
Evolutionary Lossless Compression with GP-ZIP*
Ahmad Kattan

University of Essex
Dep. Computing and Electronic Systems

Colchester, CO4 3SQ
United Kingdom

akatta@essex.ac.uk

Riccardo Poli
University of Essex

Dep. Computing and Electronic Systems
Colchester, CO4 3SQ

United Kingdom
rpoli@essex.ac.uk

ABSTRACT
In recent research we proposed GP-zip, a system which uses
evolution to find optimal ways to combine standard compression
algorithms for the purpose of maximally losslessly compressing
files and archives. The system divides files into blocks of
predefined length. It then uses a linear, fixed-length
representation where each primitive indicates what compression
algorithm to use for a specific data block. GP-zip worked well
with heterogonous data sets, providing significant improvements
in compression ratio compared to some of the best standard
compression algorithms. In this paper we propose a substantial
improvement, called GP-zip*, which uses a new representation
and intelligent crossover and mutation operators such that blocks
of different sizes can be evolved. Like GP-zip, GP-zip* finds
what the best compression technique to use for each block is. The
compression algorithms available in the primitive set of GP-zip*
are: Arithmetic coding (AC), Lempel-Ziv-Welch (LZW),
Unbounded Prediction by Partial Matching (PPMD), Run Length
Encoding (RLE), and Boolean Minimization. In addition, two
transformation techniques are available: the Burrows-Wheeler
Transformation (BWT) and Move to Front (MTF). Results show
that GP-zip* provides improvements in compression ratio ranging
from a fraction to several tens of percent over its predecessor.

Categories and Subject Descriptors
I.2.2 [ARTIFICIAL INTELLIGENCE]: Automatic
Programming

General Terms
Algorithms, Performance, Reliability.

Keywords
Lossless data compression, GP-zip, AC, LZW, PPMD, RLE,
Boolean Minimization. BWT, MTF, GP-zip*.

1. INTRODUCTION
Over the past decade or two many techniques have been
developed for data compression, each of which has their own
particular advantages and disadvantages.

One of the factors that help in developing an efficient data
compression model is the availability of prior knowledge on the
domain of the data to be compressed. In these circumstances,
compression researchers can develop specialised compression
techniques which perform well on a specific type of data.
However, it is difficult to find a universal compression algorithm
that performs well on any data type [1]. Two principles are
common among compression algorithms; a) There is no algorithm
that is able to compress all the files even by 1 byte; b) There are
less than 1% of all files that can be compressed losslessly by 1
byte [1]. Also there is a sort of no-free lunch result for lossless
compression, by which, unfortunately, no single compression
algorithm is guaranteed never to increase the size of a file.
For these reasons, the development of generic compression
algorithms has lost momentum in favour of specialised ones.
Nevertheless the importance of the former is considerable, as they
are valuable when information on the data to be compressed is not
available or when the data is composed of fragments of
heterogeneous types. For example, there is today more and more
use of archive files (e.g., ZIP files or TAR files), where users
store large quantities of files often including diverse combinations
of text, music, pictures, video, executables, and so forth. These
files still require generic compression algorithms.
An ideal compression system would be one that is able to identify
incompatible data fragments (both the file level and within each
file) in an archive, and to allocate the best possible compression
model for each, in such a way to minimise the total size of the
compressed version of the archive. For large and varied datasets,
for example, web sites, this would provide enormous advantages
in terms of compression ratios. Solving the problem optimally,
however, would be enormously complex.
In recent research [2] we started to make some progress on
turning this idea into practice. In particular, we proposed a
general purpose compression method, GP-zip, which uses a form
of linear Genetic Programming (GP) to find optimal ways to
combine standard compression algorithms for maximally and
losslessly compressing files and archives. The system divides files
into blocks of predefined length. It then uses a linear, fixed-length
representation where each primitive indicates what compression
algorithm to use for a specific data block. GP-zip worked well
with heterogonous data sets, providing significant improvements
in compression ratio over some of the best known standard
compression algorithms. GP-zip had two main limitations: a) the
fixed block size restricted the ways in which compression
algorithms could be combined, and b) GP-zip entails a
considerable computational load. In this paper we propose a
substantial improvement of GP-zip, called GP-zip*, which uses a
new representation where blocks of different sizes can be evolved
and intelligent operators which identify and target which elements

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-130-9/08/07…$5.00.

1211

of the representation to change to increase fitness with high
probability. As we will see, the proposed improvements provide
superior performance over the previous method with respect to
both execution time and compression ratios.
The structure of this paper is as follows. In the next section we
review previous attempts to use GP in the area of lossy and
lossless compression. Section 3 provides a description of GP-zip,
the starting point for GP-zip*, and a general evaluation for the
algorithm’s performance. Section 4 discusses GP-zip* in details.
This is followed by experimental results in Section 5. Finally,
conclusive remarks are given in Section 6.

2. RELATED WORK
The problem of heterogeneous file compression has been tackled
by Hsu in [3]. The proposed system segmented the data into
blocks of a fixed length (5 KB) and then compressed each block
individually. The system passed the blocks to the appropriate
compression method by using a file type detector that was able to
classify ten different types of data. The approach also used a
statistical method to measure the compressibility of the data.
However, due to various restrictions, the results reported were not
impressive.
Koza [4] was the first to use GP to perform compression. He
considered, in particular, the lossy compression of images. The
idea was to treat an image as a function of two variables (the row
and column of each pixel) and to use GP to evolve a function that
matches as closely as possible the original. One can then take the
evolved GP tree as a lossy compressed version of the image. The
technique, which was termed programmatic compression, was
tested on one small synthetic image with good success.
Programmatic compression was further developed and applied to
realistic data (images and sounds) by Nordin and Banzhaf [5].
Iterated Functions System (IFS) are important in the domain of
fractals and the fractal compression algorithm. [6] and [7] used
genetic programming to solve the inverse problem of identifying a
mixed IFS whose attractor is a specific binary (B/W) image of
interest. The evolved program can then be taken to represent the
original image. In principle this can then be further compressed.
The technique is lossy, since rarely the inverse problem can be
solved exactly. No practical application or compression ratio
results were reported in [6], [7]. Using similar principles,
Sarafoulous [8] used GP to evolve affine IFSs whose attractors
represent a binary image containing a square (which was
compressed exactly) and one containing fern (which was achieved
with some error in finer details).
Wavelets are frequently used in lossy image and signal
compression. Klappenecker [9] used GP to evolve wavelet
compression algorithms, where internal nodes represented
conjugate quadrate filters and leaves represented quantisers.
Results on a small set of real world images were impressive, with
the GP compression outperforming JPEG at all compression
ratios.
A first lossless compression technique was reported in [10], where
GP was used to evolve non-linear predictors for images. These are
used to predict the gray level of a pixel will take based on the
gray values of a subset of its neighbours (those that have already
been computed in a row-by-row and column-by-column scan of
the image array). The prediction errors together with the model’s
description represent a compressed version of the image. These

were compressed using the Huffman encoding. Results on five
images from the NASA Galileo Mission database were very
promising with GP compression outperforming some of the best
human-designed lossless compression algorithms.
In many compression algorithms some form of pre-processing or
transformation of the original data is performed before
compression. This often improves compression rates. In [11],
Parent and Nowe evolved pre-processors for image compression
using GP. The objective of the pre-processor was to reduce
losslessly the entropy in the original image. In tests with five
images from the Canterbury Corpus [12] GP was successful in
significantly reducing the image entropy. As verified via the
application of bzip2, the resulting images were markedly easier to
compress.
In [13] the use of programmatic compression was extended from
images to natural videos. A program was evolved that generates
intermediate frames of video sequence, where each frame is
composed by a series of transformed regions from the adjacent
frames. The results were encouraging in the sense that a good
approximation to frames was achieved. Naturally, although, a
significant improvement in compression was achieved,
programmatic compression was very slow in comparison with the
other known methods, the time needed for compression being
measured in hours or even days.
Acceleration in GP image compression was achieved in [14],
where an optimal linear predictive technique was proposed,
thanks to the use of a less complex fitness function.

3. GP-ZIP
As previously mentioned, the basic idea of GP-zip [2] was to
divide the target data file into blocks of a predefined length and
ask GP to identify the best possible compression technique for
each block. The function set of GP-zip was composed of
primitives two categories. The first category contains the
following five compression algorithms: Arithmetic Coding (AC)
[15], Lempel-Ziv-Welch LZW [16], unbounded Prediction by
Partial Matching (PPMD) [17], Run Length Encoding (RLE) [18],
and Boolean Minimization [19]. In the second category two
transformation techniques are included: the Burrows-Wheeler
Transformation (BWT) [20] and Move to Front (MTF) [21].
Given that these are mostly well-known techniques, we will not
provide a detailed explanation of each of these compression and
transformation algorithms. Each compression function receives a
stream of data as inputs and returns a (typically) smaller stream of
compressed data as an output. Each transformation function
receives a stream of data as input and returns a transformed
stream of data as an output. Consequently, this does not directly
produce a compression. However, often the transformed data are
assumed to be more compressible, and hence, when passed to a
compression algorithm in the function set, a better compression
ratio is achieved.

GP-zip uses a form of “divide and conquer” strategy. Each
member of the function set performs well when it works in the
circumstances that it has been designed for. Dividing the given
data into smaller blocks makes the creation and identification of
such circumstances easier.

The length of the possible blocks starts from 1600 bytes and
increases up to 1 Mega byte in increments of 1600 bytes. Hence,
the set of possible lengths for the blocks is {1600, 3200, 4800,

1212

6400….1MB}. The blocks are not allowed to be bigger than the
file itself. Moreover, the length of the file is added to the set of
possible block lengths. The reason for this is to give GP-zip the
freedom to choose whether to divide the file into smaller blocks
as opposed to compressing the whole file as one single block. The
number of blocks is calculated, by dividing the file length by the
block length.

As the function set is composed of five compression algorithms
and two transformation algorithms, it is clear that GP-zip has 15
different choices to compress each block. Namely, it can apply
one of the five compression functions without any transformation
of the data in a block, or it can precede the application of the
compression function by one of two transformation functions.

The decision as to what block length to use to compress the data
proceeds in stages. Initially, GP-zip randomly selects a block
length from the set of possible lengths. The system starts by
initializing a population randomly. As illustrated in figure 1,
individuals represent a sequence of compression functions with or
without transformation functions. High fitness individuals are
selected with a specific probability and are manipulated by
crossover, mutation and reproduction operations.

After the system finds the best possible combination of
compression algorithms for the selected block-length, it restarts
its search again using a different block-length. This is repeated
multiple times. Of course, since testing all of the possible block
lengths is considerably time-consuming, GP-zip selects the new
lengths by performing a form of binary search over a set of
possible lengths. This is applied for the first time after the system
has tested two block lengths.

Figure 1: GP-zip individuals within a population

Since the proposed technique divides the data into blocks of
predefined lengths and finds the best possible compression model
for them, it is necessary for the decompression process to know
which block was compressed by which compression/
transformation function. A header for the compressed files
provides this information for the decompression process. The size
of this header is not fixed, but it is an insignificant overhead in
comparison to the file size.
After the process of searching for the best possible length for
dividing the file and the best possible combination of
compression/transformation functions, GP-zip merges the blocks
with identical labels. For example, the chromosome
[PPMD][PPMD][LZW][LZW][LZW] is interpreted as the
application of PPMD to the first two blocks (considered as one)
and LZW to the third, fourth and fifth block of a file (again

considered as one). The concept being that through this “gluing”
process, GP-zip obtains fewer blocks, which, on average, are
bigger, leading to better compression. The assumption is that
sequences of identical primitives will tend to indicate that the data
in the corresponding blocks are of similar (or at least compatible)
type. In experiments with a few data sets, the gluing process was
shown to be beneficial. However, it is unlikely that the
assumption above will apply in all cases. In those cases, it might
in fact turn out that neighbouring blocks are best compressed
using the same algorithm, but that there are statistical differences
in the data in each block such that they should be treated
(compressed) independently. Thus, while to some extent, gluing
improves the flexibility of the representation, it also adds a bias
which might make the algorithm less general. As we will see in
the next section, with GP-zip* we will completely remove this
problem while at the same time giving complete freedom to
evolution to choose block sizes.

GP-zip has been tested with several collections of data
(homogenous and heterogeneous). When the given data was
homogenous (e.g., sets of text files), the system always converged
to solutions where the data is treated as a single big contiguous
block. In other words, the file is compressed normally with the
best possible compression method from GP-zip’s function set.
Hence, GP-zip did not outperform existing algorithms on
homogeneous data (it was not outperformed either, since it always
chose a very good algorithm to do the compression).
Alternatively, when the given data was composed of
heterogeneous fragments (e.g., archive files), GP-zip did very
well. We provide more information on GP-zip’s performance in
Section 5.
Although GP-zip has achieved good results in comparison with
other well-known compression algorithms, it suffers from one
major disadvantage. The described staged process of GP-zip is
very time consuming (of the order of a day per megabyte). Of
course, decompression is, instead, very fast. While there are many
applications for which an asymmetric compression algorithm is
useful–any compress-once/decompress-many scenario can accept
some asymmetry–it is also clear that this level of asymmetry
makes the system practically unviable even with today’s CPUs.

4. GP-ZIP*
An alternative to GP-zip’s scheme of imposing the use of a fixed
length for the blocks is to allow the block length to freely vary
(across and within individuals) to better adapt to the data. Here
we propose a new method for determining the length of the
blocks, which completely removes the need of a staged search for
an acceptable fixed length typical of GP-zip. Furthermore, we
provide new intelligent operators which are specialised to handle
the new representation. As already mentioned, we call the
resulting system GP-zip*.
We have already pointed out that GP-zip is a very time
consuming process. The reason is that a lot more effort is spent
searching for the best possible length for the blocks, than for
choosing how to compress the data. This search is performed
using a type of binary search, which, in itself, is efficient.
However, since each search query in fact involves the execution
of a GP run, the whole process appears rather inefficient,
particularly considering that the gluing method eventually will
undo certain decisions regarding block lengths. This motivated us

1213

to find a way to eliminate the need of imposing a fixed length of
blocks.
One initial idea to achieve more flexibility was to divide the given
data into very small blocks (e.g. 100 byte per block), compress
each block individually with the best compression model that fits
into it, and then glue all the identical subsequent blocks. We
eventually discarded this idea for two reasons. Firstly, it relies
heavily on the gluing process, which, as we have seen introduces
a bias in the compression (it assumes that identical neighbouring
primitives indicate homogeneous data). Secondly, most
compression techniques require some header information to be
stored. Therefore, when applying a compression model to a very
small set of data, the generated header information becomes
bigger than the compressed data itself, which completely defeats
the purpose.
We opted for a cleaner (and, as we will see, effective) strategy:
we ask GP to solve the problem for us. That is each individual in
the population represents in how many blocks to divide each file
and the size of those blocks in addition to the particular algorithm
used to compress each block. In other words, in GP-zip* we
evolve the length of the blocks within each run, rather than use
the staged evolutionary search, possibly involving many GP runs,
of GP-zip. This significantly reduces the computational effort
required to run the system. The difficulty of this method resides in
the inapplicability of the standard genetic operators and the
corresponding need to design new ones.
We describe the new representation and operators used in GP-
zip* in the next sub-sections.

4.1 Representation
In the work reported in this paper we used for GP-zip* the same
primitive set (i.e., the same compression and transformation
models) as for GP-zip. We did this for two reasons: a) these
primitives are amongst the best know compression methods and
worked really well in GP-zip, and b) using the same primitives we
can perform a more conclusive comparison between the two
systems.

GP-zip* starts by initializing the population randomly. Similarly,
to the previous method, all initial individuals contain blocks of a
given length. However, differently to GP-zip, in GP-zip* the
block length for each individual is chosen randomly. As shown in
Figure 2, the resulting population includes individuals with a
variety of block sizes. Individuals represent sequences of
compression functions with or without transformation functions.
High fitness individuals are selected probabilistically and are
manipulated by crossover, mutation and reproduction operations
(see below). So, although we start with individuals with equal-
size blocks, during these processes the size of one or more blocks
within an individual may change. This makes it possible to evolve
any partition of the file into blocks. This gives GP-zip* the
freedom of exploring many more possible solutions in the search
space than GP-zip could. The hope is that some of these new
possibilities will prove superior.

Figure 2: GP-zip* Individuals within a population

The size of the blocks for each of the generated individuals in the
initialized population is a random number uniformly distributed
between 200 bytes to the length of the file to be compressed. All
integer values in the range are allowed.

Similarly to the old method, it is necessary for the decompression
process to know which block was compressed by which
compression/transformation function. A header for the
compressed files provides this information. Since the new
representation has eliminated the need of imposing a fixed length
for the blocks, it is necessary for the decompression process to
know the length for each block. This information increases the
amount of information stored in the header file. However, since
the size of the header is included in the calculation of the fitness
(we simply use the compression ratio), evolution always stays
clear of solutions that involve too many small blocks.
Also, similar to the old method, GP-zip* presents several
advantages as a result of dividing the data into smaller blocks. For
example, when required, the decompression process could easily
process only a section of the data without processing the entire
file. As another example, the decompression process could easily
be parallelised (e.g., using multi- and hyper-threading, multiple
CPU cores or use of GPUs) making files compressed with GP-
zip* faster to decompress than those produced with most
traditional methods.
GP-zip*’s individuals have a linear representation which may
give the impression that the proposed system is a Genetic
Algorithm rather than Genetic Programming method. However,
this is arguably not true for following reason. GAs are known to
have a fixed representation (binary strings) for individuals while
in GP-zip* the system receive an input (block of data) of a
variable length and return another block of data (typically
shorter). Also, it should be noted that each member in the function
set is a compression/transformation algorithm by itself which
together form GP-zip* compression system. So, each element of
the representation acts more like an instruction of a GP computer
program than as a parameter being optimised by a GA.

4.2 Crossover
Crossover is one of the essential genetic search operators. The
aim of crossover is to exchange genetic material between
individuals, in order to generate offspring that hold features from
both parents.

1214

Since GP-zip used fixed length representations, GA-type standard
genetic operators were used as variation operators. In particular,
in the crossover, the GP-zip system selected two individuals with
tournament selection, a common crossover point was then
randomly chosen, and, finally, all the blocks before the crossover
point in the first parent were concatenated with the blocks after
the crossover point in the second parent to produce the offspring.
So, this was a form of one-point crossover. Since in GP-zip*
individuals are divided into blocks of different and heterogeneous
lengths, we cannot use the same approach. Instead, we use an
intelligent crossover.
One of the advantages of the subdivision into blocks of the
individuals is that it is possible to evaluate to which degree the
compression ratio of each individual contributes to the
compression ratio for a file. This information can be used to
identify and implement useful crossover hotspots. In our
intelligent crossover operator we use this idea in conjunction with
a greedy approach. The operator works by choosing one block in
one parent and swapping it with one or more corresponding
blocks in the other (we will see later what we mean by
“corresponding”). The intelligence in the operator comes from the
fact that instead of selecting a random block as a crossover point,
GP-zip* selects the block with the lowest compression ratio in the
first parent, which arguably is the most promising hotspot.
Naturally, the boundaries of the block chosen in the first parent
will often not correspond to the boundaries of a block or of a
sequence of blocks in the second parent. So, before performing
crossover, GP-zip* resizes the block chosen in the first parent in
such a way that its boundaries match the boundaries of blocks in
the second parent. It is then possible to move all the
corresponding blocks from the second parent to replace the
(extended) original block in the first parent. Resizing is the
process of extending the selected block size in the first parent
with the intention to fit it within the boundaries of the
corresponding block or the sequence of blocks in the second
parent. The crossover operator is illustrated in figure 3.
This crossover operator (in conjunction with the new
representation) is the key element for the improvements in speed
and compression ratios provided by GP-zip* over its predecessor.
In GP-zip the search was only guided by the fitness function. In
GP-zip* it is also guided by the search operators. (As we will see
in the next section also GP-zip*’s mutation uses the hotspot idea).

Figure 3: GP-zip* crossover operator

4.3 Mutation
Since GP-zip*’s intelligent crossover maintains homology and
has the property of purity (crossing over identical parents
produces offspring indistinguishable from the parents), GP-zip*
populations can and do converge, unlike many other forms of
linear GP. It is then important to use some form of mutation to
ensure some diversity (and, so, search intensity) is maintained.
In GP-zip mutation worked as follows. One parent is selected via
tournament selection, a random mutation point is chosen and then
all subsequent blocks after the selected point are mutated into new
randomly selected compression/transformations functions.
GP-zip* mutates individuals differently. Once again we took
advantages of the block-wise nature of the individuals. GP-zip*
chooses the block with the worst compression ratio in the
individual. Then it randomly selects a new block size in addition
to a new compression/transformation function for the block. The
new size is a random number from 200 bytes to the length of the
file. Once the system allocates a new size for the selected block, it
resizes it. Depending on whether the new size is bigger or smaller
than the previous size, the resizing process will extend or shrink
the block. In either case, changing a length of one block will
affect all the adjacent blocks. The changes may include:
extending one or two neighbouring blocks, shrinking one or two
neighbouring blocks, or even entirely removing some blocks.
Figure 4 illustrates two mutation cases.

Figure 4: GP-zip* mutation operator
A: Extend the block length, B: shrink the block length

Similar to crossover, GP-zip* mutation is able to identify and
target weak genetic material based on its internal credit
assignment mechanism, which is a key element in GP-zip*’s
improved quality of evolved solutions.

5. EXPERIMENTS
Experiments have been conducted in order to investigate the
performance of GP-zip*. The aim of these experiments is to
assess the benefits of its new representation and intelligent
operators against the old method, as well as other widely used
compression techniques. GP-zip* has been compared against the
compression algorithms in its function set. In addition, bzip2 and
WinRar, which are amongst the most popular compression
algorithms in regular use, were included in the comparison.

1215

In the field of compression, researchers mainly focus on measuring
compression ratios. However, the time taken to perform
compression and decompression is also often considered important.
Unfortunately, several factors, for example, the size of the
compressed file, the power of the CPU used, influence compression
times, and it is, therefore, difficult to obtain a precise time
comparison among different compressions models.
The evaluation of compression algorithms can be either analytical or
empirical [12]. Generally, the analytical evaluation is expressed as
compression ratio versus entropy of the source, which is assumed to
belong to a specific class [12]. However, such evaluation is not
accurate and may not be broadly applicable. In the empirical
evaluation, the algorithm is tested with a collection of real files. The
difficulty of this method resides in the ability of generalising its
results because it is strictly limited to the domain of the
experimentation. One might imagine that to establish the perfect
evaluation of an algorithm one should test it with all the possible
files and find the average compression ratio over those files. This
approach, however, is not only computationally expensive, but also
theoretically flawed [12]. The reason for this is already explained in
the compression principle discussed in Section 1: “There is no
algorithm that is able to compress all the files even by 1 byte”. That
is, the average compression ratio across all files would be greater
than or equal to the average of the original files!
Therefore, the empirical evaluation would really need to focus on
the files that are likely to occur for each specific compression
model. For example, if a compression model is designed to work for
email attachments then normally all the experiments would
concentrate on this set of files. In practice, even after focusing the
experiments on relatively small set of files, it would still be
impossible to collect all of them. Therefore, a random selection of
test files must always be used.
Good criteria for selecting excremental files are detailed in [12].
Here we tried to satisfy some of them. The selected files should be
representative. In other words, they should be likely to be
compressed by other users. Their size should be within the normal
range, not too big or too small. Of course, the more files are
included in the experiments, the more accurate the characterisation
of the behaviour of the algorithm is. Naturally, since each fitness
evaluation in GP-zip* is very expensive, we had to balance this
criterion with ensuring the experiments remained computationally
feasible with the hardware available.
In order to compare the performance of GP-zip* against GP-zip, we
used the same data sets (Text, Exe and Archive1) that were used to
test previous method in [2]. Furthermore, new files have been
included such as the Canterbury corpus [12], which is among the
most popular benchmarks for data compression algorithms. Table 1
presents a list of the files that have been included in the
experiments. As one can see, the experiments covered both
heterogeneous and homogenous sets of data. The text archive and
the executable archive are available in [22].

The experiments presented here were performed using the following
parameter settings:

• Population of size 100.

• Maximum number of generations 100.

• Crossover with probability of 75%.

• Mutation with probability 20%.

• Reproduction with probability of 5%.

• Tournament selection with tournament size 2.

Archive Files Size in bytes
English translation of The Three
Musketeers by Alexandre Dumas 1,344,739

Anne of Green Gables by Lucy
Maud Montgomery 586,960

Text

1995 CIA World Fact Book 2,988,578
DOS Chemical Analysis program 438,144

Windows95/98NetscapeNavigat 2,934,336

Exe

Linux 2.x PINE e-mail program 1,566,200

Mp3Music 764,361

Excel sheet 64,000

Certificate card replacement
form PDF www.padi.com 92,932

Archive1

Anne of Green Gables by Lucy
Maud Montgomery (text file) 586,960

PowerPoint slides 60,928

JPEG file 2,171,285

C++ source code 24,432

Archive2

Mp4 Video (5 seconds) 259,599

GIF file 322,513
Unicode text file (Arabic language) 379,148
GP-zip* executable file 520,293

Archive3

Xml file 193,794
Canterb-
ury corpus

English text, fax image, C code,
Excel sheet, Technical writing,
SPARC exe, English poetry,
HTML, lisp code, GUN Manual
Page, play text.

2,790,708

Table 1: Test files for GP-zip*
There is no terminating condition for GP-zip*. Hence, GP-zip* runs
until the maximum number of generations is reached. The results of
the experiments are illustrated in tables 2 and 3.

Compression\Files Exe Text Archive1

bzip2 57.86% 77.88% 32.9%

WinRar- Best 64.68% 81.42% 34.03%

PPMD 61.84% 79.95% 33.32%

Boolean Minimization 11.42% 24.24% 3.78%

LZW 35.75% 56.47% 1.13%

RLE -4.66% -11.33% -10.20%

AC 17.46% 37.77% 9.98%

GP-zip 61.84% 79.95% 49.49%

GP-zip* 62.03% 80.23% 63.43%

Table 2: Performance comparison against GP-zip

1216

Compression\Files Archive2 Archive3 Canterbury

WinZip-bzip2 3.90% 64.49% 80.48%

WinRar- Best 3.19% 65.99% 85.15%

PPMD 3.90% 64.36% 81.19%

BooleanM 2.82% 23.28% 38.01%

LZW -43.98% 43.62% 15.61%

RLE -11.49% 9.16% 6.55%

AC 0.70% 27.62% 41.41%

GP-zip* 58.70% 75.05% 81.58%

Table 3: Performance comparison

As can be seen by looking at the compression ratios obtained on the
two homogenous sets of data (first and second columns in table 2),
GP-zip* does very well outperforming seven of its eight
competitors, with only WinRar doing marginally better. This is an
excellent result. (Remember bzip2 and WinRar were not available
to either GP-zip or GP-zip* as primitives.) It is also particularly
interesting that GP-zip* was able to compress such files slightly
better than GP-zip. Although the margin is very small, the fact is
noteworthy, because on such data GP-zip was only as good as the
best compression algorithm in its primitive set. GP-zip* does better
thanks to its increased ability to detect heterogeneous data blocks
(of different sizes) even within one set of homogenous data. By then
compressing each block separately (but not necessarily with a
different algorithm), a better compression ratio was achieved.
While these results are very encouraging, where GP-zip* really
shines is the compression of data files composed of highly
heterogeneous data fragments, such as in Archive1, Archive2 and
Archive3, where GP-zip* outperforms all other algorithms by very
significant margins. With Archive1 (last column of table 2) one can
appreciate the effect of the changes in representation and operators
introduced in GP-zip* with respect to GP-zip. On heterogeneous
data GP-zip* comes second only in the Canterbury dataset,
marginally losing against WinRar. We should note, however, that
this dataset is often used as a reference for comparison of
compression algorithms, and so parameters (in highly optimised
compression software such as WinRar) are often tuned to maximise
compression on such a dataset. Furthermore, the high
compressibility of the dataset indicates that, despite it being
heterogeneous, effectively the entropy of the binary data it contains,
may be atypically low (making it similar to a text archive).
Naturally, GP-zip* is a stochastic search algorithm. Consequently, it
is not always guaranteed to obtain the best possible compression
ratio. The results presented above are the best obtained when
running GP-zip* 15 times. However, as shown in table 4, GP-zip*
is very reliable with almost every run producing highly competitive
results. The table reports also the average run times for the
algorithm. Although, thanks to the new improvements, GP-zip* is
considerably faster and it produces much better results than the old
method, it is fair to say that the algorithm is still very slow (we
timed the system on a 2.21GHz AMD PC). We believe that
computational times can be reduced by one to 1.5 orders of
magnitude by making use of multiple CPU cores and/or GPUs.

 Exe
(4.07MB)

Text
(4.07MB)

Canterbur
y
(2.66MB)

Compression Average 61.68% 79.85% 79.16%

Standard deviation 0.23 0.26 4.88

Best Compression 62.03% 80.23% 81.58%

Worst Compression 61.25% 79.36% 69.53%
Compression Time in

hours 12 hours 12 hours 10 hours

Compression time
Hours/Megabyte 2.95 2.95 3.76

 Archive1
(1.43MB)

Archive2
(2.39MB)

Archive3
(1.35MB)

Compression Average 42.02% 16.97% 66.25%

Standard deviation 11.26 22.41 2.74

Best Compression 63.43% 58.70% 75.05%

Worst Compression 33.29% 3.70% 64.20%
Compression Time in

hours 7 hours 8 hours 6 hours

Compression time
Hours/Megabyte 4.90 3.35 4.44

Average of Compression time 9.17 hours

Average of compression time/Mega 3.73 hours

Table 4: Summarization of 15 GP-zip* runs for each data set

6. CONCLUSION AND FUTURE WORK
The aim of this research is to understand the benefits and
limitations of the concept of identifying and using the best
possible lossless compression algorithm for different parts of a
data file in such a way to ensure the best possible overall
compression ratio.
The GP-zip system we proposed in earlier research [2] was a good
starting point. However, it suffered from several limitations. In
this paper we have proposed a new system, GP-zip*, where such
limitations are removed and the search efficiency is further
improved thanks to the use of intelligent genetic operators. The
proposed improvements have produced a system that significantly
outperforms its predecessor as well as most other compression
algorithms, being best of all compression algorithms tested on
heterogeneous files and never being too far behind the best with
other types of data.
In addition, to providing better compression, the division of data
files into blocks presents the additional advantage that, in the
decompression process, one can decompress a section of the data
without processing the entire file. This is particularly useful for
example, if the data are decompressed for streaming purposes
(such as music and video files). Also, the decompression process
is faster than compression, as GP-zip* can send each
decompressed block into the operating system pipeline
sequentially.

1217

Although the proposed technique has achieved substantial
compression ratio of heterogeneous files in comparison with the
other techniques, it suffers from one major disadvantage. The
process of GP-zip* is very computationally intensive. In future
research we will concentrate on this particular aspect of GP-zip* as
further substantial improvements can be expected. Also, the
experiments have demonstrated that GP-zip* always outperforms
the compression models in its function set. However, the overall
algorithm performance is somehow limited by the power of the used
models within the function set. Increasing the number compression
models within GP-zip* is expected to further improve its
performance.
Also, currently, we treat each compression/ transformation model in
the function set as a black box, so as an extension for this research
we can decompose each of the functions in the function set and try
to combine their internal features. Also, a simple extension of the
set of compression and transformation functions available in the
primitive set to the open ended evolution of the compression
algorithm to be performed every time a file is accessed.
We will explore these avenues in future research.

7. REFERENCES
[1] I. M. Pu, Fundamental Data Compression, HB, ISBN-13: 978-

0-7506-6310-62006. Chapter 1.
[2] Ahmad Kattan and Riccardo Poli, Evolutionary Lossless

Compression with GP-ZIP, Proceedings of the IEEE World
Congress on Computational Intelligence, IEEE 2008.

[3] William H. Hsu and Emy E. Zwarico, Automatic Synthesis of
Compression Techniques for Heterogeneous Files
SOFTPREX: Software–Practice and Experience, Vol. 25,
1995.

[4] John R. Koza. Genetic Programming: On the Programming of
Computers by Means of Natural Selection. MIT Press,
ambridge, MA, USA, 1992.

[5] Peter Nordin and Wolfgang Banzhaf. Programmatic
compression of images and sound. In John R. Koza, David E.
Goldberg, David B. Fogel, and Rick L. Riolo, editors, Genetic
Programming 1996: Proceedings of the First Annual
Conference, pages 345–350, Stanford University, CA, USA,
28–31 July 1996. MIT Press.

[6] Evelyne Lutton, Jacques Levy-Vehel, Guillaume Cretin,
Philippe Glevarec, and Cidric Roll. Mixed IFS: Resolution of
the inverse problem using genetic programming. Complex
Systems, 9:375–398, 1995.

[7] Evelyne Lutton, Jacques Levy-Vehel, Guillaume Cretin,
Philippe Glevarec, and Cidric Roll. Mixed IFS: Resolution of
the inverse problem using genetic programming. Research
Report No 2631, Inria, 1995.

[8] Anargyros Sarafopoulos. Automatic generation of affine IFS
and strongly typed genetic programming. In Riccardo Poli,
Peter Nordin, William B. Langdon, and Terence C. Fogarty,
editors, Genetic Programming, Proceedings of EuroGP’99,
volume 1598 of LNCS, pages 149–160, Goteborg, Sweden,
26-27 May 1999. Springer-Verlag.

[9] Andreas Klappenecker and Frank U. May. Evolving better
wavelet compression schemes. In Andrew F. Laine, Michael A.
Unser, and Mladen V. Wickerhauser, editors, Wavelet

Applications in Signal and Image Processing III, volume 2569,
San Diego, CA, USA, 9-14 July 1995. SPIE.

[10] Alex Fukunaga and Andre Stechert. Evolving nonlinear
predictive models for lossless image compression with genetic
programming. In John R. Koza, Wolfgang Banzhaf, Kumar
Chellapilla, Kalyanmoy Deb, Marco Dorigo, David B. Fogel,
Max H. Garzon, David E. Goldberg, Hitoshi Iba, and Rick
Riolo, editors, Genetic Programming 1998: Proceedings of the
Third Annual Conference, pages 95–102, University of
Wisconsin, Madison, Wisconsin, USA, 22-25 July 1998.
Morgan Kaufmann.

[11] Johan Parent and Ann Nowe. Evolving compression
preprocessors with genetic programming. In W. B. Langdon,
E. Cant´u-Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K.
Balakrishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull,
M. A. Potter, A. C. Schultz, J. F. Miller, E. Burke, and N.
Jonoska, editors, GECCO 2002: Proceedings of the Genetic
and Evolutionary Computation Conference, pages 861–867,
New York, 9-13 July 2002. Morgan Kaufmann Publishers.

[12] Bell, R.A.a.T.C. A corpus for the evaluation of lossless
compression algorithms. in IEEE Data Compression
Conference (DCC’97). March 25 1997. Los Alamitos,
California.: IEEE Computer Society.

[13] Thomas Krantz, Oscar Lindberg, Gunnar Thorburn, and Peter
Nordin. Programmatic compression of natural video. In Erick
Cant´u-Paz, editor, Late Breaking Papers at the Genetic and
Evolutionary Computation Conference (GECCO-2002), pages
301–307, New York, NY, July 2002. AAAI.

[14] Jingsong He, Xufa Wang, Min Zhang, Jiying Wang, and
Qiansheng Fang. New research on scalability of lossless image
compression by GP engine. In Jason Lohn, David Gwaltney,
Gregory Hornby, Ricardo Zebulum, Didier Keymeulen, and
Adrian Stoica, editors, Proceedings of the 2005 NASA/DoD
Conference on Evolvable Hardware, pages 160–164,
Washington, DC, USA, 29 June-1 July 2005. IEEE Press.

[15] I. Witten and R. Neal and J. Cleary, Arithmetic coding for data
compression, Communications of the ACM, Vol. 30, pp. 520-
541, 1987.

[16] J. Ziv and A. Lempel, Compression of Individual Sequences
via Variable-Rate Coding, IEEE Transactions on Information
Theory, September 1978.

[17] J. G. Cleary and W. J. Teahan and Ian H. Witten,
Unbounded Length Contexts for PPM, Data Compression
Conference, pp. 52-61, 1995.

[18] S. W. Golomb, Run-length encodings, IEEE Trans. Inform.
Theory, Vol. IT-12, pp. 399-401, 1966.

[19] A. Kattan, Universal Lossless Data Compression with built in
Encryption. Master Thesis, University of Essex 2006.

[20] M. Burrows and D. J. Wheeler, A block-sorting lossless data
compression algorithm, SRC, Number 124, 1994.

[21] Z. Arnavut, Move-to-Front and Inversion Coding,
DCC: Data Compression Conference, IEEE Computer Society
TCC, 2000.

[22] ACT Archive Compression Test [cited 2 December 2007]
Available from: http://compression.ca/act/act-win.html

1218

