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ABSTRACT
Hereditary Repulsion (HR) is a selection method coupled
with a fitness constraint that substantially improves the per-
formance and consistency of evolutionary algorithms. This
also manifests as improved generalisation in the evolved GP
expressions. We examine the behaviour of HR on the dif-
ficult Parity 5 problem using a population size of only 24
individuals. The negative effects of convergence are ampli-
fied under these circumstances and we progress through a
series of insights and experiments which dramatically im-
prove the consistency of the algorithm, resulting in a 70%
success rate with the same small population. By contrast,
a steady state GP system using a population of 5000 only
had a success rate of 8%. We then confirm the effectiveness
of these results in a number of arbitrary problem domains.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Problem Solving, Search—
Genetic Programming

General Terms
Algorithms, Theory

1. INTRODUCTION
Inconsistency is a common problem for evolutionary algo-

rithms. Much of the variance in performance characteristics
is due to the stochastic component of the algorithm. This
may inadvertently promote suboptimal genetic content at
the expense of relatively unfit but potentially very useful
material. The gauntlet of a fixed size population forces the
algorithm to marshal its limited resources over the unlim-
ited divergences the population may take as it traverses the
expression space. Unfortunately, it sometimes makes the
wrong decision, resulting in a catastrophic loss of essential
material, also known as premature convergence.

Hereditary Repulsion (HR) [4], a selection method cou-
pled to a Mutual Improvement (MI) fitness constraint, sub-
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stantially improves the performance consistency in evolu-
tionary algorithms. MI is a replacement strategy which re-
quires that a child be better than both parents before it gets
into the next generation. Furthermore, the derived results
of HR have a far higher quality with respect to generali-
sation than standard methods [5]; such as steady state or
generational algorithms for a broad spectrum of problems.

This paper takes a closer look at the causes of failure for
HR in the Parity domain. A sequence of experiments are
carried out which yield insights into the evolutionary dy-
namics of the system. This produces the Density Tourna-
ment operator, a selection method which redirects crossover
events towards individuals with few or no offspring. We de-
rive further analysis of this selection method and produce a
new algorithm for controlling evolution, one which can ef-
ficiently and economically adapt to difficulty in evolution.
This works by using the ratio of failed crossover events to
successful ones as a ranking which controls the focus of evo-
lution within the algorithm, resulting in an extremely robust
and highly consistent evolutionary algorithm.

This paper is organised as follows. Section 2 discusses a
number of convergence manipulation techniques. Section 3
gives a technical description of the Hereditary Repulsion al-
gorithm and an analysis of the small population experiments
and results. Section 4 describes the Density Tournament
algorithm, a simple effective technique for substantially im-
proving the performance of the small populations. An analy-
sis of the few failures from the Density Tournament operator
is given in Section 5. This analysis produces the adaptive
effort algorithm, which dynamically finds the path of least
resistance through the expression space, described and eval-
uated in Section 6. A validation of this algorithm in a set
of real world problem domains is demonstrated in Section 7.
Conclusions are given in Section 8.

2. BACKGROUND
One of the first attempts at inhibiting the phenomenon

of premature convergence was fitness sharing [7]. This tech-
nique sought to prevent the homogenisation of the popula-
tions content by forcing similar expressions to share fitness.
The similarity of the expressions was deduced by an exter-
nal metric and was unique to each implementation. This
method was inspired by the observation that biological sys-
tems tend to exhibit niche characteristics. Fitness sharing
encouraged the expressions to seek out their own niches so
as to maximise their fitness.

Another common convergence manipulation technique is
the use of spatial segregation to control the evolutionary
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dynamics. By physically separating distinct pools of genetic
content [1, 8], one can prevent a single solution from becom-
ing dominant, thus inhibiting premature convergence.

One possible risk of such isolated development is the emer-
gence of incompatible solutions on the separate islands, thus
one of the core considerations when implementing an island
model is the method of communication which will be used
to maintain cohesion between the separate populations.

Using age as a segregation measure is also described in the
Age Layered Population (ALP) [2] algorithm. This highly
effective protocol uses cascaded pools of progressively older
individuals to sustain evolution over an extremely long pe-
riod. New individuals are continuously generated and pro-
cessed down the age segregated populations. Normal evolu-
tionary dynamics are used within each population. As the
individuals get older, they replace any less fit individuals
in the next layer. Crossover also samples from the current
and previous “age” layer, allowing a channel for seamlessly
integrating age segregated content.

Age has also been used to protect individuals from pre-
mature exclusion from the population [6]. An individual
is given a length of time to “live” thus allowing it time to
integrate itself with other members of the population.

Significant results have also been generated by Streeter [9]
with his Minimum Behavioural Change (MBC) algorithm.
Derived out of an elegant analysis of the causes of bloat in
genetic programming, MBC dramatically improved the per-
formance and inhibited bloating of a GP algorithm applied
to the quartic polynomial domain by only allowing individu-
als who are markedly different from their parents entry into
the population.

3. HEREDITARY REPULSION
Hereditary Repulsion was derived from the observation

that the final generation of a population tends to be de-
scended from a few initial individuals [3]. HR attempted to
inhibit this occurrence by vigorously mixing the genetic con-
tent of the population through facilitating crossover events
between individuals who had dissimilar genetic lineages.

The algorithm begins by selecting an individual at ran-
dom. This individual is used as the reference for the re-
pulsion algorithm. A tournament pool of size N is then
filled with random individuals. The shared hereditary his-
tory between the individuals in the pool and the reference
individual is measured. The pool individual with the small-
est hereditary overlap is selected to be crossed over with the
reference individual. Figure 1 provides an example of how
the overlap is calculated between two individuals.

Given that the repulsion tournament algorithm will place
pressure on the dynamics to explore diverse representations,
there is a possibility that the quality of the population will
degrade as it explores the expression space. To protect the
algorithm from the potential deleterious effects of intense
exploratory dynamics, a constraint was incorporated which
mandated that an individual must be better than both its
parents before it can be considered for insertion into the
next generation. This constraint shall be referred to as the
Mutual Improvement (MI) constraint.

Due to the nature of the algorithm, HR will have a vari-
able number of evaluations per generation. This is caused
by the many rejected crossover events for each successful
one. For this reason, the HR algorithm is provided with an
upper limit to how many evaluations it may make during a

Figure 1: Illustration of Common Hereditary His-
tory between 2 Individuals in a Generation System.
Parents are at generation 2, grandparents at gener-
ation 1 and so on. In this example, individuals A
and B share 9 common ancestors.

run. For the sake of comparison, this upper limit is set equal
to the total number of evaluations in a corresponding stan-
dard GP run. Also, for the experiments described in this
paper, the HR algorithm used a generational style approach
to evolution, deriving the next generation completely from
the current one.

Experimental analysis has shown that the repulsion tour-
nament only has an appreciable effect when the population
is small and that the primary reason for the high perfor-
mance of the algorithm is the MI constraint. This has been
empirically demonstrated in [5].

3.1 Experimental Overview
This section provides an overview of the experimental

setup used to generate the initial experimental analysis in
this paper.

Our experimental problem domain is the Boolean Odd
Parity 5 problem. The Odd Parity problem takes a sequence
of input bits and returns a 1 if the number of active bits is
odd, a 0 otherwise. The number of input bits used was 5.
This amounted to 25, 32 training cases.

The primitives used were {AND, OR, NOR, NAND}. This
problem domain is notoriously difficult without the XOR or
EQUAL functions, thus evolution was allowed to continue
for 2500000 evaluations, this is equivalent to a standard pop-
ulation of 5000 evolved for 500 generations. The maximum
tree depth was set to 16. The expressions were created using
ramped half and half initialisation with a minimum depth
of 4 and a maximum depth of 6. Fitness measure was the
number of correct outputs (max 32). Mutation was not used
in our experiments to eliminate its influence on the conver-
gence behaviour. Details specific to individual experiments
will be explicitly stated in each section. All results shown
are derived from 100 independent runs for each set of con-
figurations.

3.2 Small Population Analysis
This section presents experimental results from the ap-

plication of the HR protocol to the parity problem using a
population of 24 individuals.

Ordinarily, such a small population would be completely
inadequate for such a difficult problem using standard steady
state or generational algorithms, however; even when a stan-
dard system is provided with a far larger population, HR still
easily outperforms it. To emphasise this point we contrast
the tiny HR population of 24 individuals with a steady state
algorithm (SS-GP) initialised with a population of 5000 in-
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Figure 2: The MI constraint clearly accounts for
most of the improvements observed in HR. Both MI
implementations easily outperform a steady state
GP algorithm of 5000 individuals. HR has a 16%
success rate and MI with random selection has a
14% success rate. The SS-GP system has a success
rate of only 8%.

dividuals. A tournament size of 4 was used to select indi-
viduals in the steady state algorithm. A tournament size of
4 was used for the HR algorithm and an experiment using
random selection with the MI constraint was implemented.

Figure 2 shows the average best fitness reached by the re-
spective algorithms for 100 independent runs. On examining
the steady state results in detail, it is evident that while it
may sometimes do quite well, it is plagued by a tendency to
prematurely converge, locking itself into low fitness attrac-
tors. The performance for the MI constraint algorithm using
random selection is of substantially higher quality, demon-
strating a greater density of higher fitness solutions. The
HR tournament experiment shows a statistically insignifi-
cant improvement in the quality and consistency over the
random selection experiment. The relatively equal perfor-
mance of the random selection with MI and the HR tourna-
ment with MI indicate that there is little to be gained with
the HR selection method, confirming results in [5].

What is of interest from both HR and the MI with random
selection is the occasional low yields from the experiments.
Evidently, there are circumstances under which the MI con-
straint can fail to exploit its genetic content to the highest
possible degree.

Our analysis of these circumstances indicate that the MI
constraint can sometimes promote relatively low quality ex-
pressions faster than the high quality expressions. This is
especially true in situations where it is difficult to improve
on the best fitness in the population. As essential genetic
material that may be contained within the high quality ex-
pressions is lost, the population finds itself locked into a sub-
optimal attractor. Therefore, our next experiment sought to
inhibit this phenomenon.

Density Tournament

1. Select an Individual Randomly
    Set this individual to winner

2. for each N in tournamentSize
       Select a random Individual
       i f(random.individual.numOffspring <
          winner.individual.numOffspring)
            winner = random

Figure 3: Pseudocode for the density tournament
selection operator.
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Figure 4: Clear performance gains from using the
DT selection mechanism over the HR tournament.
The HR experiment successfully solved the problem
16% of the time, the DT experiment had a success
rate of 36%.

4. DENSITY TOURNAMENT
The Density Tournament (DT) operator was designed to

prevent the saturation of the population with low quality
individuals. This is likely to happen as low quality individ-
uals require less effort to produce offspring satisfying the MI
constraint.

This effect is realised by creating a tournament opera-
tor which selects individuals who have relatively little or no
offspring in the next generation. It prevents low quality in-
dividuals from saturating the population as they will not
be selected for crossover once they have produced more off-
spring relative to the other individuals. Pseudocode for this
selection mechanism is given in Figure 3.

Figure 4 contrasts the performance of the HR configura-
tion with a tournament size of 4 with a density tournament
experiment, of tournament size 5. Both systems use the MI
constraint. There is a clear indication of higher densities of
high quality expressions being generated by the DT opera-
tor, with just a handful of individuals ending up with a low
score. The Student T-Test gives a statistical confidence p
value of .0005 for these results.

While the results seem to confirm the effectiveness of the
density tournament, there were still some disconcerting indi-
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Figure 5: Sharp spike in effort required for improve-
ment indicating evolutionary dead end, or local op-
timum. This example was taken from a failed run
using the configuration from Section 4.

cations of susceptibility to low quality attractors in a small
percentage of runs with the DT operator. The next investi-
gation focuses on the defining characteristics of these failed
runs.

5. EFFORT ANALYSIS
This section describes the analysis of the failed DT runs.

One of the most salient indicators of poor performance was
the ratio of effort to the maximum fitness achieved. In this
case effort refers to the number of evaluations required to
generate a new maximum fitness in the population. Such
behaviour is usually unique to each run, an example of which
is given in Figure 5. Here we can clearly see the system
suffering from a sharp spike in the effort needed to make
headway. Such a spike is recognised by the increasingly large
numbers of evaluations needed to reach the next highest
fitness peak. This particular example was taken from one
of the worst performing runs using the DT configuration of
the previous section.

If any evasive action is to be taken, this is the point to
do it. The question remains however as to what exactly
should be done. An initial crude fix would be to roll back the
population to some predetermined point in its past and allow
evolution to begin from there. This approach is fraught with
uncertainty as it is difficult if not impossible to be sure that
the population won’t get pulled into the same low quality
local attractor space again.

A closer analysis yields some interesting insights. Figure 6
shows the effort invested in individuals of a specific fitness for
a single generation taken from a run using the DT configura-
tion from Section 4. This diagram indicates that one of the
two individuals of fitness 24 in the population required ap-
proximately 100 crossovers to produce valid offspring while
the other required nearly 2500 crossovers. The several indi-
viduals whose fitness was 25 required a large range of com-
putational investments to produce valid offspring, from ap-
proximately 400 crossovers at the low end to over 4000 at the
high end. A similar distribution exists for the individuals of
fitness 26.

The first surprise from Figure 6 was the observation that
higher quality individuals do not always require high num-
bers of evaluations to generate offspring which are better
than both parents. The relative proportions of effort needed
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Figure 6: Each point represents the ratio of failed
crossovers to successful ones for individuals of a spe-
cific fitness in a single generation taken from a DT
run. Note that some high fitness individuals require
very little effort to generate offspring.

to generate offspring from two individuals of the same high
fitness may also be wildly imbalanced, sometimes one need-
ing 10 times greater effort than the other. The sudden rise
in effort needed to progress illustrated in Figure 5 is caused
by such unproductive individuals.

The tentative conjecture from this brief analysis is that it
may be possible to rapidly follow the path of least resistance
through the expression space and that this trajectory could
produce high quality individuals. Such an algorithm would
use the ratio of failed crossovers to successful crossovers to
guide in selecting which individuals are worthy of an invest-
ment of computational effort.

6. THE ADAPTIVE EFFORT ALGORITHM
This section describes the concept of the Adaptive Ef-

fort (AE) algorithm. The findings from the previous sec-
tion indicated that the presence of low yield individuals in
the population can seriously degrade the effectiveness of the
evolutionary process. Our primary design criteria was to
develop a means to avoid these individuals.

The solution was derived from an algorithm originally de-
signed for use with a mutation based hill climber. The par-
ticular problem domain we were applying the hill climber
to was quite difficult and we were consistently getting poor
results. On closer examination of the behaviour of the hill
climber, we noticed that 95% of the hill climbers’ progress
was made in the first 10% of the mutation events. This in-
dicated that the hill climber initially made progress quite
easily but quickly found itself in a position that required a
great deal of effort to improve upon, wasting the remaining
90% of the mutation events.

The solution to this problem was to allow the expression
to branch into multiple points in the search space. This
lessened the potential for becoming caught in a particular
dead end. Branching strategies can generate exponential in-
creases in the number of points to be searched however, this
does not become a problem because the algorithm does not
expand each branch equally. If a particular branch requires
relatively large numbers of mutations for improvement, it is
quickly ignored by the algorithm in favour of branches which
require less effort to make progress into the expression space.
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Figure 7: Part A of this figure shows the state of the
effort array when the algorithm starts; the entire
population is represented as a spike at position zero
of the array. Part B shows how the population has
been spread over the effort array once some compu-
tation has been invested in the search space. Note
the trickle of new points in the search space originat-
ing from position zero being migrated towards the
main population cluster as the algorithm attempts
to improve them.

This shift in focus is implemented very simply by using an
effort array. Each point in the array represents the ratio of
failed mutation events to successful ones. The algorithm will
always take the first expression it finds from the top of the
array, this represents the point in the search space with the
least effort invested in it. A fixed investment of mutations
is made on the expression. Any resulting mutation which
improves on its parent is inserted as a branch into the search
space. If the parent has reached or exceeded the allowed
number of branches, it is removed from the effort array. A
diagram illustrating the initial state of the array and its
state after some effort has been invested in the search space
is given Figure 7.

This algorithm was good at generating high quality solu-
tions in the expression space. It initially exhausted all the
easily improved expressions before consistently discovering
viable routes to higher fitness through the search space.

Based on the similar observation of highly variable effort
needed to produce viable offspring from individuals in a pop-
ulation of GP expressions in Section 5, the AE algorithm was
reconfigured for use in an evolutionary algorithm.

The only change that this entailed was that rather than
selecting a single expression from the top of the effort ar-
ray, a small population of individuals was selected instead.
A fixed investment of crossover events and evaluations were
alloted to that population. The AE algorithm uses the DT
selection operator to select parents from within the tempo-
rary population.

After the investment of effort, any individual who had
reached or exceeded the alloted number of successful off-
spring was removed from the effort array. Otherwise it was
reinserted into the effort array in a position which reflected
the effort invested in it.

In this manner, one may have a small population that has
the benefit of a large number of dormant points in the search
space to fall back onto should it run into difficulty.

When we applied this algorithm to the Parity problem,
we observed significant performance increases. We allowed
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Figure 8: While there does not seem to be a wide
margin of difference between the AE and DT algo-
rithms in this graph, AE has a much higher success
rate of 70%, compared to 36% for DT. The superi-
ority of AE over DT on the Parity 5 problem has
been calculated to a p value of .0005.

Problem AE-GP DT-GP HR-GP SS-GP
bupa 0.77 0.76 0.76 0.67
indian 0.80 0.80 0.80 0.77
ion 0.92 0.92 0.92 0.87
sonar 0.83 0.83 0.81 0.73
wpbc 0.77 0.73 0.77 0.72

Table 1: Average Best Fitness. AE consistently pro-
duces high quality solutions that match or exceed
the performance of the other implementations. The
low performance of DT in the WPBC problem is due
to the fact that this problem domain needs certain
individuals to contribute higher than average num-
bers of offspring, which is inhibited by the Density
Tournament.

each expression to branch 3 times and fixed the investment
made on the population at 1000 evaluations. The size of the
population was, as before, 24 individuals. The size of the
density tournament was 10 individuals. This result is shown
in Figure 8.

The AE algorithm solves the Parity problem 70% of the
time. This high consistency results in a low standard devia-
tion which provides a very high level of statistical confidence
when comparing AE against DT, p=.0005.

7. VALIDATION
So far we have remained relatively insulated from the

mercurial properties of the abundant diversity of real world
problem domains. Whilst Parity is an excellent problem do-
main for analysing the performance of a particular evolution-
ary strategies, these results will only have merit if they can
be reproduced consistently in arbitrary problem domains.

To prove the virtue of our algorithms, we have applied
them to a wide variety of binary classification problems
taken from the UCI Machine Learning repository. Our bi-
nary classification GP classifies a particular sample as pos-
itive if it is above a .5 and negative if it is below .5; The
problem domains we used were as follows; BUPA Liver Dis-
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Problem AE-GP DT-GP HR-GP SS-GP
bupa 0.01 0.01 0.01 0.06
indian 0.01 0.01 0.01 0.02
ion 0.01 0.01 0.02 0.03
sonar 0.03 0.03 0.03 0.06
wpbc 0.02 0.01 0.03 0.01

Table 2: Ratio of Std Deviation of Fitness to Aver-
age Fitness. All implementations except SS-GP are
generally consistent.

Problem AE-GP DT-GP HR-GP SS-GP
bupa 34.91 30.26 57.26 7.54
indian 33.70 38.96 56.39 13.70
ion 33.92 45.98 67.19 17.47
sonar 36.90 52.78 74.08 15.80
wpbc 13.12 3.74 50.43 2.12

Table 3: Average Nodes per Tree. AE is highly
resistant to bloat yet always produces high quality
results. Note that the HR and DT implementa-
tions can vary considerably in tree size. The par-
simony pressures on the SS-GP system accounts for
the small tree sizes, SS consistently performs the
worst.

Problem AE-GP DT-GP HR-GP SS-GP
bupa 0.22 0.16 0.41 1.65
indian 0.17 0.19 0.25 0.74
ion 0.14 0.13 0.26 0.63
sonar 0.15 0.19 0.30 0.97
wpbc 0.28 0.05 0.40 0.88

Table 4: Ratio of Std Deviation of Tree Size to Av-
erage Tree Size. AE produces consistently sized GP
solutions of high quality. DT is also highly consis-
tent in its tree size but may sometimes produce rel-
atively low quality GP expressions and it is more
susceptible to larger tree sizes than AE.

order, Pima Indian Diabetes, Wisconsin Prognostic Breast
Cancer, Ionosphere Radar Returns and the Sonar Discrimi-
nation problem.

The experimental setup used is as follows; a standard
steady state algorithm (SS-GP) using a tournament size of
5, a HR algorithm with a repulsion tournament size of 5,
a DT algorithm with a density tournament size of 10 and
finally an AE algorithm using a density tournament of size
10, a branching factor of 3 and an investment limit of 1000.
Each system used a population of 100.

Each setup used ramped half and half initialisation of min-
imum depth 2 to a maximum depth of 4. The maximum tree
depth allowed was 12. A total of two and half million evalu-
ations per run and 100 independent runs were used for each
experimental result. The functional primitives used were
{*, %, +, -, exp, sqrt}. The SS-GP system used parsimony
pressure to regulate bloat, this pressure favoured smaller
individuals when fitness was equal and was applied in the
tournament and replacement parts of the algorithm.

Only testing results are shown for the generated fitnesses
of the experimental configurations. These results were de-
rived from evaluating the evolved expressions on an unseen
data sample, a much better measure of the quality of the
system.

The average best fitness for each experiment over all the
problem domains is shown in Table 1. As the problems are
relatively easy, there is little difference in fitness between
the AE, DT and HR experiments. AE produces results of
the highest quality to a high consistency as illustrated by
Table 2. This table shows the ratio of the standard deviation
to the average fitness, showing the scale of the variability in
performance. Whilst DT and HR are also highly consistent,
they are more susceptible to lower quality performance.

One of the most prevalent forms of negative performance
measures in GP is the susceptibility of the system to bloat,
the tendency of the system to produce unnecessarily large
expressions. Despite the fact that AE, DT and HR have no
“awareness” of the underlying GP representation, they are
considerably resistant to this undesirable phenomenon.

Table 3 shows the average tree size for each experiment
over all the problem domains. SS-GP is notable for the small
size of its low quality expressions however these sizes are
highly inconsistent as shown by Table 4. This table shows
the ratio of the standard deviation to the average tree size.

Notably, these tables show that AE produces high quality
compact expressions in a consistent manner. DT and HR
suffer from a tendency to bloat in some problem domains.
DT produced the smallest expressions for the WPBC prob-
lem but these expressions are of poor quality.

These results clearly demonstrate that the high quality
performance of AE in the parity domain manifests in a con-
sistent manner across a wide variety of problem domains.
Furthermore, this method provides excellent bloat regula-
tion as an organic, natural feature of the algorithm. The
resulting expressions lend themselves quite readily to inter-
pretation of functional relationships in the application do-
main due to their compact size.

Interestingly, the DT selection operator has a tendency to
suffer in problem domains that require higher than average
numbers of offspring from specific individuals. Clearly, the
Parity problem alone gives a distorted view of its ability.
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8. CONCLUSIONS
We have presented a series of experimental analyses us-

ing the context of a small population on a difficult regres-
sion problem. As the potential for premature convergence
is greatly amplified in this situation it highlights any aspect
of the algorithm which contributes to lower performance.

This strategy resulted in a fruitful investigation which
yielded the Adaptive Effort algorithm, a high performance
system which produced a 70% success rate at the Parity 5
problem using only 24 individuals.

The quality of AE was demonstrated to be applicable in a
diverse set of real world GP problems, manifesting as both
high fitness and a resistance to bloat.

Future work will examine the emergence of dominant so-
lutions in the population and how these forms influence the
nature and quality of convergence in the phenotypic space.
A detailed analysis of the bloat regulation mechanism in AE
is also planned.
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