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ABSTRACT
In this paper a Genetic Programming algorithm for genetic
association studies is reconsidered. It is shown, that the
application field of the algorithm is not restricted to ge-
netic association studies, but that the algorithm can also
be applied to logic minimization problems. In the context
of multi-valued logic minimization on incompletely specified
truth tables it outperforms existing algorithms. In addition,
the facilities of the algorithm in the original application field
are complemented by new results and experiments. This in-
cludes answers to the open questions of how to automati-
cally choose the best individual in the last population and
whether crossover is necessary for the algorithm.

Categories and Subject Descriptors
J.3 [Computer Applications]: Life and Medical Sciences—
Biology and genetics; B.6.3 [Logic Design]: Design Aids—
Optimization

General Terms
Algorithms, Experimentation, Performance

Keywords
Genetic Programming, association studies, logic minimiza-
tion

1. INTRODUCTION
A typical machine learning problem is to understand an

unknown procedure e.g. from nature by its input-output be-
havior. The connected goal is to predict the output of the
procedure for further inputs. When using genetic program-
ming (GP) [13] for this purpose, we try to explain the ob-
served data by a simple hypothesis. From the viewpoint of
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Statistics, this is a classification problem. Many interesting
instances of this classification problem originate from bio-
sciences, e.g. problems arising in genome analysis.

Nunkesser et al. [17] have presented a GP algorithm called
Genetic Programming for Association Studies (GPAS) which
is mainly intended for case-control genetic association stud-
ies, i.e. studies where genetic factors that may contribute
to a medical condition are identified. They concentrate on
data on single nucleotide polymorphisms (SNPs), i.e. genetic
variations that occur when different base alternatives exist
at a single base pair position. Overviews on approaches for
this task are given by Heidema et al. [10] and Hoh and Ott
[11]. In the data situations considered in [17] GPAS out-
performs the known approaches. The main purpose of this
paper is to extend and complement the results presented in
[17].

In a first step, we test the qualification of GPAS for a
different application. The problems GPAS originally works
on are case-control studies on categorical variables. From a
computational point of view, this is similar to (multi-valued)
logic minimization on incompletely specified truth tables.
The major difference is that logic minimization requires to
find functions explaining the given truth table completely,
while in a case-control study with a complicated underlying
process (which is certainly the case, e.g. in genetic associ-
ation studies) this would inevitably lead to overfitting, i.e.
functions that are not able to predict for further inputs.
So clearly, standard logic minimization approaches cannot
hope to compete with GPAS on genetic association stud-
ies. But it is an interesting question, if GPAS is able to
compete with logic minimization approaches on problems
with an underlying logical process. Hence, we investigate
the capability of GPAS for multi-valued logic minimization
in this paper. The standard logic minimization tool for this
purpose is Espresso MV [20]. For the boolean case of logic
minimization on incompletely specified truth tables, there is
also a GP algorithm by Droste [8] using ordered binary deci-
sion diagrams (OBDDs). Kristensen and Milterson [15] have
shown that finding small OBDDs for incompletely specified
truth tables is NP-hard. This indicates another reason, why
logic minimizers are inapt for genetic association studies.
For binary-valued logic minimization on completely speci-
fied truth tables and for Boolean concept learning various
evolutionary approaches exist (see e.g. [1]).

Apart from this new application of the GP algorithm we
consider open questions for the intended application. Con-
sidering the problem of overfitting, we introduce automated
rules to detect the point, where overfitting begins. This is
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one of the most important tasks in the application of GPAS
or any other method that has to cope with the problem of
overfitting. Further, we investigate the application to other
categorical data and the necessity of crossover and one of
the mutation operators for the algorithm.

In Section 2 the considered algorithm and the task it is
intended for are presented. Section 3 presents the new re-
sults for the application of GPAS. Finally, Section 4 gives a
summary and conclusions.

2. METHODS
The Genetic Programming algorithm GPAS [17] works on

case-control genetic association studies. From a computa-
tional point of view the tackled problem is to understand
a procedure that produces output in B := {0, 1} from in-
puts from a set P := {0, . . . , p}. GPAS basically searches
for multiple-valued input, binary-valued output functions f ,
which are a mapping

f : P n → B .

The search for such functions is not done directly with multi-
valued variables but with a mapping to Boolean variables.
To our knowledge, there are three approaches to map multi-
valued input variables to Boolean variables, leading to a
Boolean algebra and an easier interpretation of the func-
tions. The approaches differ in generality and the number
of generated literals. The most general approach is by Rudell
and Sangiovanni-Vincitelle [20] and defines

XS :=

(
1, if X ∈ S

0, otherwise
(1)

and its complement

XS :=

(
0, if X ∈ S

1, otherwise
, (2)

for a set S ⊆ P of input values leading to 2p distinct positive
literals and 2p distinct negative literals. Su and Sarris [23]
define

Xa,b :=

(
1, if a ≤ X ≤ b

0, otherwise
(3)

and its complement

Xa,b :=

(
0, if a ≤ X ≤ b

1, otherwise
, (4)

leading to p(p−1)/2 distinct positive literals and p(p−1)/2
distinct negative literals. Finally, Dussault et al. [9] restrict
Su and Sarris definition to literals Xa = Xa,b where a = b
and their complements, leading to p distinct positive literals
and p distinct negative literals.

To restrict the search space of GPAS in size, only func-
tions in disjunctive normal form (DNF) are allowed, i.e. only
disjunctions of conjunctions of these literals. An additional
benefit of this restriction is that functions in DNF are easier
to interpret or may even reveal biological meaningful infor-
mation in case-control association studies. Depending on the
problem at hand, it may also be convenient to allow only a
subset of the literals, e.g. if there is a biological reason not
to consider certain literals. Here, we only use literals of the
form Xa and Xa.

Definition 1. Let fp : P n → {0, 1, ∗} be the problem spe-
cific function mapping each known input to the correspond-
ing output of the considered problem and all other inputs
to ∗. Further, let I be a logic expression in DNF consisting
only of literals of the form Xa and Xa with a ∈ P and let
fI : P n → B be the corresponding function.

1. The number of cases predicted correctly by I is defined
by

cases(I) := |{i ∈ P n | fp(i) = fI(i) = 1}| ,

the number of specified cases by

cases(fp) := |{i ∈ P n | fp(i) = 1}| .

2. The number of controls predicted correctly by I is de-
fined by

controls(I) := |{i ∈ P n | fp(i) = fI(i) = 0}| ,

the number of specified controls by

controls(fp) := |{i ∈ P n | fp(i) = 0}| .

3. The misclassification rate (MCR) of I is defined by

mcr(I) := 1 − cases(I) + controls(I)

cases(fp) + controls(fp)

or the corresponding percentage.

4. The length of I is defined by the number of literals I
consists of and denoted by length(I).

The task is to find individuals that have a low MCR as well
as small size, i.e. that offer good generalization and predic-
tion. It is therefore convenient to conduct a multi-objective
optimization. In this context, an individual dominates an-
other individual, if at least one objective has a superior value
and none an inferior. An individual is pareto optimal, if it is
not dominated by another individual. Thus, we seek to find
pareto optimal individuals. The GP algorithm proposed for
this is described in the following. Note, that the termination
criterion is not specified.

Algorithm 1 (GPAS [17]).

1. Create an initial random population composed of two
individuals each of which consists of one randomly se-
lected literal.

2. Perform the following steps on the current generation:

(a) Select all individuals in the population for repro-
duction, and draw seven of the individuals uni-
formly at random.

(b) Conduct each of the following adaptions to one
(mutations) or two (crossover) of the seven ran-
domly selected individuals.

• Perform a crossover: Combine one of the two
chosen individuals with one randomly chosen
monomial from the other individual.

• Insert a new literal.

• Delete a literal.

• Replace a literal by a new literal.

• Insert a new literal as a new monomial.
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• Delete a monomial.

(c) Evaluate the fitness value of the adapted and re-
produced individuals with fitness function f1 that
maps an individual I to a triple:

f1(I) := (cases(I), controls(I), length(I)) . (5)

(d) Select all adapted and reproduced individuals that
are not dominated for the next generation.

3. If the termination criterion is fulfilled, then output the
final population. Otherwise, set the next generation as
current and go to step 2.

3. RESULTS
All experiments are conducted with the R [18] package

RFreak [16]. Most experiments are based on 100 runs of
each algorithm to obtain significant results. To further sub-
stantiate the result statistical testing is frequently applied.

For this task, we choose a Wilcoxon signed rank test when
two algorithms are compared and a Friedman rank sum test
when more than two algorithms are compared (see e.g. [6] or
[12]). Both tests are nonparametric tests, i.e. no assumption
is made about the distribution of the stochastic optimizer
outputs. This is a safe choice for the considered algorithms.
The Wilcoxon signed rank test works on the differences of
pairs of algorithm outputs, i.e. results different algorithms
output for the same data set. The Friedman rank sum test
on the ranks of blocks of algorithm outputs for the same
data set. These values are ranked again and the rank sum
of values supporting the hypothesis is considered. In all
conducted experiments, we use one-sided tests. The null hy-
pothesis therefore is that the distributions of the algorithm
outcomes differ by a negative (positive) location shift. The
alternative hypotheses is often stated in an informal way,
implying that one of the outcomes contains better results,
i.e. that the distributions of the algorithm outcomes differ
by a positive (negative) location shift.

All figures based on experiment runs show boxplots. Box-
plots illustrate the minimal and maximal outcomes of the
experiment as well as the quartiles and the median of the
results. When the boxes have different widths, the width
indicates the number of observations building the box, i.e.
the width is proportional to the square-roots of the number
of observations in the groups.

3.1 Data Simulation
We need data simulation processes for two different pur-

poses. We want to simulate data that is based on a logic
circuit and data that is based on a natural process. To sim-
ulate both types of data, we use the R package scrime [22],
which is intended to mimic a process from nature. The main
data sets for this purpose are constructed in the following
way. We generate data sets, consisting of m three-valued
(0,1,2) inputs on n ≥ 10 variables X1, . . . , Xn. The prob-
abilities for a 0, 1, and 2 are 0.5625, 0.375, and 0.0625,
respectively. The output y is then randomly drawn from a
Bernoulli distribution with mean Prob

`
Y = 1

´
, where

logit
`
Prob(Y = 1)

´
= −1

2
+

3

2

`
X0

3X0
9X0

10

´
+

3

2

`
X0

6X0
7

´
(6)

such that the probability for being a case is 0.924 if for an
input both logic expressions are true, and is 0.731 if one of

Table 1: Mean MCR when learning MUX11
m = 64 128 256 512 1024

MCR 28.12 8.59 0.4 0.0 0.0

them is true. This probability is still 0.378 if neither of the
two is true.

To obtain an incompletely specified truth table based on a
logic circuit, we set the probabilities for a 0, 1, and 2 equally
to 1/3 and determine the output y directly by evaluating the
underlying logic expression for each generated line such that
the probability for being a case is 1 if one or both of the logic
expressions are true, and is 0 if neither of them is true.

For the construction of slightly different data sets, we con-
duct appropriate modifications.

3.2 Data Sets Based on a Logic Circuit
Here, we consider the application of GPAS to data sets

with incompletely specified truth tables based on a logic cir-
cuit. This is a new application field for GPAS which has
some similarities to the intended application. The main dif-
ference is the need to explain the data completely, i.e. to
obtain an MCR of 0. An application field that is related
even closer to GPAS’ domain is concept learning (in this
case learning of multiple-valued input, binary-valued out-
put functions). The results from [17] already imply that
GPAS is suitable for this task. The results of the following
experiments also lead to some further conclusions for this
domain.

GPAS searches for single output functions, which compli-
cates finding hard to solve benchmark instances from VLSI
design (typically containing multiple outputs, see e.g. [2]).
Typical benchmark instances for Boolean concept learners
like the multiplexer [13] or the parity function [14] are for
multiple reasons also inadequate. Firstly, there is no ap-
parent meaningful variant with multiple-valued input and
binary-valued output. Secondly, parity has a DNF of expo-
nential size and GPAS only searches for DNFs. Nevertheless,
we also include results on the multiplexer function (GPAS
also works on binary-valued input functions), but our main
focus is on constructed data sets based on DNFs as described
in Section 3.1.

11-multiplexer
Firstly, we consider a multiplexer, more precisely the 11-
multiplexer.

Definition 2. The 11-multiplexer MUX11 : B11 → B is
defined as

MUX11(a2, a1, a0, d7, . . . , d0) := da222+a121+a020 .

GPAS needs only a few seconds to find the DNF of MUX11
(which Espresso [2] is unsurprisingly able to compute even
faster). This result already hints at the capability of GPAS
for logic minimization. To test the ability of GPAS to learn
MUX11, we determine the MCRs of runs on sampled train-
ing data sets with sizes {26, . . . , 210}. We draw 100 samples
for each size and report the mean MCR on the complete
truth table of MUX11 in Table 1. The results in Table 1
indicate that GPAS is also useful for concept learning.
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Table 2: Situations where Espresso MV terminated
m = 100 1000 10000 25000 50000

n = 10 yes yes yes yes yes
20 yes yes yes yes no
30 yes yes yes no no
40 no no no no no
50 no no no no no

Comparison to Espresso MV (and Standard GP)
As mentioned before, the standard multi-valued logic min-
imization tool is Espresso MV [20]. To compare the per-
formance of GPAS and Espresso MV, we construct data
sets with the process described in Section 3.1 for all 25
combinations of m ∈ {100, 1000, 10000, 25000, 50000} and
n ∈ {10, 20, 30, 40, 50}. On these data sets we run GPAS
and Espresso MV (which is based on the literals defined in
(1) and (2)) each for a maximum of 1 hour. When the algo-
rithms terminate within that time, both are able to compute
solutions consisting of the minimal possible number of mono-
mials, i.e. 2. But Espresso MV does not compute a solution
in the given time span for larger m and n (see Table 2) and
for n ≥ 40 it even did not terminate after 16 hours. GPAS
always finds the optimal solution, i.e. the true model, which
leads to the conclusion that the application as a concept
learner is also successful on these data sets.

It is an interesting question, if the success of our GP algo-
rithm GPAS transfers to Standard GP [13], i.e. if the success
is solely based on the evolutionary approach. For this pur-
pose, we run Standard GP with the function set F = {AND,

OR, NOT, IF} and a terminal set T comprising the same lit-
erals as used in GPAS on the 25 data sets. The result of the
runs is that Standard GP is not able to compute a minimal
solution in any of the runs in the given time span. Hence,
GPAS drastically outperforms Standard GP on the consid-
ered data situations.

These first results already show that GPAS is successful
in situations the standard approach cannot cope with.

Choice of the Fitness Function for Logic Minimization
Before we take a look at further situations, we consider the
fitness function used. While there are many intuitive rea-
sons to use three pareto objectives and therefore large popu-
lations when an underlying natural process is assumed, less
objectives may also work when minimizing logical circuits.
In addition to fitness function f1 defined in (5) we consider
the following fitness functions for an individual I , a problem
specific function fp, and a length restriction �max, i.e. the
maximum value allowed for length(I) :

f2(I) := (cases(I) + controls(I), length(I)) (7)

f3(I) :=
cases(I)

cases(fp)
+

controls(I)

controls(fp)
− L (8)

Note, that the extra term

L :=
length(I)

�max(cases(fp) + controls(fp))

prevents an individual of length �+1 that is not better than
an individual of length � in the remaining term of f3 from
being accepted. With these fitness functions, we conduct 100
runs with n = 50 and m = 1000, i.e. one of the more difficult
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Figure 1: Generations needed to find an optimal so-
lution for underlying DNFs of different sizes. Thin-
ner boxes indicate that not all runs were successful.

situations from Table 2 until the algorithm stagnates for
10000 consecutive generations.

Hypothesis 1. For the task of logic minimization on the
considered data situations, fitness function f1 outperforms
fitness functions f2 and f3

While using f1 leads to an optimal solution in 100% of the
cases, f2 never delivers an optimal solution and f3 in only
9% of the cases. A Friedman test on the results of the ex-
periment confirms that the outcomes derive from different
distributions with a p-value of less than 2.2 · 10−16. To clar-
ify, if f1 really outperforms f2 and f3 we conduct multiple
Wilcoxon tests with Bonferroni correction. Both a compar-
ison of f1 with f2 and a comparison of f1 with f3 yield a
Bonferroni corrected p-value of less than 7.4 · 10−15 indicat-
ing that the results using f1 derive from a distribution with a
location shift producing better solutions. We conclude, that
the pareto optimization with three objectives is the best of
the considered alternatives for all considered applications.

Minimization on Larger Functions
The application of logic minimization does of course work
well in these examples, because the underlying function has
a small DNF (although larger DNFs would not help Espresso
MV either). Therefore, we look at the performance of GPAS
on larger DNFs in the following. We reconsider the exam-
ple with n = 50 and m = 1000 but this time, we generate
data sets with more literals than in (6). Strong imbalances
in the relation between the number of monomials and the
size of the monomials lead to either too much cases or too
much controls in the generated data. To cover a reason-
able amount of different DNF lengths, we consider DNFs
consisting of five monomials. For these DNFs we consider
monomial sizes in {1, 2, . . . , 10}, again for a maximum run-
ning time of one hour per run and report the generation the
optimal solution is found.

The result, depicted in Fig. 1, indicates that up to DNF
size 25 it gets harder for the algorithm to find optimal so-
lutions and gets easier again after size 25. Note, that the
box for size 25 is the thinnest, i.e. for this size many runs
did not find an optimal solution in the time given. It is
not surprising that it gets easier for the algorithm again for
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Figure 2: MCRs for the best individuals of different sizes in the 100 training and test runs.

large sizes, because of the values of n and m, i.e. for large
sizes of the DNF, the relation between 0s and 1s in the out-
put gets imbalanced and easier functions than originally in-
tended are sufficient to explain the data. When considering
m ∈ {100, 1000, 10000, 25000, 50000} output values out of 3n

possible ones this is not surprising and typical for highly in-
specified truth tables. Nevertheless, we see that GPAS does
well in logic minimization in situations with a high amount
of inspecified truth table values.

3.3 Data Sets Based on Natural Processes
As mentioned earlier, the main difference between data

sets based on logic circuits and data sets based on natural
processes is that explaining all cases and controls is a prereq-
uisite for logic circuits while it would overfit data based on a
natural process. Therefore, one of the main tasks when an-
alyzing data sets based on natural processes is to determine
the true size of the underlying model.

Automated Rules to Select the Best Individual
The main problem is illustrated in Fig. 2. The figure shows
the result of 100 training runs on data sets built according
to (6). The best individual, i.e. the individual with the best
MCR, for each length between 1 and 12 is then tested against
a test data set, which is also built according to (6). We see,
that apparently and not surprisingly the longest individuals
perform best on the training data. We also see, that the
best individuals with the true model size 5 perform best on
the test data. Our task here is to find automated rules that
conclude from a training run result, that the true model size
is indeed 5. Such rules help to evade overfitting of the data,
i.e. they avoid choosing a longer individual in the training
run with worse generalization and prediction properties.

A first apparent idea is to only consider points on the con-
vex hull of the point set S consisting of the points (length(I),
mcr(I)) ∈ N × R for all individuals I in a training run.

Definition 3. A subset S of the plane is called convex, iff
for any pair of points p, q ∈ S the line segment {τp+(1−τ )q |
0 ≤ τ ≤ 1} is completely contained in S. The convex hull
CH(S) of a set S is the smallest convex set that contains S.

When we only consider points on the convex hull, we ex-
clude individuals with a gain in MCR that is relatively too
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Figure 3: MCR improvement per length for individ-
uals represented by points on the convex hull.

small. For the remaining points we now consider the slope
between any two points lying next to each other, i.e. the im-
provement in MCR per length when considering the longer
individual. More precisely, for two points lying next to each
other representing individuals I1 and I2 with mcr(I1) >
mcr(I2) we consider

mcr(I1) − mcr(I2)

length(I2) − length(I1)
. (9)

The resulting values are depicted in Fig. 3. The figure
illustrates, that the choice of length 5 is a much more ap-
parent choice after these considerations.

On this basis, we try a simple threshold rule. We accept
the largest individual guaranteeing a higher MCR improve-
ment than 1. We do this on the same simulated data sets as
in [17] where a different (not reported) automated rule has
been used.

Hypothesis 2. The threshold rule selects better individ-
uals than the rule originally used in GPAS for data sets sim-
ulated according to (6).
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Table 3: Means and standard deviations of the mis-
classification rates of the applications of several dis-
crimination methods to the simulated data sets.

Simulation
GPAS with threshold rule Mean 0.329

St. Dev. 0.018

GPAS Mean 0.335
St. Dev. 0.025

Logic Regression Mean 0.342
St. Dev. 0.022

CART Mean 0.371
St. Dev. 0.025

Bagging Mean 0.382
St. Dev. 0.018

Random Forests Mean 0.379
St. Dev. 0.018

With the threshold rule we achieve a mean MCR of 32.92,
where the automated rule used in [17] achieved 33.54. This
difference may seem small at first sight, but when consid-
ering Table 3 it becomes apparent, that it is a significant
improvement. In Table 3, the achieved MCR and the MCR
achieved in [17] are compared to other discrimination meth-
ods. These include logic regression [19], CART [5], bagging
[3], and Random Forests [4]. A Wilcoxon signed rank sum
test on the outcome derives a p-value of less than 0.005, in-
dicating that the new rule works better on the data. In 92%
of the runs, the rule chooses the correct model size.

One may argue, that using a threshold poses too much
adaption to the data situation. To investigate this, we try
the threshold rule on all sizes between 1 and 12 again with
100 runs per size. The rule still determines the best model
size in 70.41% of the runs. In 14.42% it misses the correct
size by one and in 15.17% of the runs it misses the cor-
rect size by more than one. In conclusion, the automated
rule is apt for all considered data situations. For different
data situations it may be necessary to replace the constant
threshold by a threshold function depending on the length of
the individual. Another idea would be to use a gap statistic
as proposed by Tibshirani et al. [24] to detect gaps between
data clusters.

To restrict the size of GPAS’ search space, it is very help-
ful to incorporate an alleviated version of the automated rule
into the algorithm, dynamically changing the maximum size
an individual may have. This forestalls overfitting already
during the algorithm run and allows a better exploit of the
search space in the relevant region. It is easy to store the
individual with the best MCR for each length during the al-
gorithm run. Computing a convex hull may be done in time
O(n log n) for n points in the plane (see e.g. [7] for details).
Computation of the values defined by (9) additionally needs
time O(n). The mutation and crossover operations in Al-
gorithm 1 are all possible in amortized constant time due
to the use of dynamic arrays, therefore we should not apply
the automated rule every generation in order not to slow the
algorithm too much.

In contrast to the automated selection rule, the following
ideas and experiments also apply for the application as a
logic minimizer.

Extension of the Algorithm to General Ordinal Data
So far we only looked at categorical data with three cat-
egories which is typical for SNP data. Nevertheless, it is
very interesting to incorporate the facility to deal with more
categories. Be it for SNPs mixed with, e.g. environmental
data, or with other types of genetic data such as microsatel-
lites or haplotypes. To simulate data for this task, we use a
pair-decoding [21] approach, i.e. we replace triples of the
ternary variables by 27-valued variables. For these data
sets, we test, if additional literals X0,b and Xa,p (p = 26)
help and if the algorithm produces reasonable results for a
higher number of categories. Note, that Xa,b = Xa,pX0,b

and Xa,b = X0,a−1 ∨ Xb+1,p and that the probabilities to
build e.g. Xa,pX0,b and Xa,b when using all literals speci-
fied in (3) and (4) are similar in GPAS. We do not consider
the literals proposed in (1) and (2), because they mostly do
not have a meaningful interpretation for the considered data
and blow the size of the search space up.

We conduct 100 runs of the algorithm with and without
the additional literals.

Hypothesis 3. Using the specified additional literals for
data with more categories leads to better results.

The MCRs obtained are slightly better when using the
additional literals. The Wilcoxon signed rank sum test con-
firms that the outcomes derive from different distributions
with a p-value of 2.98 · 10−5. The overall results of the
runs were comparable to the runs on data sets without pair-
decoding. Therefore, GPAS is suited to run on ordinal data
other than SNP data especially when incorporating addi-
tional literals.

The Role of the Crossover Operation
Finally, we investigate the claim Nunkesser et al. [17] raised,
that using the crossover operation specified in Algorithm 1
speeds up computation but does not necessarily lead to bet-
ter results. We run Algorithm 1 and the same algorithm
without crossover 100 times until they create the 10000th
individual, i.e. both algorithms create the same number of
individuals. Afterwards, we test with a Wilcoxon signed
rank sum test, if the best individuals in the last populations
of the algorithm with the crossover operation are signifi-
cantly better than without crossover, i.e. if the crossover
operation leads faster to good results.

Hypothesis 4. GPAS with crossover obtains good results
faster than GPAS without crossover on data built according
to (6).

The conducted experiment shows, that the average MCR
of the best individuals after 100 runs is indeed better when
using crossover. A Wilcoxon signed rank sum test confirms
that the outcomes derive from different distributions with a
p-value of less than 1.45 · 10−8.

To analyze if crossover is necessary to attain better so-
lutions, we repeat the experiment until the 1000000th indi-
vidual is created. This is long enough to reach stagnation
in the parts of the final population typically containing the
best individual.

Hypothesis 5. GPAS with crossover leads to better re-
sults than GPAS without crossover on data built according
to (6).
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The average MCRs are indeed better when using crossover
and the Wilcoxon signed rank sum test derives a p-value of
less than 8.34·10−9 , indicating that crossover not only speeds
up computation but is also necessary for the considered data
situations to attain good solutions.

Similar to the crossover operation, one might ask, if the
mutation replacing a literal by another literal is necessary for
the algorithm, because an insertion and deletion mutation
could lead to the same individual. To clear this question,
we conduct the same experiments as for the crossover oper-
ation again for this mutation. The experiment correspond-
ing to the one for Hypothesis 4 derives a p-value of less than
0.002 backing up that this mutation speeds up computation.
The corresponding experiment for Hypothesis 5 derives a p-
value of less than 0.02 leading to the same conclusion as for
crossover. The considered mutation operation speeds up the
algorithm and leads to better results for the data situations
looked at.

Changes to the Algorithm
To summarize and test the results of Section 3.3 we pro-
pose to use the following version of Algorithm 1 which incor-
porates the dynamic length restriction and the automated
selection rule. The crossover and mutation operations are
unchanged due to the support of their necessity by our ex-
periments.

Algorithm 2.

1. Initialize �max := 12.

2. Create an initial random population composed of two
individuals each of which consists of one randomly se-
lected literal.

3. Perform the following steps on the current generation:

(a) Select all individuals in the population for repro-
duction, and draw seven of the individuals uni-
formly at random.

(b) Conduct each of the following adaptions to one
(mutations) or two (crossover) of the seven ran-
domly selected individuals.

• Perform a crossover: Combine one of the two
chosen individuals with one randomly chosen
monomial from the other individual.

• Insert a new literal.

• Delete a literal.

• Replace a literal by a new literal.

• Insert a new literal as a new monomial.

• Delete a monomial.

(c) Evaluate the fitness value of the adapted and re-
produced individuals with fitness function f4:

f4(I) :=

(
f1(I), if length(I) ≤ �max

(0, 0, �max + 1) otherwise
.

(d) Select all adapted and reproduced individuals that
are not dominated for the next generation.

4. Let g be the number of the current generation. If g mod
(�max log �max) ≡ 0 then update �max by computing the
longest individual I where the value defined by (9) is
larger than 1. Set �max := length(I) + 2.

5. If the termination criterion is fulfilled, then output the
final population and the best individual determined by
the threshold rule. Otherwise, set the next generation
as current and go to step 2.

To compare the new version of the algorithm to the old
one, we conduct 100 short runs (10000 individuals) on data
sets built according to (6). The short runs are used to in-
vestigate if the dynamic adaption of the maximum allowed
individual size derives faster results in the interesting region
of the search space. To measure this, we count the number
of generated individuals with the optimal size.

Hypothesis 6. Algorithm 2 obtains individuals with the
optimal size faster than Algorithm 1 on data built according
to (6).

Comparing the number of individuals with the optimal
size exhibits a larger number for Algorithm 2. A Wilcoxon
rank sum tests reinforces this observation by delivering a p-
value of less than 0.002. As a second quality indicator, we
follow an idea of Zitzler and Thiele [25] and use a hypervol-
ume indicator. Again, we consider all individuals I with the
optimal size and measure the hypervolume of the point set
{(cases(I), controls(I)) | I ∈ I} with reference to the point
(0, 0).

Hypothesis 7. Algorithm 2 obtains individuals with a
higher quality measured by the hypervolume quality indicator
than Algorithm 1 on data built according to (6).

The experiment delivers a higher average hypervolume for
Algorithm 2. The Wilcoxon rank sum supports this result,
giving a p-value of less than 0.004.

Similar to the conducted experiments for the crossover op-
eration, we consider the results of a second experiment with
100 long runs (1000000 individuals) and the corresponding
hypotheses.

Hypothesis 8. Algorithm 2 obtains more individuals ex-
hibiting the optimal size after creating 1000000 individuals
than Algorithm 1 on data built according to (6).

The result of the experiment backs up the hypothesis and
the corresponding Wilcoxon test reports a p-value of less
than 5 · 10−5.

Hypothesis 9. Algorithm 2 obtains individuals with a
higher quality measured by the hypervolume quality indicator
after creating 1000000 individuals than Algorithm 1 on data
built according to (6).

Again, the hypothesis is backed up by the experiment and
the statistical test, this time with a p-value of less than 0.003.
All in all, these results demonstrate that Algorithm 2 ex-
plores the promising regions of the search space better than
Algorithm 1 and therefore has a higher chance to find good
generalizing individuals.

4. CONCLUSIONS
In this paper, new complementing results and a new appli-

cation for a Genetic Programming algorithm for association
studies have been presented. The new application as a logic
minimizer proved to be successful for the considered data
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situations. Considering the main application of the algo-
rithm, important new results have been introduced. The
automated rule to choose the best individual in the final
population is a big step forward towards solving the prob-
lem of overfitting. Further, the extension of the algorithm
to other ordinal data has been demonstrated to be reason-
able. Experiments on the necessity of crossover for GPAS
complement the claims raised in [17].

It remains an interesting task to test the new results on
further data and further applications. Many ideas involved
are also helpful for other situations than categorical input
variables and binary output variables. Apart from the fact,
that such situations are interesting in themselves, there are
also many applications on such data. Gene expression and
epidemiological data are examples where the ideas of the
algorithm and the ideas presented here might help.
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