int → Int → Int types
a function that takes an object of type Int and returns a
function of type Int → Int. The only objects that can be
plugged into plus are objects of type Int. In this article, we
will enclose terms in parentheses, so assuming (5) is term of
type Int, then (plus 5) is a well-formed term with a meaning
of its own as a function of type Int → Int. In this example,
the type Int is used only for the purpose of the example
and is not part of System F. It is a free type and the pure
system doesn’t include (or need) any, even if for our specific
purposes, we will find it simpler to include some.

The system also includes a type abstraction mechanism,
the operator Π, which binds a type variable to a type expres-
sion. For example, X is bound in the type ΠX.X → X →
X. This type is the type of a function that takes a type as
its argument. So if (Dec) is a term of type ΠX.X → X → X
then the term (Dec [Int]) has type Int → Int → Int.

In terms of meaning, ΠX.X → X → X can be seen as the
general type of all the functions that take two arguments of
the same type X and evaluate to an object of type X. But it
can also be seen as the type for a structure made of two con-
stants, such as the boolean type (the set {true, false}). Be-
fore we explain how objects of a given type are constructed,
we’ll describe how data types are specified by the type sys-
tem with some simple examples.

A structure described by a constant and a unary recursive
operation (such as the natural numbers, built from a 0 con-
stant and the successor operation) can be typed as ΠX.X →
(X → X) → X (or the alternate ΠX.(X → X) → X → X).
Any structure that can be described by a constant and a
recursive binary operation on an object and the structure
(such as a list built from an empty list and a cons opera-
tion) can be typed by ΠY.ΠX.X → (Y → X → X) → X,
so that a list of objects of type Int will have type ΠX.X →
(Int → X → X) → X. Structures (such as binary trees),
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built from either a right and left recursive sub-structure or
a leaf of a given type can be typed by the expression
ΠY.ΠX.(X → X → X) → (Y → X) → X, so that a binary
tree of Ints will have type ΠX.(X → X → X) → (Int →
X) → X. The type for pairs of objects is ΠA.ΠB.ΠX.(A →
B → X) → X because a pair is built from an object of
type A and an object of type B. A pair of Ints will have
type ΠX.(Int → Int → X) → X. The type system pro-
duces a simple and elegant method to define any commonly
used structure in programming without having to ever add
any extra syntax. As a side note, being able to express the
notion of natural numbers as pure abstraction provides the
automatic ability to express the notion of iteration. And of
course, recursion can be defined in terms of iteration.

As a last example, consider a location that contains either
nothing or a food particle (type Food). Its type would be
ΠX.X → (Food → X) → X. The next section details the
process of constructing objects of a given type.

2.2 Terms
It is the terms that are the computational modules. Terms

are the programs of the system when they can be evaluated
further and are values, or normal forms when they can’t.
Evaluation is done by replacing all occurrences of a bound
variable in a given environment. we write α[β/ǫ] to indicate
that β replaces ǫ in α. We write y : T to indicate that
y is a term of type T . The parse trees corresponding to
the terms are built in the partial application style, which
was first introduced for GP in [4] as an alternative style
of program representation for typed GP. We added tags to
each node to indicate the node’s type and we added System
F specific internal nodes as described below. Terms can be
either:

1. constants and variables: These are typed names/symbols
such as 5 of type Int or sugar of type Food. We often
write yT to indicate that y is a variable of type T . In
parse tree form, these are leaves.

2. functional applications: If (f) is a term of type U → V
and (a) is a term of type U then (f a) is an application
of type V . For applications, we omit parenthesis from
left to right without loss of information and we write
(a b c d) for the term (((a b) c) d), so (plus 5 5) is really
short hand for the term ((plus 5) 5). We represent the
functional application (f a) by a tree with root node
labeled FA, with its left subtree representing the term
f and its right subtree representing the term a.

3. λ-abstractions: Assuming that (v) is a term of type V ,
then (λxU .v) is a term of type U → V . The variable
xU is bound in (v) by the λ operator. We represent
λ-abstractions in tree form by a tree with root node
labeled LAB. Its left subtree is a variable and its right
subtree represents a term in which the variable defined
by the left subtree can appear as a leaf.

4. universal abstractions: if (v) is a term of type V , then
we can form the term (ΛX.v) of type ΠX.V , so long as
the variable X is not free in the type of a free variable
of (v). For example, (ΛX.λpInt→Int→X .p 2 5) has type
ΠX.(Int → Int → X) → X which we defined in 2.1
as the type for pairs of Ints. We represent this with a
tree with root node labeled UAB. The left subtree is a

Figure 2: (gt a b [Int → Int → Int] plus minus 5 6)

type variable that can appear as the type of a variable
defined in the right subtree by a λ-abstraction.

5. type applications: if (f) is a term of type ΠX.V and U
is a type then (f [U ]) is a term of type V [U/X]. Type
applications are represented by trees with root node
labeled TA. The left subtree is the tree representation
of a term (of abstract type) and the right subtree is a
type.

2.3 Evaluation/reduction rules
Evaluation can be done in any order and always com-

pletes[9]. There are only two rules:

1. (λx.v)u evaluates to v[u/x]

2. (ΛX.v)U evaluates to v[U/X]

An expression reaches its normal form when it can’t be
rewritten any further by any of the evaluation rules. It is
normalizable if it can be reduced to a normal form and is
strongly normalizable if every sequence of reductions start-
ing with the expression terminates in a normal form. System
F terms are strongly normalizing [9]. When we say that a
term a evaluates to a term b, we mean that b is the normal
form of a. Illustrating the first evaluation rule, the term
((λxInt.plus 5 x) 4) evaluates to (plus 5 4) and so does the
term ((λxInt→Int→Int.f 5 4) plus). As another example, by
defining the name numpair as an equivalent for the term:
(λxInt.λyInt.ΛX.λpInt→Int→X .p x y), we can express a pair
of numbers (a, b) by the term (numpair a b). The term
(numpair 4 5 [Int] (λxInt.λyInt.x)) will use the second rule
to eventually evaluate to (4) (in 6 steps) while the term
(numpair 4 5 [Int] (λxInt.λyInt.y)) will evaluate to the term
(5). These two terms express the projection operations of a
pair. We now go back to many of the examples for which
we defined types and show some of the programs associated
with the types.

2.3.1 The boolean type
A boolean is one of two constants, so the type is defined as:

Boolean
def
= ΠX.X → X → X (1)

The terms true and false are defined as pure abstractions
and there are only two possibilities:
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true
def
= ΛX.λxX .λyX .x

false
def
= ΛX.λxX .λyX .y

(2)

Having an abstract definition of the boolean type removes
the need for branching-specific syntax. Boolean objects are
their own decision operators. For example, if our terminal
set includes a function “greater than”, typed as:
gt : Int → Int → Boolean, then the term (gt a b [Int] 1 2)
expresses the program:“if (a) evaluates to something greater
than the evaluation of (b), then this program evaluates to
(1), otherwise it evaluates to (2)”. This works because the
expression (true [Int] 1 2) evaluates to the term (1) while
the expression (false [Int] 1 2) evaluates to the term (2).
Similarly, (gt a b [Int → Int → Int] plus minus 5 6) ex-
presses the program “if (a) evaluates to something greater
than (b) then evaluate to (plus 5 6), otherwise evaluate to
(minus 5 6)”, assuming of course the pre-definition of the
terminal minus, of type Int → Int → Int. The parse tree
for this expression is depicted in figure 2.

Our last example for the boolean type is the expression of
an xor function. This program was evolved by a GP that in-
cluded no pre-defined terminals. We only used the names as
definitions for the corresponding abstract expressions. We
did this to make the programs human readable. The fitness
function was the proportion of the number of matches in a
data file that included all 4 input/output combinations en-
coded as described in this subsection. The solution term for
xor is:

(λaBoolean.λbBoolean.a [Boolean]
(b [Boolean] false true) b)

and our implementation always finds it (or another one),
as well as all the other binary boolean operators.

2.3.2 Lists
The type for lists follows the structure of a list, an object

that is either built from an empty list or from the consing of
an object and a list of objects of the same type. The most
general type for lists is:

ΠY.ΠX.X → (Y → X → X) → X (3)

and a list of objects of type U is will have type:

ΠX.X → (U → X → X) → X (4)

There are two constructors, empty list and cons. For ex-
ample, for a list of numbers, we would have the following
definitions:

NumList
def
= ΠX.X → (Int → X → X) → X

empty list
def
= ΛX.λxX .λy(Int→X→X)→X .x

cons
def
=

λoInt.λlNumList.ΛX.λxX .λy(Int→X→X)→X .y o l

(5)

An object of type NumList, for example the term lst
def
=

(ΛX.λxX .λyInt→X→X .y 3 (y 5 (y 4 x))) expresses the list
of three numbers (3 :: 5 :: 4 :: empty list). The parse tree
for this term is depicted in figure 3. Once the structure for
the list is built, expressing recursive behavior is very simple.
For example, (lst [Int] 0 plus) is a term that expresses the
program that adds all the elements of lst. It evaluates to the

Figure 3: Parse tree for list of three integers

term (plus 3 (plus 5 (plus 4 0))) in three steps. Using our
name definitions, we could also express a list of 3 numbers
by the familiar (cons a (cons b (cons c empty list))). Note
that our definition has several built in recursion schemes.
For example, the following term:

((cons a (cons b (cons c empty list))) [NumList]
empty list
(λxInt.λlNumList.cons (plus 1 x) l))

expresses a program that takes a list as input and returns a
list where every element has been incremented (this is the
classic map operation). Recursion happens because the list
is a function that takes a type as its argument, and it is
the type argument that makes the list compatible with the
arguments that come after.

2.3.3 What cannot be represented in System F
System F has the strong normalization property, so the

programs of the system always eventually terminate. The
unsolvability of the halting problem [15] implies that there
are computable functions that cannot be represented in Sys-
tem F. This is not so bad as it sounds because as [1] puts it,
in order to find computable functions that cannot be repre-
sented in F, “one has to stand on one’s head”.

3. PREVIOUS RELATED WORK
In the original GP specification [11], the definitions of the

primitives (the predefined terminals and functions of the
system) are constrained by the closure requirement. All the
elements in the program’s parse tree must have the same
type. Closure is satisfied when “any possible composition
of functions and terminals produces a valid executable com-
puter program” [12]. This implies that the programming
language in which the individuals of the system are coded
will always be a one-type or monomorphic language.

A mechanism called constrained syntactic structures is
proposed in [11] to relax the closure property. Constrained
syntactic structures are problem-specific syntactic rules spec-
ifying which primitives are allowed to be the child nodes of
each function in the program trees. Constrained syntactic
structures are used for problems requiring data typing.

In [13], Montana uses types to eliminate the closure con-
straint of GP systems and to restrict the search space. The
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method, called Strongly Typed Genetic Programming (STGP)
specifies a type for each argument of each function and for
the value it returns. Terminals are also typed. The basic
STGP formulation is equivalent to Koza’s approach to con-
strained syntactic structures and both are limited by the
need to specify multiple functions which perform the same
operation. Montana resolves the issue by using generic func-
tions. These are functions defined on named lists of argu-
ment types that have their return types inferred when they
are embedded in a newly spawned tree. After a generic func-
tion has been instantiated (by being embedded in a new tree)
it is and behaves as a standard function. This is also how
it is passed on to the program’s descendants. Montana uses
a table-lookup mechanism to produce legal parse trees. A
type possibilities table is computed beforehand to specify
all the types that can be generated at each tree depth level.
This table provides type constraints to the function selec-
tion procedure used to generate type-correct programs. Dur-
ing the creation of the initial population, each parse tree is
grown top-down by randomly choosing functions and termi-
nals and verifying their validity against the type possibility
table. STGP has been applied to the problem of evolving
cooperation strategies in a predator prey environment [7].
The solutions produced consistently outperformed the solu-
tions produced by an untyped system. It is suggested that
the reduced search space is the cause of the performance
improvements.

The PolyGP system [4] is also based on a type system.
Used during program creation, the type system ensures that
all programs created are type-correct. PolyGP implements
polymorphism using different kinds of type variables. The
system that is proposed in this document differs from PolyGP
in the following 4 ways:

1. In PolyGP, program parse trees are represented in a
Curry style, where type information is kept distinct
from the terms. This way of doing things requires
the use of a type unification algorithm. We propose
a Church style representation, where terms are anno-
tated with enough type information so that there is no
need for a type unification algorithm.

2. Unlike PolyGP, in the System F-based GP system,
parse trees contain types, and types are evolved at
the same level as terms/programs. This is the first
GP system we are aware of where types are explicitly
evolved during the run. This opens the door to the
natural evolution of data structures and of operations
on these data structures.

3. PolyGP’s recursion scheme requires the definition of
special structures. System F’s expressive power elimi-
nates this need.

4. PolyGP doesn’t eliminate the need to predefine func-
tions that are not directly related to the problem. A
System F-based GP system does.

3.1 Representing recursive structures
There are currently two ways of providing recursion sup-

port in GP. The representation proposed in this article pro-
vides a third and new manner to achieve recursion in GP.
The explicit recursion approach [3, 10], involves naming the
programs of the system so that they may refer to them-
selves. This requires additional overhead. Each program

Table 1: Example context file

Boolean = ΠX.X → X → X;
plus : Int → Int → Int;
time : Int;
gt : Int → Int → Boolean;

uses a slightly different language because its name must be
included in the set of instructions to which it has access.
Names have to be kept and managed. Another problem
with the scheme is that special mechanisms must be put in
place to handle the cases where parts of programs that refer
to themselves are used to construct a new program (with a
different name) in a crossover operation. Finally, the num-
ber of recursive calls must be limited to avoid infinite loops.
Each recursive call has to be tabulated while the program
is running and a system of flags has to be implemented. In
contrast, the recursion scheme of the System F-based sys-
tem proposed in this document does not need to provide
programs with the ability to call themselves in order to sup-
port recursion and has no need to check for infinite loops.

The implicit recursion approach [16] exploits PolyGP’s
support for higher-order functions. Recursion is implemented
using predefined higher-order functions. Unfortunately, in-
creasing the number of primitives that are manipulated by
the GP system increases its search space and bloats its lan-
guage with programming constructs that are not directly re-
lated to the problem that is being solved. The functions are
general higher-order structures with no direct relation to the
actual problem for which a solution is being evolved and it is
not clear how it is decided which function goes with which
problem. Finally, PolyGP implements these higher-order
operations on lists only. Implementing recursion on other
structures requires additional syntax. The System F scheme
proposed in this document doesn’t share these limitations.
In particular, it evolves its own higher-order functions and
naturally “understands” recursion on any structure.

4. GP IMPLEMENTATION
We built an implementation using the Objective Caml

language. In this section, we present the details of our use
of System F in a GP context.

4.1 Problem Specification
GoalType is the type of the solution program. If the

system is to evolve an xor function, GoalType is Boolean →
Boolean → Boolean. If the system should evolve a function
that takes a list of strings as argument and returns the string
resulting from the concatenation of the elements of the list,
then GoalType is (ΠX.X → (String → X → X) → X) →
String.

4.1.1 Test cases and contexts
We pre-included the types Int, String and F loat into the

system. However, for many problems additional definitions
need to be provided to the system. These are specified in the
context. A context is a file that contains external definitions
when problem specific constants or functions are required.
A context might also contain names for specific System F
expressions. Table 1 contains a sample context file that in-
cludes the terminals and functions that would be required
for a symbolic regression system. In this case, plus, time
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Table 2: Context and test cases for xor function
Context
Boolean = TT X . X -> X -> X
true = Lam X . lam x : X . lam y : X . x
false = Lam X . lam x : X . lam y : X . y

Test cases
false, false, false
false, true, true
true, false, true
true, true, false

Figure 4: An example of a species

and gt are extensions, while Boolean is a name for the type
ΠX.X → X → X. Problems are specified by test cases.
Each test case is a comma separated list of arguments fol-
lowed by the result that the function that is to be evolved
should produce. For example, the evolution of an xor func-
tion is specified by the test cases listed in table 2 and (in this
case) the system needs to know what true and false means.
This meaning is provided in the context. Note that in this
case, we could achieve the same results without specifying a
context by using the pure System F syntax to describe the
test cases. For this example, the context is nothing more
than a tool to facilitate the understanding of the solution
programs.

4.2 Genes
Genes are closed normalized System F terms in parse

tree form. They are stored in a gene pool where they are
grouped by types and given a unique identification key. Only
one copy of a gene may exist in the gene pool at any one
time. Genotypes are arrangements of genes, and a gene may
have non-localized effects on the whole genotype. Evalua-
tion is done at the genotype level, but selection is done at
the gene level. The fitness of a genotype is (as usual) a
proportionality of how close its associated program comes
to describing a solution. The fitness of a gene is the av-
erage of the fitnesses of the genotypes that carry it. A
gene may only exist in the gene pool if it is carried by at
least one genotype in the system. For example, the con-
text defined in table 1 would allow the definition of the
gene (gt time 10 [Int → Int → Int] plus minus ) of type
Int → Int → Int which expresses the computation: “If the
variable time evaluates to something greater than 10 then
this program evaluates to (plus) otherwise it evaluates to
(minus)”. Once this gene is in the gene pool, it can be used
as a building block for any genotype where a gene of type
Int → Int → Int can be plugged in.

4.2.1 Complexity
There is a parsimony measure which is used to limit the

size of a gene. The complexity of an expression is simply the

number of nodes that are needed to express the gene in its
parse tree form. An upper-bound on the complexity of the
genes that may be included in the gene pool is provided to
the system at initialization time to prevent bloat.

4.2.2 Constructing the gene pool
The gene pool is re-built at the beginning of each iteration

of the system. The genes that are still in the pool after the
last generation’s selection process are randomly mutated to
construct new genes. The construction process stops when
the sum of the complexities of all objects in the pool is
greater than maxComp, one of the system-wide variables
defined for the system. The rules used to produce new terms
and new types are based on logic derivation rules. Each rule
is a meta-operation that takes an expression as input and
outputs another expression. For example, there is a rule
that starts with the input ΠX.X → X → X, randomly
picks a type Ty from the BlockPopulation set and produces
the type Ty → Ty → Ty. Another rule starts with the term
tTy→Ty, picks a term aTy in BlockPopulation and produces
the term (t a).

4.3 Species
Once a gene pool has been generated, the genes are as-

sembled into the working programs that will become the
population of the system. The type of the programs must
be GoalType in order to be compatible with the test cases.
While it is a simple matter to combine genes to spawn pro-
grams, it is harder to assemble the genes into random pro-
grams of a certain type. Our solution was to use species. A
species is a set of possible arrangements of genes that are
in the gene pool. Formally, species are second-order logic
proofs of GoalType that specify a schema in which any genes
of an appropriate type may be plugged in. Species are repre-
sented by binary trees with nodes labeled by types with the
leaves corresponding to gene pool partitions. For example,
figure 4 is the tree representation of a species for a GP sys-
tem that strives to evolve a function of type Int → Int →
Int. Genotypes are specific arrangements of genes built on
the format specified by the species. The well-known Curry-
Howard isomorphism [8] applies to System F. The isomor-
phism provides a dual meaning to System F’s type structure.
For example, the type ΠX.X → X → X can also be read as
the second-order proposition ∀X.X → X → X. Passing a
type A as an argument to an object of type ΠX.V produces
an object of type V [A/X] which is exactly equivalent to a
second-order ∀ elimination rule. Similarly, passing an object
of type A to a function of type A → B produces an object of
type B, which is exactly equivalent to a → elimination rule.
In this context, including a gene of type A in the gene pool
corresponds to adding the proposition A to the underlying
logic system. We call a set of species paired with a gene
pool an ecosystem.

4.4 Genotypes
A genotype is a tree. The leaves may be either pointers

to genes in the gene pool or types. The roots of the sub-
trees may be either type applications (TA nodes) or function
applications (FA nodes). For example, with the context de-
fined in table 2 and a gene pool that includes the follow-
ing genes: gene1 of type ΠX.Boolean → X → X → X,
gene2 of type Int → Int → Boolean, gene3 and gene4
of type Int, the term (gene1 [Int] (gene2 gene3 gene4))
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Figure 5: A genotype that belongs to the species

defined by the proof in figure 4

is a valid genotype, and it belongs to the species defined
by figure 4. Its tree representation is depicted in figure 5.
(gene1 [Int] (gene2 gene4 gene3)) is another genotype that
belongs to the same species (and in this case carries the
same genes in a different arrangement). We notice and use
the fact that both genotypes contain similar parts, mak-
ing partial parallel evaluation possible. For example, gene4
and gene3 might each be evaluated once for both genotypes.
Genotypes are ephemeral. They are all destroyed at each
generation. Unless they are a solution, they only exist as
statistical tools to evaluate the species and the genes. A
solution is a genotype that evaluated perfectly on all test
cases.

4.5 Outline of the algorithm
The user provides the following input arguments besides the
context and the test cases:
maxInds:The desired number of genotypes per generation
maxComp:The approximative total size of the gene pool at
each generation (measured in complexity units)
maxSize:The maximum size of a gene (measured in com-
plexity units)

1. The system deduces GoalType from the test cases.

2. The gene pool is grown randomly to size maxComp by
randomly mutating the genes that are already in the
gene pool. No new gene may be larger than maxSize
(larger genes are discarded). When the gene pool’s size
reaches maxComp, go to step 3

3. The number of possible genotypes is calculated based
on the species in the system and the type and number
of genes in the gene pool. If it is possible to produce
maxInds genotypes, go to step 5, otherwise go to step
4

4. Produce new species either by modifying species al-
ready in the ecosystem or by brute search for new
proofs of GoalType with limited depth, using the types
of the genes in the gene pool as propositions. Delete
all the genes in the gene pool that can not be used in
any of the species in the ecosystem. Go to step 2.

5. Build maxInds genotypes and evaluate them on all
test cases. This is highly parallelized (at the level of
genotypes, we work with pointers, so genotypes can
be seen as arrangement of numbers and that makes it
possible to detect common sub-modules and evaluate

them once for every genotypes that contain them), so
it is possible to evaluate several thousand genotypes
(for the problems we tested the system on) in a very
short time using a regular retail computer. Score the
genotypes based on the proportion of test cases they
were able to compute correctly. If one or several geno-
types was able to compute all test cases, then output
program and terminate successfully , otherwise, go to
step 6

6. Score the genes in the gene pool (as the average of the
scores of the genotypes that carry them). Score the
species (as the average of the scores of the genotypes
that belong to them). Select (non-deterministically)
genes in proportion to their fitness. Remove the uns-
elected genes from the gene pool. Select (again, non-
deterministically) species in proportion to their fitness.
Remove the unselected species from the ecosystem.
Kill all genotypes, go to step 2 and proceed to next
generation.

5. EXPERIMENTAL RESULTS
All results below were obtained using the same implemen-

tation.

5.1 Boolean functions
Our first series of experiments was the evolution of boolean

functions without the explicit definition of primitives. The
context used for all operations was exactly the one defined
in table 2, while the test cases were dependent on the func-
tion being evolved. Of the three parameters defined for each
experience, the maximum size (maxSize parameter) of the
genes seemed to (counter-intuitively) be the most relevant.
We were able to find a range of parameters that would
guarantee that our implementation would always find (50
successes out of 50 trials) a valid solution program in less
than 10 generations for any of the 8 binary boolean func-
tions. The parameters are as follows: maxInds ≥ 1000
(the parameter for number of genotypes per generation);
maxComp = 3000 (the parameter for the total complexity
of the gene pool) and 45 < maxSize < 75.

Setting maxSize too small (less than 35) or too large
(greater than 80), however, seemed to dramatically reduce
the probability of finding a solution. This is a trend we ob-
served in all our experiments. While it is easy to see why
an excessive limitation on the maximum size of the genes
would prevent some essential computational blocks to be
evolved, we still don’t have an explanation as to why allow-
ing larger genes to be included in the gene pool reduces the
system’s performance.Attempting to find an optimal value
for maxSize, we ran 50 experiments per data point, fixing
maxInds at 500, maxComp at 1000 and varying the value
of maxSize between 25 to 100 at intervals of 5 units. We
found that the optimum gene size limit was 50 units (50 suc-
cesses on 50 trials), with the probability of finding a solution
in less that 10 generations decreasing to 0 when the value
for maxSize is either below 35 and above 85. The three
programs below were all evolved by our system. They are
the and, or and xor functions:
or : λxBoolean.λyBoolean.x[Boolean] x y
and : λxBoolean.λyBoolean.x[Boolean] y (false)
xor : λxBoolean.λyBoolean.

x[Boolean] (y [Boolean] (false) x) y
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Table 3: Context for functions on lists of integer

TyList = TT X . X -> (Int->X->X)->X;
plus : Int->Int->Int;
mult : Int->Int->Int;
zero : Int ; one : Int

5.2 Recursion on list
For operations on list of numbers, we used the context de-

fined in table 3, providing the test cases in pure System F.
For example, (ΛX.λxX .λyX→(Int→X→X)→X.y 5 (y 3 x)), 8
is a test case for the operation that takes the list (5 :: 3 ::
empty list) as argument and returns 8. For the empty list,

we used the (ΛX.λxX .λyX→(Int→X→X)→X .x) representa-
tion. We ran three set of experiments, using the parameters
(maxInds=1000, maxComp=3000, maxSize=50). The ex-
periments and their results were:

1. Evolving a program that adds all the elements of a list.
We always find one or several solutions (50 out of 50).

2. Evolving a program that multiplies all the elements of
the list. We always find one or several solutions (50
out of 50).

3. Evolving a program that returns a list that contains
all the elements of the input list incremented by 1. We
find a solution 12 times out of 50.

The program below was evolved by our implementation us-
ing the context defined in table 3. It is a function that takes
a list as arguments and returns the product of its elements.

λxTyList.x [Int] 1 mult

6. CONCLUSIONS
The potential of System F as a representation scheme for

GP comes from both its simplicity and expressiveness. It
is a language that doesn’t use many symbols, doesn’t have
many rules and yet is naturally capable of expressing many
computations in many different styles. It handles recursion
and even allows us to define and work with many of the
structures typically used by programmers. All this occurs
within the system using only two abstraction operations. In
terms of safety, the programs are typed and always termi-
nate. Future work includes finding problem domains best
suited to our system. More complex programs involving re-
cursive data structures seems a natural place to start.
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