
Evolution of Hyperheuristics for the Biobjective 0/1
Knapsack Problem by Multiobjective Genetic Programming

Rajeev Kumar
∗

Dept. of Computer Science & Engineering
Indian Institute of Technology Kharagpur

Kharagpur, WB 721302, India
rkumar@cse.iitkgp.ernet.in

Ashwin H. Joshi
Dept. of Computer Sc. & Engineering

Indian Institute of Technology Kharagpur
Kharagpur, WB 721302, India

ajoshi@cse.iitkgp.ernet.in

Krishna K. Banka
Dept. of Computer Science & Engineering
Indian Institute of Technology Kharagpur

Kharagpur, WB 721302, India
kkbanka@cse.iitkgp.ernet.in

Peter I. Rockett
Laboratory for Image & Vision Engineering
Dept. of Electronic & Electrical Engineering

University of Sheffield
Mappin Street, Sheffield S1 3JD, UK

p.rockett@shef.ac.uk

ABSTRACT
The 0/1 knapsack problem is one of the most exhaustively
studied NP-hard combinatorial optimization problems. Many
different approaches have been taken to obtain an approxi-
mate solution to the problem in polynomial time. Here we
consider the biobjective 0/1 knapsack problem. The contri-
bution of this paper is to show that a genetic programming
system can evolve a set of heuristics that can give solutions
on the Pareto front for multiobjective combinatorial prob-
lems. The genetic programming (GP) system outlined here
evolves a heuristic which decides whether or not to add an
item to the knapsack in such a way that the final solution is
one of the Pareto optimal solutions. Moreover, the Pareto
front obtained from the GP system is comparable to the
front obtained from other human-designed heuristics. We
discuss the issue of the diversity of the obtained Pareto front
and the application of strongly-typed GP as a means of ob-
taining better diversity.

Categories and Subject Descriptors
G.1.6 [Optimization]: Stochastic programming; I.2.2 [Ar-
tificial Intelligence]: Automatic Programming—Program
Synthesis; I.2.8 [Artificial Intelligence]: Problem Solving,
Control Methods and Search—Heuristic Methods

General Terms
Algorithm, Design, Experimentation.

∗The author gratefully acknowledges receipt of conference
travel support from Google Inc.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA
Copyright 2008 ACM 978-1-60558-130-9/08/07…$5.00.

Keywords
Optimization methods, multiobjective optimization, genetic
algorithm, genetic programming, heuristics, combinatorial
optimization, 0-1 knapsack problem, Pareto front.

1. INTRODUCTION
The single objective 0-1 knapsack is a well-known com-

binatorial optimization problem in which, given a set of n
items with a profit, P and a weight, W associated with each
item, and a knapsack of capacity, C, the goal is to select the
items such that total profit is maximized with the constraint
that the total weight of the selected items should not exceed
the knapsack capacity, C.

In this paper, the biobjective variant of this problem is
studied in which the two objectives are to:

1. Maximize the total profit

2. Minimize the total weight of the selected items

without any additional constraint. The knapsack problem
frequently arises in resource allocation within budget con-
straints and is therefore of great practical importance. In
real world applications, the decision maker should have all
the possible options to hand which is best achieved by con-
sidering the problem in the multiobjective domain, i.e. by
generating the set of Pareto-optimal solutions.

Evolutionary approaches have previously been applied to
the family of knapsack problems – see for example, [22] – but
these directly evolve a set of solutions using a pre-specified
and human-designed heuristic. In contrast, here we focus on
evolving a set of heuristics which will directly produce the
Pareto set of solutions to the knapsack problem; crucially, we
do not evolve solutions to the knapsack problem. We present
a hyperheuristic which evolves ‘rules’ to solve a multiobjec-
tive combinatorial optimization problem. We show how a
heuristic naturally evolves using genetic programming with-
out any human intervention. The quality of evolved heuristic
is comparable to a range of the human-designed heuristics
and can be reused on new problem instances without any

1227

further computation-intensive evolution, unlike other evolu-
tionary approaches. A major advantage of this approach is
that we need not solve every new instance of the problem –
the evolved hyperheuristics can be straightforwardly reused
to solve new problem instances. We also attempt to show
the impact of strongly-typed genetic programming on the
evolution and the quality of heuristics that are evolved.

In Section 2 we discuss previous research into solving the
knapsack problems and present a formal definition in Sec-
tion 3. We describe the implementation of the genetic pro-
gramming framework in Section 4 together with results. In
Section 5 we discuss various strategies for improving the di-
versity of the generated front of Pareto-optimal solutions.
The paper concludes with Section 6 in which we discuss fu-
ture research directions.

2. RELATED WORK

2.1 Existing Approaches
The multiobjective 0-1 knapsack problem is a well-studied

problem and many variants of it are available in the liter-
ature. Even the single objective case has been proven to
be NP-hard. In general, the multiobjective variants of the
problem are even harder than the single objective case. Due
to their practical importance, the family of knapsack prob-
lems has been the subject of a great deal of work in the
past.

Ibarra & Kim [14] have given the fully polynomial time
approximation (FPTAS) scheme for the single objective prob-
lem. Lawler [23] has reported a fully polynomial fast approx-
imation scheme while Magazine & Oguz [24] have presented
a fully polynomial approximation algorithm for the single
objective case.

For a single objective m-dimensional knapsack problem,
a polynomial time approximation scheme (PTAS) was pre-
sented by Frieze & Clarke [10]. Erlebach et al. [8] described
a practical FPTAS for the multiple one-dimensional knap-
sack problem and for the m-dimensional knapsack problem;
they also described a polynomial time approximation scheme
based on linear programming. Hanafi [12] has studied the
bounds and computational aspects of the multidimensional
0-1 knapsack problem (MKP); Hanafi’s paper also includes
a survey of the recent literature on the theoretical aspects as
well as exact or approximate solutions. Chekuri & Khanna
[4] have given a PTAS for the MKP and have compared
the performance of their scheme with that of the general-
ized assignment problem. This same problem has also been
approached by Hembecker et al. [13] using particle swarm
optimization. Chu & Beasley [5] have presented a scheme
based upon genetic algorithms which utilizes a heuristic op-
erator embedding domain-specific knowledge into a standard
genetic algorithm approach. Much research has been per-
formed over the decades and the problem continues to be a
challenging area of research.

Zitzler & Thiele [27] pioneered solving multiobjective 0-1
knapsack problems using EAs. They formulated the prob-
lem using m knapsacks and maximized the profits simultane-
ously for all m knapsacks within weight constraints. Later,
many other researchers (e.g. [25], [15], [16]) attempted
to solve the same problem formulation using other variants
of EAs. Gandibleux & Freville [11] have also addressed the
multiobjective variant of the m-dimensional knapsack prob-
lem using tabu search. Barichard & Hao [1] have studied

another multiobjective variant of the knapsack problem in
which multiple objectives were considered along with more
than one constraint. They have followed a hybrid approach
and introduced GTS (genetic tabu search) which combined
a genetic procedure and a tabu search operator.

The multiobjective variant that we have considered here
has been discussed in [22]. In the literature, this problem has
been solved using several approaches, such as deterministic
heuristics [26], evolutionary algorithms (EA), etc. Recently
this biobjective variant of the problem has been discussed
by Kumar & Singh [22] and thoroughly analyzed in [19, 20].

Little work exists in the literature on the evolution
of heuristics for combinatorial multiobjective optimization
problems using genetic programming. Most notably, Burke
et al. [2, 3] have recently described an approach to evolve a
heuristic for the single objective bin packing problem using
genetic programming. They have considered an online bin
packing problem and obtained a heuristic similar to and of
comparable performance to the well-known first-fit heuristic.

The present paper investigates the use of multiobjective
genetic programming (MOGP) to produce hyperheuristics
for multiobjective combinatorial optimization problems in
general, and the biobjective knapsack problem in particular.

3. PROBLEM FORMULATION
The knapsack problem is described by a knapsack of size

C and n items with three sets of variables related to the
items:

1. Decision variables x1, x2, . . .,xn, where xi ∈ [0, 1] and
xi describes either the omission or inclusion of the i-th
item in the knapsack.

2. Weights W1, W2, . . ., Wn, where Wi > 0 and Wi is the
weight of the i-th item.

3. Profits P1, P2, . . ., Pn, where Pi denotes the profit
from including the i-th item in the knapsack.

In addition, Wi, Pi ∈ N. The single-objective knapsack
problem can be formally stated as:

Maximize

n
∑

i=1

Pixi

subject to the constraint that
∑n

i=1
Wixi ≤ C.

The biobjective formulation of the problem can be defined
as:

Maximize

n
∑

j=1

Pjxj and Minimize

n
∑

j=1

Wjxj

That is, we aim to maximize the total profit while simul-
taneously minimizing the total weight of the knapsack. This
is clearly a multiobjective problem since a number of pos-
sible solutions exist which trade-off the non-commensurable
objectives of profit and weight.

Since our goal has been to evolve heuristics which are
generally useful, we gauge the fitness of a potential heuristic
over a set of q representative knapsack problems. In terms of
their practical implementation, the values of the biobjective
fitness function are given by:

1228

• Profit: 1 - 1

q

∑q

i=1

[∑n
j=1

Pi.jxi,j
∑

n
k=1

Pi,k

]

• Weight: 1

q

∑q

i=1

[∑n
j=1

Wi,j xi,j
∑

n
k=1

Wi,k

]

where n is the number of selected items in i-th test problem.
Here Pi,j and Wi,j represent the current profit and weight,

respectively and xi,j is a decision variable which indicates
whether the object is included in the knapsack or not.
The normalizations (inside the square brackets) by total
profit =

∑n

k=1
Pi,k and the total weight =

∑n

k=1
Wi,k, give

measures of what fractions of the available profit/weight the
heuristic is able to exploit.

Finally, the fitness values are normalized between 0 and 1,
with 0 indicating the best and 1 indicating the worst value.
With this formulation of the objectives, the optimization
becomes a minimization in both objectives.

4. MOGP IMPLEMENTATION
The individuals in the population used in genetic pro-

gramming are trees consisting of functions and terminals
suitable for the problem domain. Some of these operators
and terminals are universal in the sense that they are needed
in most problem domains, whereas others are specific to the
problem domain. Arithmetic functions such as addition and
multiplication are examples of the first; an operator that,
say, selects the minimum weight from a set of weights is an
example of the latter.

The MOGP framework used here is a straightforward
adaptation to genetic programming of the Pareto Converg-
ing Genetic Algorithm (PCGA) of Kumar & Rockett [21].
This is a (µ+2) steady-state evolutionary algorithm in which
we always maintain the best solutions obtained so far and
look to replace the two weakest solutions in the population
with newly-obtained solutions. We have used the same mul-
tiobjective ranking/selection scheme as Fonseca & Fleming
[9].

The output of an individual tree in the population eval-
uated on a given knapsack item determines whether or not
that item should be added to the knapsack; the tree inputs
are the profit and the weight of the item. By evolution, the
system learns optimal heuristics from the training data. It
should be noted that there is no manual intervention and
no constraints put on the evolution of the heuristic. We in-
put only the necessary parameters such as current profit and
weight and the heuristic emerges in a natural way.

We have used the usual arithmetic operators of: +, −, ×,
÷ and the comparison operators, ≤ and ≥. For the division
operator, we have used ‘protected’ division [18].

The initial population was created using the ramped half-
and-half method in which half the population was recur-
sively grown at random until either a terminal is selected to
complete a subtree, or the maximum tree depth is reached.
The other half of the population is produced in a similar
manner except a terminal is debarred from being selected
until the maximum tree depth has been attained. The ini-
tial population is therefore diverse and comprises trees of a
variety of ‘shapes’. Here we have used an initial maximum
tree depth of 5.

Bloat – the excessive growth in tree size – is known to be
a significant issue in GP. Here we have imposed a maximum
value on the tree depth, although more elaborate schemes
are possible. These remain an area for future study.

We carried-out the experiments on different datasets of
100, 250, 500 and 750 knapsack items. The datasets were
produced in the same way as Zitzler & Thiele [27] where val-
ues of profits and weights were generated randomly for each
dataset. Similarly, the testing was performed on randomly
generated datasets. We performed experiments on different
ranges of profits and weights up to 100.

Evolution was continued for a fixed number of tree evalu-
ations.

4.1 Overall Program Structure
The pseudocode for the overall program structure is shown

in Algorithm 1, where Evaluate denotes the (biobjective)
fitness evaluation of an individual GP tree in the population.
The pseudocode to compute the fitness function is shown in
Algorithm 2.

Algorithm 1 Basic Program Structure

for each evolved program a in archive A do
for each object i ∈ input I do

output = Evaluate(a,Pi, Wi)
if output ≥ 1.0 then

pick object(i)
end if

end for Output Total profit and Total Weight as Pareto
solution

end for

Here tree refers to the current individual in the popula-
tion. This pseudocode refers to the fitness evaluation of a
single individual. The fitness of all individuals in the popu-
lation are calculated similarly.

Expressed in words, the fitness of an individual is evalu-
ated by running over each item in the set of knapsack prob-
lems. If the output of the tree for a given item is greater than
a threshold, then that item is added to the knapsack and the
profit and weight of the current configuration adjusted ac-
cordingly. After considering all items, the profit and weight
objectives are normalized, as set-out in Section 3.

Algorithm 2 Fitness Function Evaluation

profitF itness = 0
weightF itness = 0
for each knapsack instance t ∈ Training Set T do

totalProfit = 0
totalWeight = 0
for each knapsack item i ε t do

output = Evaluate(Pi, Wi)
if output ≥ 1 then

totalProfit = totalProfit + Pi

totalWeight = totalWeight + Wi

end if
end for
profitF itness = profitF itness+
totalProfit/MaxTotalProfit
weightF itness = weightF itness+
totalWeight/MaxTotalWeight

end for
profitF itness = 1 − profitF itness/NoOfInstances
weightF itness = weightF itness/NoOfInstances

1229

4.2 Conventional Comparators
Clearly our longer-term motivation is demonstrate the ef-

fective evolution of heuristics to solve the general class of
NP-hard multiobjective combinatorial optimization prob-
lems; our current use of the biobjective knapsack problem is
a convenient and much-studied demonstrator. To gauge the
performance of the heuristics evolved here, we use the highly
effective P/W heuristic [22], and dynamic programming [26]
as benchmark comparators.

In the P/W algorithm, the items are arranged in de-
scending order of their profit-to-weight ratio. Items are
selected for inclusion in the knapsack in this order. The
total complexity of the P/W algorithm is O(n log n) and
it yields n optimal points for an n-item knapsack. The
dynamic programming algorithm [26], however, yields many
more optimal points. Since the outputs from these two
comparator algorithms are identical, we only make reference
to the P/W results in the following.

4.3 Results and Discussion
We carried-out the experiments on different data sets of

100, 250, 500 and 750 possible knapsack items. The pa-
rameters used for the genetic programming are as shown in
Tables 1 and 2.

Table 1: Common GP Parameters

Functions used +, −, ×, ÷, ≤, ≥
Terminals Pi, Wi,and constants
Probability of Crossover 0.9
Probability of Mutation 0.1
Tree Initialization Method Ramped half-and-half

Table 2: GP Parameters

#Items 100 250 500 750
Population Size 500 500 1000 2000

Maximum Tree Depth 5 7 7 8
Maximum Tree Evaluations 1000 1000 1500 2000

Figure 1 shows the comparison between the two approxi-
mated Pareto fronts produced by the human-derived P/W
heuristic and the hyperheuristics evolved here using MOGP.
It is clear that the solutions obtained from the evolved
heuristics lie on, or very close to, the same curve as the
P/W heuristic, in addition to giving a reasonable degree of
sampling of the curve. It is evident, however, that there are
certain regions of the curve in which no solutions have been
generated. This is a consequence of premature convergence.

Three examples of the evolved trees are shown in Figure 2
from which it can be seen that the discovered heuristics are
fairly simple and mostly well within the limit on maximum
tree depth imposed during evolution.

4.4 Quantitative Analysis
We have quantitatively evaluated and assessed the con-

vergence, diversity and extent of the Pareto front obtained
using various evaluation metrics such as: the C-measure [27],
convergence [7], spread [6] and hypervolume [17]. The values

Table 3: C-measure, Convergence, Spread and Hy-
pervolume (S-measure) values for knapsack instance
of 100 items. The results are compared against P/W
heuristic values

#Items 100 250 500 750
C-measure 0.2138 0.4198 0.3698 0.4062
Convergence 0.0056 0.0023 0.0013 0.0011
Spread 1.2656 1.2242 1.3305 1.3254
Hypervolume 0.9944 0.9918 0.9936 0.9921

obtained are shown in Table 3. In the case of hypervolume,
we have taken the ratio of the hypervolume-values obtained
for the GP-front and the heuristic front. All values were
computed by averaging over the test data.

 0

 500

 1000

 1500

 2000

 2500

 0 500 1000 1500 2000 2500 3000

P
ro

fit

Weight

P/W heuristic
GP

Figure 1: Plots for 100 items with max.depth of 5.

5. IMPROVING DIVERSITY

As can be seen from Figure 1, even though there is good
convergence and quite good diversity, there are certain re-
gions on the front that remain unfilled. That means we are
obtaining rapid convergence but only to specific areas on
the Pareto front, thus leaving gaps on the front. To im-
prove the results and obtain a good, diverse sampling of
the Pareto front, several experiments were performed and
different measures were applied to improve diversity.

5.1 Enforcing Diversity
Initially the maximum range of values which profit and

weight of an object can take was lowered to 20 in the hope
that more diverse solutions could be obtained. For a maxi-
mum depth of 5 this did not show any significant improve-
ment but increasing the maximum depth to 7 gave the im-
proved results shown in Figure 3. This, however, is not a
generally applicable solution to the problem of improving
diversity since in many situations, the range of profits and
weights is dictated by factors outside our control We thus
explored three other measures aimed at improving the filling
of the front.

1230

>−

W P+

<

4.5 3.4

4.6

 −

P

>

P

 /

W W

 +P

>

W 2.23

 /

Figure 2: Example trees.

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200

P
ro

fit

Weight

P/W heuristic
GP

Figure 3: Results obtained with reduced range of
profit and weight. (100 items)

5.1.1 Forced Diversity
It can be seen from the front in Figure 1, that there are

many solutions concentrated towards the two ends of the
curve but fewer solutions lying in the central region. To
overcome this problem a forced diversity measure was tried
in which after half the maximum number of tree evaluations
(by which time we expected some solutions would have con-
verged near the ends) we imposed a constraint on the gener-
ated solutions that they be in the middle region of the curve.
That means we would only accept a new solution if it lay
in the central zone. Otherwise we would reject it and gen-
erate another new solution and repeat, until we found one
which was acceptable. We expected that the empty regions
on the front would be filled by this forced diversity measure.
Unfortunately, we observed that although it increased the
number of solutions in the central zone, most of them con-
verged to the same points which we had already obtained
in the earlier experiments in Section 4.3 . There was thus
no significant improvement, as is shown in the Figure 4 –
in fact the diversity was degraded. Quite why the diversity
was reduced is an area for future research.

5.1.2 Reduced P/W Ratio
Our second attempt at improving coverage of the front

was to classify the input on the basis of profit-to-weight
(P/W) ratio. We conjectured that if the inputs for both
training (and testing) were classified on the basis of their
profit-to-weight (P/W) ratio in a definite range then the re-
sults would improve. In fact, we observed that the solutions
became less diverse. This happened because as we restrict
the inputs to smaller ranges, then the P/W ratio-values for
different items become very close and in many cases, equal.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 500 1000 1500 2000 2500 3000

P
ro

fit
Weight

P/W heuristic
GP

Figure 4: Results obtained with solutions forced in
the middle region. (100 items)

It thus becomes very difficult (or indeed impossible) to pro-
duce trees to correctly allocate the items. The degraded
diversity is apparent in Figure 5.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 200 400 600 800 1000 1200

P
ro

fit

Weight

P/W heuristic
GP

Figure 5: Results obtained with a reduced P/W
range. (100 items)

5.1.3 Crowding
Finally, we tried to facilitate a diversity maintenance

mechanism in the algorithm itself. In the basic PCGP al-
gorithm the newly generated offspring can replace the two

1231

weakest solutions in the population (providing they domi-
nate them). There is no checking for diversity – although
this generates good and quick convergence, it does not guar-
antee diversity. To overcome this a diversity check was used
from the very beginning of the run: Whenever new offspring
were generated, instead of selecting the two weakest solu-
tions for possible replacement, the two solutions which lay
in the most crowded, most densely-populated region were
selected to be candidates for replacement. This means that
we might replace two Pareto-optimal solutions with weaker,
dominated solutions but this should only delay convergence.
Unfortunately, this too did not give any significant improve-
ment in the filling of the Pareto front.

We conclude that incorporating an effective phenotypic
diversity preserving mechanism is difficult, at least in this
problem.

5.2 Strongly-Typed Program Evolution
In order to achieve a good diversity, we followed another

approach of evolving the trees by assigning types to them.
Since the trees are typed rather than random, this helps in
evolving more meaningful trees.

Just like in a strongly-typed programming language where
each operand is associated with a specific type and each op-
erator is constrained to take operands only of a given type
or its subtypes, in strongly-typed genetic programming each
terminal is associated with a given type and each function
is constrained to take terminals of a certain type or its sub-
types, and to return the result of a certain type. These
typing constraints ensure that strongly-typed programs are
evolved and are applied at every stage in genetic program-
ming where they are necessary: Random creation of the
initial population, crossover and mutation.

In the case of random creation of the initial population, in
which an individual is created recursively by first randomly
selecting the root and then randomly creating its subtrees,
the typing constraint translates into selection of the function
at the root of the desired type and the creation of subtrees
only of the type that can be handled by that function. With-
out the use of typing constraints in the creation of the initial
population, a large fraction of the population will comprise
trees in which functions have illegal operands. That fraction
will be larger for larger trees.

In the case of typed crossover, the typing constraint is
enforced by exchanging randomly selected subtrees of the
parents only if their types match. If this is not the case,
selection of the splicing point is repeated until subtrees of
compatible types are found. In the case of mutation, the
selected subtree is replaced by a randomly-created tree of
the matching type.

We have experimented with the evolution of trees by con-
sidering both typed as well as non-typed trees. Strongly-
typed genetic programming (STGP) introduces typed func-
tions into the GP genome. Type checking also reduces the
search space, which is likely to improve the search. It makes
little sense to recombine the two different types of data with
crossover. Also, the initial population is much more mean-
ingful when we use type checking and that helps in achieving
good diversity because the solutions are obtained over a wide
range. The implementation details for the typed trees are
as shown in Table 4.

With the use of typing constraints, a significant improve-
ment in the coverage of the results was obtained, as evi-

Table 4: Functions and Terminals considered for
typed implementation

Type Operators Terminals
Numeric +, −, ×, ÷ P , W and constants
Logical ≤, ≥ True, False

denced by the improved results shown in Figures 6, 7 and
8, for 100, 250 and 750 item problems, respectively. Also,
since crossover now yields only type-correct trees there is a
greater number of meaningful solutions. Thus solutions on
the entire Pareto front are obtained without any significant
gaps. The probability of successful crossover is, however,
reduced as the types of subtrees selected must match, ne-
cessitating a larger (average) number of attempts before a
successful crossover is achieved. Nonetheless, as evidenced
by Figures 6, 7 and 8, strong typing is highly effective at
ensuring diversity.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 1000 2000 3000 4000 5000 6000

P
ro

fit

Weight

P/W heuristic
GP

Figure 6: Improved results for strongly-typed trees.
(100 items).

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 2000 4000 6000 8000 10000 12000 14000

P
ro

fit

Weight

P/W heuristic
GP

Figure 7: Improved results for strongly-typed trees.
(250 items).

1232

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 5000 10000 15000 20000 25000 30000 35000 40000

P
ro

fit

Weight

P/W heuristic
GP

Figure 8: Improved results for strongly-typed trees.
(750 items).

A quantitative analysis of the strongly-typed results is
shown in Table 5; the results corresponding to the basic
(untyped) algorithm of Section 4 have already been shown
in Table 3.

Table 5: C-measure, Convergence, Spread and Hy-
pervolume (S-measure) values for the strongly typed
approach (100 items) compared against P/W heuris-
tic values

#Items 100 250 500 750
C-measure 0.0300 0.0320 0.0339 0.0500
Convergence 0.0002 0.0001 0.0001 0.0001
Spread 1.9179 1.8587 1.8300 1.8162
Hypervolume 1.0000 0.9965 0.9961 0.9953

6. CONCLUSIONS AND FUTURE WORK
In this work we have shown that a set of heuristics can

be evolved for the biobjective knapsack problem that gives
a set of Pareto-optimal solutions. The Pareto fronts ob-
tained in this way are indistinguishable from the Pareto
fronts obtained using a human-designed heuristics – namely,
the profit-to-weight ratio (P/W) heuristic. Moreover,
these heuristics are evolved automatically without problem-
specific knowledge and without human intervention.

As to future extensions of this work, we can anticipate
evolving heuristics for other multiobjective combinatorial
optimization problems such as multiobjective versions of the
minimum spanning tree and traveling salesperson problems.
This should lead to the identification of domain-specific ba-
sic building blocks for the GP system that will be useful in
other related problems.

7. ACKNOWLEDGMENTS
We are grateful to Dr Yang Zhang for generously supply-

ing the genetic programming code used in this study.

8. REFERENCES
[1] V. Barichard and J.-K. Hao. Genetic tabu search for

the multi-objective knapsack problem. Journal of
Tsinghua Science and Technology, 8(1):8–13, 2003.

[2] E. K. Burke, M. Hyde, and G. Kendall. Evolving bin
packing heuristics with genetic programming. In
Proceedings of the 9th International Conference on
Parallel Problem Solving from Nature (PPSN 2006),
LNCS 4193, pages 860–869, Reykjavik , Iceland,
September 2006. Springer Berlin / Heidelberg.

[3] E. K. Burke, M. Hyde, G. Kendall, and J. Woodward.
Automatic heuristic generation with genetic
programming: Evolving a jack-of-all-trades or a
master of one. In Genetic and Evolutionary
Computation Conference (GECCO-2007), pages
1559–1565, London, UK, July 2007.

[4] C. Chekuri and S. Khanna. A PTAS for the multiple
knapsack problem. In Proc. of 11th Annual
ACM-SIAM symposium on Discrete Algorithms, pages
213–222, 2000.

[5] P. Chu and J. Beasley. A genetic algorithm for the
multidimensional knapsack problem. Journal of
Heuristics, 4(1):63–86, June 1998.

[6] K. Deb. Multiobjective Optimization Using
Evolutionary Algorithms. Chichester, UK: Wiley, 2001.

[7] K. Deb and S. Jain. Running performance metrics for
evolutionary multi-objective optimization. In L. Wang
et al., editors, Proceedings of the 4th Asia-Pacific
Conference on Simulated Evolution and Learning
(SEAL’02), volume 1, pages 13–20, November 2002,
Nanyang Technical University, Singapore.

[8] T. Erlebach, H. Kellerer, and U. Pferschy.
Approximating multiobjective knapsack problems.
Management Science, 48:1603–1612, 2002.

[9] C. M. Fonseca and P. J. Fleming. Genetic algorithms
for multiobjective optimization: Formulation,
discussion and generalization. In S. Forrest, editor, 5th

International Conference of Genetic Algorithms, pages
416–423. Morgan Kaufmann, 1993.

[10] A. Frieze and M. Clarke. Approximation algorithms
for m-dimensional 0-1 knapsack problem: Worst case
and probabilistic analysis. European Journal,
Operations Research, 15:100–109, 1984.

[11] X. Gandibleux and A. Freville. Tabu search based
procedure for solving the 0-1 multi-objective knapsack
problem: The two objectives case. Journal of
Heuristics, 6(3):361–383, August 2000.

[12] F. S. Hanafi. The multidimensional 0-1 knapsack
problem-bounds and computational aspects. Annals of
Operations Research, 139(1):195–227, October 2005.

[13] F. Hembecker, H. S. Lopes, and W. G. Jr. Particle
swarm optimization for the multidimensional knapsack
problem. Lecture Notes in Computer Science,
4431:358–365, 2007.

[14] O. H. Ibarra and C. E. Kim. Fast approximation
algorithms for the knapsack and sum of subset
problem. Journal of ACM, 22:463–468, 1984.

[15] A. Jaszkiewicz. On the performance of multiobjective
genetic local search on the 0-1 knapsack problem - A
comparative experiment. IEEE Transactions on
Evolutionary Computation, 6:402–412, 2002.

[16] J. Knowles and D. Corne. M-PAES: A memetic
algorithm for multiobjective optimization. In
Proceedings of the 2000 Congress on Evolutionary
Computation CEC00, pages 325–332, California, USA,
6-9 2000. IEEE Press.

1233

[17] J. Knowles and D. Corne. On metrics for comparing
nondominated sets. In Congress on Evolutionary
Computation (CEC’2002), volume 1, pages 711–716,
Piscataway, New Jersey, May 2002. IEEE Press.

[18] J. R. Koza. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge, MA, USA, 1992.

[19] R. Kumar and N. Banerjee. Running time analysis of
a multiobjective evolutionary algorithm on simple and
hard problems. In Proceedings of Foundations of
Genetic Algorithms(FOGA-05), volume 3469 of LNCS,
pages 112–131. Springer, 2005.

[20] R. Kumar and N. Banerjee. Analysis of a
multiobjective evolutionary algorithm on the 0-1
knapsack problem. Theoretical Computer Science,
358(1):104–120, July 2006.

[21] R. Kumar and P. I. Rockett. Improved sampling of the
Pareto-front in multiobjective genetic optimization by
steady-state evolution: A Pareto converging genetic
algorithm. Evolutionary Computation, 10(3):283–314,
July 2002.

[22] R. Kumar, P. K. Singh, A. P. Singhal, and A. Bhartia.
Evolutionary and heuristic algorithms for 0-1 knapsack
problem. In A. Tiwari et al., editors, Applications of
Soft Computing, volume 36 of Advances in Soft
Computing, pages 331–340. Springer, 2006.

[23] E. L. Lawler. Fast approximation algorithms for
knapsack problems. Mathematics of Operations
Research, 4(4):339–356, November 1979.

[24] M. J. Magazine and O. Oguz. A fully polynomial
approximation algorithm for the 0-1 knapsack
problem. European Journal of Operational Research,
8(3):270–273, November 1981.

[25] G. Raidl. An improved genetic algorithm for the
multiconstrained 0-1 knapsack problem. In Proc.
IEEE Conference on Evolutionary Computation.,
pages 207–211, 1998.

[26] S.Goddard. Dynamic programming for 0-1 knapsack
problem. http:
//www.cse.unl.edu/~goddard/Courses/CSCE310J/

Lectures/Lecture8-DynamicProgramming.pdf.

[27] E. Zitzler and L.Thiele. Multiobjective evolutionary
algorithms: A comparative case study and the
strength Pareto approach. IEEE Trans. Evolutionary
Computation, 3:257–271, 1999.

1234

