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ABSTRACT 
In recent research we proposed GP-zip, a system which uses 
evolution to find optimal ways to combine standard compression 
algorithms for the purpose of maximally losslessly compressing 
files and archives. The system divides files into blocks of 
predefined length. It then uses a linear, fixed-length 
representation where each primitive indicates what compression 
algorithm to use for a specific data block. GP-zip worked well 
with heterogonous data sets, providing significant improvements 
in compression ratio compared to some of the best standard 
compression algorithms. In this paper we propose a substantial 
improvement, called GP-zip*, which uses a new representation 
and intelligent crossover and mutation operators such that blocks 
of different sizes can be evolved. Like GP-zip, GP-zip* finds 
what the best compression technique to use for each block is. The 
compression algorithms available in the primitive set of GP-zip* 
are: Arithmetic coding (AC), Lempel-Ziv-Welch (LZW), 
Unbounded Prediction by Partial Matching (PPMD), Run Length 
Encoding (RLE), and Boolean Minimization. In addition, two 
transformation techniques are available: the Burrows-Wheeler 
Transformation (BWT) and Move to Front (MTF). Results show 
that GP-zip* provides improvements in compression ratio ranging 
from a fraction to several tens of percent over its predecessor. 

Categories and Subject Descriptors 
I.2.2 [ARTIFICIAL INTELLIGENCE]: Automatic 
Programming 

General Terms 
Algorithms, Performance, Reliability. 

Keywords 
Lossless data compression, GP-zip, AC, LZW, PPMD, RLE, 
Boolean Minimization. BWT, MTF, GP-zip*. 

1. INTRODUCTION 
Over the past decade or two many techniques have been 
developed for data compression, each of which has their own 
particular advantages and disadvantages.  

One of the factors that help in developing an efficient data 
compression model is the availability of prior knowledge on the 
domain of the data to be compressed. In these circumstances, 
compression researchers can develop specialised compression 
techniques which perform well on a specific type of data. 
However, it is difficult to find a universal compression algorithm 
that performs well on any data type [1]. Two principles are 
common among compression algorithms; a) There is no algorithm 
that is able to compress all the files even by 1 byte; b) There are 
less than 1% of all files that can be compressed losslessly by 1 
byte [1]. Also there is a sort of no-free lunch result for lossless 
compression, by which, unfortunately, no single compression 
algorithm is guaranteed never to increase the size of a file.  
For these reasons, the development of generic compression 
algorithms has lost momentum in favour of specialised ones. 
Nevertheless the importance of the former is considerable, as they 
are valuable when information on the data to be compressed is not 
available or when the data is composed of fragments of 
heterogeneous types. For example, there is today more and more 
use of archive files (e.g., ZIP files or TAR files), where users 
store large quantities of files often including diverse combinations 
of text, music, pictures, video, executables, and so forth. These 
files still require generic compression algorithms. 
An ideal compression system would be one that is able to identify 
incompatible data fragments (both the file level and within each 
file) in an archive, and to allocate the best possible compression 
model for each, in such a way to minimise the total size of the 
compressed version of the archive.  For large and varied datasets, 
for example, web sites, this would provide enormous advantages 
in terms of compression ratios. Solving the problem optimally, 
however, would be enormously complex. 
In recent research [2] we started to make some progress on 
turning this idea into practice. In particular, we proposed a 
general purpose compression method, GP-zip, which uses a form 
of linear Genetic Programming (GP) to find optimal ways to 
combine standard compression algorithms for maximally and 
losslessly compressing files and archives. The system divides files 
into blocks of predefined length. It then uses a linear, fixed-length 
representation where each primitive indicates what compression 
algorithm to use for a specific data block. GP-zip worked well 
with heterogonous data sets, providing significant improvements 
in compression ratio over some of the best known standard 
compression algorithms. GP-zip had two main limitations: a) the 
fixed block size restricted the ways in which compression 
algorithms could be combined, and b) GP-zip entails a 
considerable computational load. In this paper we propose a 
substantial improvement of GP-zip, called GP-zip*, which uses a 
new representation where blocks of different sizes can be evolved 
and intelligent operators which identify and target which elements 
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of the representation to change to increase fitness with high 
probability. As we will see, the proposed improvements provide 
superior performance over the previous method with respect to 
both execution time and compression ratios.  
The structure of this paper is as follows. In the next section we 
review previous attempts to use GP in the area of lossy and 
lossless compression. Section 3 provides a description of GP-zip, 
the starting point for GP-zip*, and a general evaluation for the 
algorithm’s performance. Section 4 discusses GP-zip* in details. 
This is followed by experimental results in Section 5. Finally, 
conclusive remarks are given in Section 6.  

2. RELATED WORK 
The problem of heterogeneous file compression has been tackled 
by Hsu in [3]. The proposed system segmented the data into 
blocks of a fixed length (5 KB) and then compressed each block 
individually. The system passed the blocks to the appropriate 
compression method by using a file type detector that was able to 
classify ten different types of data. The approach also used a 
statistical method to measure the compressibility of the data. 
However, due to various restrictions, the results reported were not 
impressive. 
Koza [4] was the first to use GP to perform compression. He 
considered, in particular, the lossy compression of images. The 
idea was to treat an image as a function of two variables (the row 
and column of each pixel) and to use GP to evolve a function that 
matches as closely as possible the original. One can then take the 
evolved GP tree as a lossy compressed version of the image. The 
technique, which was termed programmatic compression, was 
tested on one small synthetic image with good success. 
Programmatic compression was further developed and applied to 
realistic data (images and sounds) by Nordin and Banzhaf [5]. 
Iterated Functions System (IFS) are important in the domain of 
fractals and the fractal compression algorithm. [6] and [7] used 
genetic programming to solve the inverse problem of identifying a 
mixed IFS whose attractor is a specific binary (B/W) image of 
interest. The evolved program can then be taken to represent the 
original image. In principle this can then be further compressed. 
The technique is lossy, since rarely the inverse problem can be 
solved exactly. No practical application or compression ratio 
results were reported in [6], [7]. Using similar principles, 
Sarafoulous [8] used GP to evolve affine IFSs whose attractors 
represent a binary image containing a square (which was 
compressed exactly) and one containing fern (which was achieved 
with some error in finer details). 
Wavelets are frequently used in lossy image and signal 
compression. Klappenecker [9] used GP to evolve wavelet 
compression algorithms, where internal nodes represented 
conjugate quadrate filters and leaves represented quantisers. 
Results on a small set of real world images were impressive, with 
the GP compression outperforming JPEG at all compression 
ratios. 
A first lossless compression technique was reported in [10], where 
GP was used to evolve non-linear predictors for images. These are 
used to predict the gray level of a pixel will take based on the 
gray values of a subset of its neighbours (those that have already 
been computed in a row-by-row and column-by-column scan of 
the image array). The prediction errors together with the model’s 
description represent a compressed version of the image. These 

were compressed using the Huffman encoding. Results on five 
images from the NASA Galileo Mission database were very 
promising with GP compression outperforming some of the best 
human-designed lossless compression algorithms. 
In many compression algorithms some form of pre-processing or 
transformation of the original data is performed before 
compression. This often improves compression rates. In [11], 
Parent and Nowe evolved pre-processors for image compression 
using GP. The objective of the pre-processor was to reduce 
losslessly the entropy in the original image. In tests with five 
images from the Canterbury Corpus [12] GP was successful in 
significantly reducing the image entropy. As verified via the 
application of bzip2, the resulting images were markedly easier to 
compress. 
In [13] the use of programmatic compression was extended from 
images to natural videos. A program was evolved that generates 
intermediate frames of video sequence, where each frame is 
composed by a series of transformed regions from the adjacent 
frames. The results were encouraging in the sense that a good 
approximation to frames was achieved.  Naturally, although, a 
significant improvement in compression was achieved, 
programmatic compression was very slow in comparison with the 
other known methods, the time needed for compression being 
measured in hours or even days.  
Acceleration in GP image compression was achieved in [14], 
where an optimal linear predictive technique was proposed, 
thanks to the use of a less complex fitness function. 

3. GP-ZIP 
As previously mentioned, the basic idea of GP-zip [2] was to 
divide the target data file into blocks of a predefined length and 
ask GP to identify the best possible compression technique for 
each block. The function set of GP-zip was composed of 
primitives two categories. The first category contains the 
following five compression algorithms: Arithmetic Coding (AC) 
[15], Lempel-Ziv-Welch LZW [16], unbounded Prediction by 
Partial Matching (PPMD) [17], Run Length Encoding (RLE) [18], 
and Boolean Minimization [19]. In the second category two 
transformation techniques are included: the Burrows-Wheeler 
Transformation (BWT) [20] and Move to Front (MTF) [21].  
Given that these are mostly well-known techniques, we will not 
provide a detailed explanation of each of these compression and 
transformation algorithms. Each compression function receives a 
stream of data as inputs and returns a (typically) smaller stream of 
compressed data as an output. Each transformation function 
receives a stream of data as input and returns a transformed 
stream of data as an output. Consequently, this does not directly 
produce a compression. However, often the transformed data are 
assumed to be more compressible, and hence, when passed to a 
compression algorithm in the function set, a better compression 
ratio is achieved.  

GP-zip uses a form of “divide and conquer” strategy. Each 
member of the function set performs well when it works in the 
circumstances that it has been designed for. Dividing the given 
data into smaller blocks makes the creation and identification of 
such circumstances easier. 

The length of the possible blocks starts from 1600 bytes and 
increases up to 1 Mega byte in increments of 1600 bytes. Hence, 
the set of possible lengths for the blocks is {1600, 3200, 4800, 
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6400….1MB}. The blocks are not allowed to be bigger than the 
file itself. Moreover, the length of the file is added to the set of 
possible block lengths. The reason for this is to give GP-zip the 
freedom to choose whether to divide the file into smaller blocks 
as opposed to compressing the whole file as one single block. The 
number of blocks is calculated, by dividing the file length by the 
block length.  

As the function set is composed of five compression algorithms 
and two transformation algorithms, it is clear that GP-zip has 15 
different choices to compress each block. Namely, it can apply 
one of the five compression functions without any transformation 
of the data in a block, or it can precede the application of the 
compression function by one of two transformation functions.  

The decision as to what block length to use to compress the data 
proceeds in stages. Initially, GP-zip randomly selects a block 
length from the set of possible lengths. The system starts by 
initializing a population randomly. As illustrated in figure 1, 
individuals represent a sequence of compression functions with or 
without transformation functions. High fitness individuals are 
selected with a specific probability and are manipulated by 
crossover, mutation and reproduction operations.  

After the system finds the best possible combination of 
compression algorithms for the selected block-length, it restarts 
its search again using a different block-length. This is repeated 
multiple times. Of course, since testing all of the possible block 
lengths is considerably time-consuming, GP-zip selects the new 
lengths by performing a form of binary search over a set of 
possible lengths. This is applied for the first time after the system 
has tested two block lengths.  

Figure 1: GP-zip individuals within a population 

Since the proposed technique divides the data into blocks of 
predefined lengths and finds the best possible compression model 
for them, it is necessary for the decompression process to know 
which block was compressed by which compression/ 
transformation function. A header for the compressed files 
provides this information for the decompression process. The size 
of this header is not fixed, but it is an insignificant overhead in 
comparison to the file size. 
After the process of searching for the best possible length for 
dividing the file and the best possible combination of 
compression/transformation functions, GP-zip merges the blocks 
with identical labels. For example, the chromosome 
[PPMD][PPMD][LZW][LZW][LZW] is interpreted as the 
application of PPMD to the first two blocks (considered as one) 
and LZW to the third, fourth and fifth block of a file (again 

considered as one). The concept being that through this “gluing” 
process, GP-zip obtains fewer blocks, which, on average, are 
bigger, leading to better compression. The assumption is that 
sequences of identical primitives will tend to indicate that the data 
in the corresponding blocks are of similar (or at least compatible) 
type. In experiments with a few data sets, the gluing process was 
shown to be beneficial. However, it is unlikely that the 
assumption above will apply in all cases. In those cases, it might 
in fact turn out that neighbouring blocks are best compressed 
using the same algorithm, but that there are statistical differences 
in the data in each block such that they should be treated 
(compressed) independently. Thus, while to some extent, gluing 
improves the flexibility of the representation, it also adds a bias 
which might make the algorithm less general. As we will see in 
the next section, with GP-zip* we will completely remove this 
problem while at the same time giving complete freedom to 
evolution to choose block sizes. 

GP-zip has been tested with several collections of data 
(homogenous and heterogeneous). When the given data was 
homogenous (e.g., sets of text files), the system always converged 
to solutions where the data is treated as a single big contiguous 
block. In other words, the file is compressed normally with the 
best possible compression method from GP-zip’s function set. 
Hence, GP-zip did not outperform existing algorithms on 
homogeneous data (it was not outperformed either, since it always 
chose a very good algorithm to do the compression). 
Alternatively, when the given data was composed of 
heterogeneous fragments (e.g., archive files), GP-zip did very 
well. We provide more information on GP-zip’s performance in 
Section 5. 
Although GP-zip has achieved good results in comparison with 
other well-known compression algorithms, it suffers from one 
major disadvantage. The described staged process of GP-zip is 
very time consuming (of the order of a day per megabyte). Of 
course, decompression is, instead, very fast. While there are many 
applications for which an asymmetric compression algorithm is 
useful–any compress-once/decompress-many scenario can accept 
some asymmetry–it is also clear that this level of asymmetry 
makes the system practically unviable even with today’s CPUs. 

4. GP-ZIP* 
An alternative to GP-zip’s scheme of imposing the use of a fixed 
length for the blocks is to allow the block length to freely vary 
(across and within individuals) to better adapt to the data. Here 
we propose a new method for determining the length of the 
blocks, which completely removes the need of a staged search for 
an acceptable fixed length typical of GP-zip. Furthermore, we 
provide new intelligent operators which are specialised to handle 
the new representation. As already mentioned, we call the 
resulting system GP-zip*. 
We have already pointed out that GP-zip is a very time 
consuming process. The reason is that a lot more effort is spent 
searching for the best possible length for the blocks, than for 
choosing how to compress the data. This search is performed 
using a type of binary search, which, in itself, is efficient. 
However, since each search query in fact involves the execution 
of a GP run, the whole process appears rather inefficient, 
particularly considering that the gluing method eventually will 
undo certain decisions regarding block lengths.  This motivated us 
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to find a way to eliminate the need of imposing a fixed length of 
blocks. 
One initial idea to achieve more flexibility was to divide the given 
data into very small blocks (e.g. 100 byte per block), compress 
each block individually with the best compression model that fits 
into it, and then glue all the identical subsequent blocks. We 
eventually discarded this idea for two reasons. Firstly, it relies 
heavily on the gluing process, which, as we have seen introduces 
a bias in the compression (it assumes that identical neighbouring 
primitives indicate homogeneous data). Secondly, most 
compression techniques require some header information to be 
stored. Therefore, when applying a compression model to a very 
small set of data, the generated header information becomes 
bigger than the compressed data itself, which completely defeats 
the purpose.  
We opted for a cleaner (and, as we will see, effective) strategy: 
we ask GP to solve the problem for us. That is each individual in 
the population represents in how many blocks to divide each file 
and the size of those blocks in addition to the particular algorithm 
used to compress each block. In other words, in GP-zip* we 
evolve the length of the blocks within each run, rather than use 
the staged evolutionary search, possibly involving many GP runs, 
of GP-zip. This significantly reduces the computational effort 
required to run the system. The difficulty of this method resides in 
the inapplicability of the standard genetic operators and the 
corresponding need to design new ones. 
We describe the new representation and operators used in GP-
zip* in the next sub-sections. 

4.1 Representation  
In the work reported in this paper we used for GP-zip* the same 
primitive set (i.e., the same compression and transformation 
models) as for GP-zip. We did this for two reasons: a) these 
primitives are amongst the best know compression methods and 
worked really well in GP-zip, and b) using the same primitives we 
can perform a more conclusive comparison between the two 
systems.  

GP-zip* starts by initializing the population randomly. Similarly, 
to the previous method, all initial individuals contain blocks of a 
given length. However, differently to GP-zip, in GP-zip* the 
block length for each individual is chosen randomly. As shown in 
Figure 2, the resulting population includes individuals with a 
variety of block sizes. Individuals represent sequences of 
compression functions with or without transformation functions. 
High fitness individuals are selected probabilistically and are 
manipulated by crossover, mutation and reproduction operations 
(see below).  So, although we start with individuals with equal-
size blocks, during these processes the size of one or more blocks 
within an individual may change. This makes it possible to evolve 
any partition of the file into blocks. This gives GP-zip* the 
freedom of exploring many more possible solutions in the search 
space than GP-zip could. The hope is that some of these new 
possibilities will prove superior. 

 
Figure 2: GP-zip* Individuals within a population 

The size of the blocks for each of the generated individuals in the 
initialized population is a random number uniformly distributed 
between 200 bytes to the length of the file to be compressed. All 
integer values in the range are allowed.  

Similarly to the old method, it is necessary for the decompression 
process to know which block was compressed by which 
compression/transformation function. A header for the 
compressed files provides this information. Since the new 
representation has eliminated the need of imposing a fixed length 
for the blocks, it is necessary for the decompression process to 
know the length for each block. This information increases the 
amount of information stored in the header file. However, since 
the size of the header is included in the calculation of the fitness 
(we simply use the compression ratio), evolution always stays 
clear of solutions that involve too many small blocks.  
Also, similar to the old method, GP-zip* presents several 
advantages as a result of dividing the data into smaller blocks. For 
example, when required, the decompression process could easily 
process only a section of the data without processing the entire 
file. As another example, the decompression process could easily 
be parallelised (e.g., using multi- and hyper-threading, multiple 
CPU cores or use of GPUs) making files compressed with GP-
zip* faster to decompress than those produced with most 
traditional methods. 
GP-zip*’s individuals have a linear representation which may 
give the impression that the proposed system is a Genetic 
Algorithm rather than Genetic Programming method. However, 
this is arguably not true for following reason. GAs are known to 
have a fixed representation (binary strings) for individuals while 
in GP-zip* the system receive an input (block of data) of a 
variable length and return another block of data (typically 
shorter). Also, it should be noted that each member in the function 
set is a compression/transformation algorithm by itself which 
together form GP-zip* compression system. So, each element of 
the representation acts more like an instruction of a GP computer 
program than as a parameter being optimised by a GA. 

4.2 Crossover  
Crossover is one of the essential genetic search operators. The 
aim of crossover is to exchange genetic material between 
individuals, in order to generate offspring that hold features from 
both parents.  
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Since GP-zip used fixed length representations, GA-type standard 
genetic operators were used as variation operators. In particular, 
in the crossover, the GP-zip system selected two individuals with 
tournament selection, a common crossover point was then 
randomly chosen, and, finally, all the blocks before the crossover 
point in the first parent were concatenated with the blocks after 
the crossover point in the second parent to produce the offspring. 
So, this was a form of one-point crossover. Since in GP-zip* 
individuals are divided into blocks of different and heterogeneous 
lengths, we cannot use the same approach. Instead, we use an 
intelligent crossover. 
One of the advantages of the subdivision into blocks of the 
individuals is that it is possible to evaluate to which degree the 
compression ratio of each individual contributes to the 
compression ratio for a file. This information can be used to 
identify and implement useful crossover hotspots. In our 
intelligent crossover operator we use this idea in conjunction with 
a greedy approach. The operator works by choosing one block in 
one parent and swapping it with one or more corresponding 
blocks in the other (we will see later what we mean by 
“corresponding”). The intelligence in the operator comes from the 
fact that instead of selecting a random block as a crossover point, 
GP-zip* selects the block with the lowest compression ratio in the 
first parent, which arguably is the most promising hotspot.  
Naturally, the boundaries of the block chosen in the first parent 
will often not correspond to the boundaries of a block or of a 
sequence of blocks in the second parent. So, before performing 
crossover, GP-zip* resizes the block chosen in the first parent in 
such a way that its boundaries match the boundaries of blocks in 
the second parent. It is then possible to move all the 
corresponding blocks from the second parent to replace the 
(extended) original block in the first parent. Resizing is the 
process of extending the selected block size in the first parent 
with the intention to fit it within the boundaries of the 
corresponding block or the sequence of blocks in the second 
parent. The crossover operator is illustrated in figure 3. 
This crossover operator (in conjunction with the new 
representation) is the key element for the improvements in speed 
and compression ratios provided by GP-zip* over its predecessor. 
In GP-zip the search was only guided by the fitness function. In 
GP-zip* it is also guided by the search operators. (As we will see 
in the next section also GP-zip*’s mutation uses the hotspot idea). 

Figure 3: GP-zip* crossover operator  

4.3 Mutation   
Since GP-zip*’s intelligent crossover maintains homology and 
has the property of purity (crossing over identical parents 
produces offspring indistinguishable from the parents), GP-zip* 
populations can and do converge, unlike many other forms of 
linear GP. It is then important to use some form of mutation to 
ensure some diversity (and, so, search intensity) is maintained.  
In GP-zip mutation worked as follows. One parent is selected via 
tournament selection, a random mutation point is chosen and then 
all subsequent blocks after the selected point are mutated into new 
randomly selected compression/transformations functions.  
GP-zip* mutates individuals differently. Once again we took 
advantages of the block-wise nature of the individuals. GP-zip* 
chooses the block with the worst compression ratio in the 
individual. Then it randomly selects a new block size in addition 
to a new compression/transformation function for the block. The 
new size is a random number from 200 bytes to the length of the 
file. Once the system allocates a new size for the selected block, it 
resizes it. Depending on whether the new size is bigger or smaller 
than the previous size, the resizing process will extend or shrink 
the block. In either case, changing a length of one block will 
affect all the adjacent blocks. The changes may include: 
extending one or two neighbouring blocks, shrinking one or two 
neighbouring blocks, or even entirely removing some blocks. 
Figure 4 illustrates two mutation cases. 

Figure 4: GP-zip* mutation operator 
A: Extend the block length, B: shrink the block length  

Similar to crossover, GP-zip* mutation is able to identify and 
target weak genetic material based on its internal credit 
assignment mechanism, which is a key element in GP-zip*’s 
improved quality of evolved solutions.  

5. EXPERIMENTS 
Experiments have been conducted in order to investigate the 
performance of GP-zip*. The aim of these experiments is to 
assess the benefits of its new representation and intelligent 
operators against the old method, as well as other widely used 
compression techniques. GP-zip* has been compared against the 
compression algorithms in its function set. In addition, bzip2 and 
WinRar, which are amongst the most popular compression 
algorithms in regular use, were included in the comparison.  
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In the field of compression, researchers mainly focus on measuring 
compression ratios. However, the time taken to perform 
compression and decompression is also often considered important. 
Unfortunately, several factors, for example, the size of the 
compressed file, the power of the CPU used, influence compression 
times, and it is, therefore, difficult to obtain a precise time 
comparison among different compressions models. 
The evaluation of compression algorithms can be either analytical or 
empirical [12]. Generally, the analytical evaluation is expressed as 
compression ratio versus entropy of the source, which is assumed to 
belong to a specific class [12]. However, such evaluation is not 
accurate and may not be broadly applicable. In the empirical 
evaluation, the algorithm is tested with a collection of real files. The 
difficulty of this method resides in the ability of generalising its 
results because it is strictly limited to the domain of the 
experimentation. One might imagine that to establish the perfect 
evaluation of an algorithm one should test it with all the possible 
files and find the average compression ratio over those files. This 
approach, however, is not only computationally expensive, but also 
theoretically flawed [12]. The reason for this is already explained in 
the compression principle discussed in Section 1: “There is no 
algorithm that is able to compress all the files even by 1 byte”. That 
is, the average compression ratio across all files would be greater 
than or equal to the average of the original files! 
Therefore, the empirical evaluation would really need to focus on 
the files that are likely to occur for each specific compression 
model. For example, if a compression model is designed to work for 
email attachments then normally all the experiments would 
concentrate on this set of files. In practice, even after focusing the 
experiments on relatively small set of files, it would still be 
impossible to collect all of them. Therefore, a random selection of 
test files must always be used.  
Good criteria for selecting excremental files are detailed in [12]. 
Here we tried to satisfy some of them. The selected files should be 
representative. In other words, they should be likely to be 
compressed by other users. Their size should be within the normal 
range, not too big or too small. Of course, the more files are 
included in the experiments, the more accurate the characterisation 
of the behaviour of the algorithm is. Naturally, since each fitness 
evaluation in GP-zip* is very expensive, we had to balance this 
criterion with ensuring the experiments remained computationally 
feasible with the hardware available. 
In order to compare the performance of GP-zip* against GP-zip, we 
used the same data sets (Text, Exe and Archive1) that were used to 
test previous method in [2]. Furthermore, new files have been 
included such as the Canterbury corpus [12], which is among the 
most popular benchmarks for data compression algorithms. Table 1 
presents a list of the files that have been included in the 
experiments.  As one can see, the experiments covered both 
heterogeneous and homogenous sets of data. The text archive and 
the executable archive are available in [22]. 

The experiments presented here were performed using the following 
parameter settings: 

• Population of size 100.  

• Maximum number of generations 100.  

• Crossover with probability of 75%.  

• Mutation with probability 20%.  

• Reproduction with probability of 5%. 

• Tournament selection with tournament size 2. 

Archive  Files  Size in bytes 
English translation of The Three 
Musketeers by Alexandre Dumas 1,344,739 

Anne of Green Gables by Lucy 
Maud Montgomery 586,960 

Text  

1995 CIA World Fact Book 2,988,578 
DOS Chemical Analysis program 438,144 

Windows95/98NetscapeNavigat 2,934,336 

Exe 

Linux 2.x PINE e-mail program 1,566,200 

Mp3Music  764,361 

Excel sheet  64,000 

Certificate card replacement 
form  PDF  www.padi.com  92,932 

Archive1  

Anne of Green Gables by Lucy 
Maud Montgomery (text file) 586,960 

PowerPoint slides   60,928 

JPEG file  2,171,285 

C++ source code  24,432 

Archive2  

Mp4 Video (5 seconds) 259,599 

GIF file  322,513 
Unicode text file (Arabic language) 379,148 
GP-zip* executable file  520,293 

Archive3 

Xml file  193,794 
Canterb-
ury corpus 

English text, fax image, C code, 
Excel sheet, Technical writing, 
SPARC exe, English poetry, 
HTML, lisp code, GUN Manual 
Page, play text. 

2,790,708 

Table 1: Test files for GP-zip* 
There is no terminating condition for GP-zip*. Hence, GP-zip* runs 
until the maximum number of generations is reached. The results of 
the experiments are illustrated in tables 2 and 3.  

Compression\Files Exe Text Archive1 

bzip2 57.86% 77.88% 32.9% 

WinRar- Best 64.68% 81.42% 34.03% 

PPMD 61.84% 79.95% 33.32% 

Boolean Minimization 11.42% 24.24% 3.78% 

LZW 35.75% 56.47% 1.13% 

RLE -4.66% -11.33% -10.20% 

AC 17.46% 37.77% 9.98% 

GP-zip 61.84% 79.95% 49.49% 

GP-zip* 62.03% 80.23% 63.43% 

Table 2: Performance comparison against GP-zip   
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Compression\Files Archive2 Archive3 Canterbury 

WinZip-bzip2 3.90% 64.49% 80.48% 

WinRar- Best 3.19% 65.99% 85.15% 

PPMD 3.90% 64.36% 81.19% 

BooleanM 2.82% 23.28% 38.01% 

LZW -43.98% 43.62% 15.61% 

RLE -11.49% 9.16% 6.55% 

AC 0.70% 27.62% 41.41% 

GP-zip* 58.70% 75.05% 81.58% 

Table 3: Performance comparison 

As can be seen by looking at the compression ratios obtained on the 
two homogenous sets of data (first and second columns in table 2), 
GP-zip* does very well outperforming seven of its eight 
competitors, with only WinRar doing marginally better. This is an 
excellent result. (Remember bzip2 and WinRar were not available 
to either GP-zip or GP-zip* as primitives.) It is also particularly 
interesting that GP-zip* was able to compress such files slightly 
better than GP-zip. Although the margin is very small, the fact is 
noteworthy, because on such data GP-zip was only as good as the 
best compression algorithm in its primitive set. GP-zip* does better 
thanks to its increased ability to detect heterogeneous data blocks 
(of different sizes) even within one set of homogenous data. By then 
compressing each block separately (but not necessarily with a 
different algorithm), a better compression ratio was achieved. 
While these results are very encouraging, where GP-zip* really 
shines is the compression of data files composed of highly 
heterogeneous data fragments, such as in Archive1, Archive2 and 
Archive3, where GP-zip* outperforms all other algorithms by very 
significant margins. With Archive1 (last column of table 2) one can 
appreciate the effect of the changes in representation and operators 
introduced in GP-zip* with respect to GP-zip. On heterogeneous 
data GP-zip* comes second only in the Canterbury dataset, 
marginally losing against WinRar. We should note, however, that 
this dataset is often used as a reference for comparison of 
compression algorithms, and so parameters (in highly optimised 
compression software such as WinRar) are often tuned to maximise 
compression on such a dataset. Furthermore, the high 
compressibility of the dataset indicates that, despite it being 
heterogeneous, effectively the entropy of the binary data it contains, 
may be atypically low (making it similar to a text archive). 
Naturally, GP-zip* is a stochastic search algorithm. Consequently, it 
is not always guaranteed to obtain the best possible compression 
ratio. The results presented above are the best obtained when 
running GP-zip* 15 times. However, as shown in table 4, GP-zip* 
is very reliable with almost every run producing highly competitive 
results.  The table reports also the average run times for the 
algorithm. Although, thanks to the new improvements, GP-zip* is 
considerably faster and it produces much better results than the old 
method, it is fair to say that the algorithm is still very slow (we 
timed the system on a 2.21GHz AMD PC). We believe that 
computational times can be reduced by one to 1.5 orders of 
magnitude by making use of multiple CPU cores and/or GPUs. 

 

 Exe 
(4.07MB) 

Text 
(4.07MB) 

Canterbur
y 
(2.66MB) 

Compression Average 61.68% 79.85% 79.16% 

Standard deviation 0.23 0.26 4.88 

Best Compression 62.03% 80.23% 81.58% 

Worst Compression 61.25% 79.36% 69.53% 
Compression Time in 

hours 12 hours 12 hours 10 hours 

Compression time 
Hours/Megabyte 2.95 2.95 3.76 

 Archive1 
(1.43MB) 

Archive2 
(2.39MB) 

Archive3 
(1.35MB) 

Compression Average 42.02% 16.97% 66.25% 

Standard deviation 11.26 22.41 2.74 

Best Compression 63.43% 58.70% 75.05% 

Worst Compression 33.29% 3.70% 64.20% 
Compression Time in 

hours 7 hours 8 hours 6 hours 

Compression time 
Hours/Megabyte 4.90 3.35 4.44 

 

Average of Compression time 9.17 hours 

Average of  compression time/Mega 3.73 hours 

Table 4: Summarization of 15 GP-zip* runs for each data set  

6. CONCLUSION AND FUTURE WORK  
The aim of this research is to understand the benefits and 
limitations of the concept of identifying and using the best 
possible lossless compression algorithm for different parts of a 
data file in such a way to ensure the best possible overall 
compression ratio. 
The GP-zip system we proposed in earlier research [2] was a good 
starting point. However, it suffered from several limitations. In 
this paper we have proposed a new system, GP-zip*, where such 
limitations are removed and the search efficiency is further 
improved thanks to the use of intelligent genetic operators. The 
proposed improvements have produced a system that significantly 
outperforms its predecessor as well as most other compression 
algorithms, being best of all compression algorithms tested on 
heterogeneous files and never being too far behind the best with 
other types of data.  
In addition, to providing better compression, the division of data 
files into blocks presents the additional advantage that, in the 
decompression process, one can decompress a section of the data 
without processing the entire file. This is particularly useful for 
example, if the data are decompressed for streaming purposes 
(such as music and video files). Also, the decompression process 
is faster than compression, as GP-zip* can send each 
decompressed block into the operating system pipeline 
sequentially. 

1217



Although the proposed technique has achieved substantial 
compression ratio of heterogeneous files in comparison with the 
other techniques, it suffers from one major disadvantage. The 
process of GP-zip* is very computationally intensive. In future 
research we will concentrate on this particular aspect of GP-zip* as 
further substantial improvements can be expected. Also, the 
experiments have demonstrated that GP-zip* always outperforms 
the compression models in its function set. However, the overall 
algorithm performance is somehow limited by the power of the used 
models within the function set. Increasing the number compression 
models within GP-zip* is expected to further improve its 
performance.   
Also, currently, we treat each compression/ transformation model in 
the function set as a black box, so as an extension for this research 
we can decompose each of the functions in the function set and try 
to combine their internal features.  Also, a simple extension of the 
set of compression and transformation functions available in the 
primitive set to the open ended evolution of the compression 
algorithm to be performed every time a file is accessed.   
We will explore these avenues in future research. 
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