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ABSTRACT

Affinity functions are the core components in negative selec-
tion to discriminate self from non-self. It has been shown
that affinity functions such as the r-contiguous distance and
the Hamming distance are limited applicable for discrimi-
nation problems such as anomaly detection. We propose
to model self as a discrete probability distribution specified
by finite mixtures of multivariate Bernoulli distributions.
As by-product one also obtains information of non-self and
hence is able to discriminate with probabilities self from non-
self. We underpin our proposal with a comparative study
between the two affinity functions and the probabilistic dis-
crimination.

Categories and Subject Descriptors

G.3 [Probability and Statistics]: [Multivariate Statistics,
Experimental Design]; I.6.4 [Simulation and Modeling]:
Model Validation and Analysis

General Terms

Algorithms

1. INTRODUCTION
Negative selection is an immune inspired algorithm for de-

tecting anomalies in (binary) data [10]. Inspired by the cen-
soring process of T-Lymphocytes, detector bit strings are
censored such that no detectors match with any self bit
string. After a repertoire of detectors is found, a bit string
is classified as self, if no match between the bit string and any
detector occurs, and otherwise as non-self. In recent years,
different affinity functions for negative selection were pro-
posed. Affinity functions define a closeness measure between
a detector and the classified bit string [5]. Dilger [8] investi-
gated metric properties of some affinity functions (Hamming
and r-contiguous) and showed that not all metric properties
are satisfied. González et al. [11] and Stibor et al. [15, 17]
showed that the generalization capability of some affinity
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functions (Hamming, r-contiguous and r-chunk) are limited
applicable for anomaly detection problems, because gener-
alization regions occur also in non-self regions. Recently, it
has been shown [16, 14] that finding r-contiguous detectors
is equivalent to the problem of finding assignments sets for
a Boolean formula in k-CNF. This result explained the lack
of efficient algorithms for finding detectors.

Summarizing these results, it seems debatable whether
these “classical” affinity functions (Hamming, r-contiguous
and r-chunk) used in negative selection are appropriate as a
closeness measure in self/non-self discrimination problems.

In this paper we discuss whether a probabilistic approach
of modeling self can be applied to decide if a bit string be-
longs to self or non-self. The idea is to model self as a
discrete probability distribution. As by-product one also
obtains information of non-self and hence is able to discrim-
inate with probabilities self from non-self. We structure this
paper as follows: in section 2 the affinity functions (Ham-
ming and r-contiguous) and the corresponding discrimina-
tion function are defined. The principle of self/non-self dis-
crimination in negative selection is explained in section 3.
The multivariate Bernoulli distribution, the parameter esti-
mation with the EM-algorithm and the link to K-means are
explained in sections 4, 4.1 and 4.2. The problem of non-
identifiability of multivariate Bernoulli distributions is dis-
cussed in section 4.3. The proposed probabilistic self/non-
self discrimination method is presented in section 5. Exper-
iments and results are described and discussed in sections 6-
6.3.

Throughout this paper sets are denoted in calligraphic
letters, e.g. S and |S| denotes the cardinality of S . Multi-
variate variables are denoted in bold letters.

2. AFFINITY AND DISCRIMINATION

FUNCTION
Discriminating self from non-self by means of an affinity

function in negative selection is originally proposed by For-
rest et al. [10] and has formed the foundation for a large
amount of work in the field of artificial immune systems.

Let U be a universe which contains all 2l distinct bit string
of length l. An affinity function A takes as input two bit
strings a,b ∈ U , where a = a1a2 . . . al,b = b1b2 . . . bl and
outputs some similarity magnitude, that is,

A(a,b) → R.

A matching function Mτ takes as input A(a,b) and thresh-
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old τ ∈ R and outputs either self or non-self, that is,

Mτ =


A(a,b) ≥ τ, self
otherwise, non-self.

Frequently used affinity functions for A are e.g. the Ham-
ming distance and the r-contiguous distance which are de-
fined below.

Definition 1. Given a,b ∈ U , the Hamming distance be-
tween a and b is given by

H(a,b) =

lX

i=1

ai XOR bi. (1)

The r-contiguous distance can be defined by means of the
Hamming distance.

Definition 2. Given a,b ∈ U , the r-contiguous distance
between a and b is given by

R(a,b) = j − i + 1

where (i, j) = argmax
1≤i≤j≤l

 
jY

t=i

at XOR bt

! 
jX

t=i

at XOR bt

!
,

and at = 1 − at. (2)

The Hamming and the r-contiguous distance are not a met-
ric in a strict mathematical sense. To be more precise, Dil-
ger [8] showed that the triangle inequality is not satisfied in
both distances. Nevertheless, these two distances are most
frequently used in the field of artificial immune systems [5]
as a closeness measure for discriminating self from non-self
in binary data.

3. SELF/NON-SELF DISCRIMINATION IN

NEGATIVE SELECTION
Given self set S ⊂ U and some matching function Mτ . To

discriminate self from non-self, a detector set D ⊂ U has to
be generated, such that for all d ∈ D and all s ∈ S , Mτ (d, s)
outputs non-self. After the detector set D is generated, an
(unseen) bit string u ∈ U is classified as non-self, if Mτ (d,u)
outputs non-self for all d ∈ D, otherwise as self. The prin-
ciple of self/non-self discrimination in negative selection is
depicted in Figure 1, where the r-contiguous distance is used
and threshold1 τ = r. Note that S represents only a subset
of the true self space, in other words S contains the observed
self examples. To generalize beyond the observed self exam-
ples, the concept of holes is required. An unobserved bit
string that is classified as self and is not a member of S is
called hole. It is clear that holes have to present unobserved
self data because the distance of all holes and all detectors
is never greater than τ . For a further explanation of this
concept see e.g. [7],[16].

4. FINITEMIXTURESOFMULTIVARIATE

BERNOULLI DISTRIBUTIONS
The univariate Bernoulli distribution is a discrete proba-

bility distribution having two possible outcomes x = 0 and

1The threshold is a positive integer value (1 ≤ r ≤ l) when
using the Hamming and r-contiguous distance.

x = 1. Outcome x = 1 occurs with probability Θ and out-
come x = 0 with probability 1 − Θ. It therefore has proba-
bility mass function

P (x|Θ) = Θx (1 − Θ)1−x. (3)

Extending P (x|Θ) on the binary space {0, 1}l, one obtains
the multivariate Bernoulli distribution with mass function

P (x|Θ) =
lY

i=1

Θxi
i (1 − Θi)

1−xi (4)

where Θ ∈ R
l and 0 ≤ Θi ≤ 1 for all 1 ≤ i ≤ l, and

x1x2 . . . xl = x ∈ {0, 1}l.
Given an independent and identically distributed sample

X = {xt}
N
t=1 from {0, 1}l, the vector bΘ that maximizes (4)

can be derived by means of the maximum likelihood estima-
tion and results in

bΘ =
1

N

NX

t=1

xt. (5)

If sample X contains higher order correlations, then (5) gives
an unsatisfiable result because the sample covariance matrix
is diagonal. However, by combining M mixtures of multi-
variate Bernoulli distributions:

P (x|Θ, α) =

MX

m=1

αm P (x|Θm), (6)

one can capture correlations in the sample. Note that mix-
ture proportion α ∈ R

M has to obey the convex combina-
tion

PM

m=1 αm = 1 with αm ≥ 0 and Θ is composed of
(Θ1,Θ2, . . . ,ΘM ). For the sake of clearness, components
of xt are denoted as (xt1xt2 . . . xtl) = xt and components
of Θm as (Θm1Θm2 . . . Θml) = Θm for t = 1, . . . , N and
m = 1, . . . , M .

The “fit” of parameters (Θ, α) with regard to sample X
can be measured in terms of the log-likelihood, that is:

log

 
NY

t=1

P (xt|Θ, α)

!
=

NX

t=1

log P (xt|Θ, α). (7)

Maximizing term (7) by means of a large number of mix-
tures increases the model complexity and (usually) results
in an overfitted model. To find the best trade-off between
an appropriate model complexity and a large value of (7)
one needs to penalize the model complexity. The Akaike
information criterion (AIC) [1]:

AIC = 2k − 2
NX

t=1

log P (xt|Θ, α) (8)

where k = M − 1 + l · M , can be used to measure this
trade-off. Parameter k denotes the number of parameters
independently adjusted for the maximization of (7). Note
that (8) is always positive and hence the preferred model is
the one with the lowest AIC value.

4.1 Parameter Estimation with Expectation
Maximization

Parameters Θ and α that maximizes (7), can not be de-
termined analytically when given sample X . However, by
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Figure 1: Principle of negative selection. Detectors are generated in a censoring process called negative
selection such that no detector matches with any bit strings of S. Bit strings from U are then classified with
the generated detectors as self if Mτ outputs self, otherwise as non-self bit strings. In this figure the unseen
bit string 11001 is thus classified as non-self.

differentiating componentwise (7) with regard to Θ and α

∂

∂Θmi

NX

t=1

log P (xt|Θ, α) (9)

∂

∂αm

NX

t=1

log P (xt|Θ, α) (10)

one can derive the expectation and the maximization step
within the EM-algorithm [6].

Recall, the probability of xt being a member of mixture
m can be obtained by means of the Bayes theorem, that is:

P (m|xt,Θ, α) =
P (xt|m,Θ, α)P (m)

P (xt)
(11)

=
αm

Ql

i=1 Θxti

mi (1 − Θmi)
1−xti

PM

m′=1 αm′

Ql

i=1 Θxti

m′i
(1 − Θm′i)1−xti

.

(12)

The E and M-step hence results in:

• E-step: determine the posterior probability (eq. 11)

at iteration step s using current parameters α(s) and

Θ
(s)

.

• M-step: determine reestimated parameters α(s+1) and

Θ
(s+1)

as follows:

α(s+1)
m =

1

N

NX

t=1

P (m|xt,Θ
(s)

, α(s)) (13)

Θ(s+1)
m =

1

N α
(s+1)
m

NX

t=1

P (m|xt,Θ
(s)

, α(s))xt. (14)

This result is derived originally by Wolfe [18] and can be
found also in the work of Everitt and Hand [9] (pp. 104)
and in the recent work of Carreira-Perpiñán and Renals [4].

4.2 The Link between K-Means
and the Estimation of Θ and α

It is worthwhile to notice that the E and M-step (eq. (11)-
(14)) has a clear and intuitive interpretation within the K-
means algorithm2. The K-means algorithm is an iterative
two-step algorithm which consists of an assignment and an
update step. Given data points {p1,p2, . . . , pN} and ran-
domly initialize cluster centers {c1, c2, . . . , cK} both from
R

d. In the assignment step, each data point pt, t = 1, 2, . . . , N
is assigned to the closest cluster center ck, k = 1, 2, . . . , K.
In the update step, the cluster centers ck are adjusted to
match the means of the data points that they are responsi-
ble for.

To be more precise, let r
(t)
k denotes an indicator variable

which is set to one if cluster center ck is the closest mean
to data point pt and otherwise to zero. The two steps are
performed as follows:

• Assignment step: determine responsibilities

r
(t)
k =


1 if k = argminj ‖pt − cj‖

2

0 otherwise

that is, assign the tth data point to the closest cluster
center ck,

2This is not a surprising observation because one can de-
rive the K-means algorithm as a particular limit of the EM-
algorithm for Gaussian mixtures (see e.g. [2] for more de-
tails).
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• Update step: recompute the cluster means ck to match
the means of the data points that they are responsible
for, that is,

ck =

PN

t=1 r
(t)
k pt

PN

t=1 r
(t)
k

.

Repeat both steps until there is no further change in respon-
sibilities or the maximum number of iterations is reached.

Note that indicator variable r
(t)
k ensures that data points

are assigned exactly to one cluster center and contribute
with equal weight to that cluster center.

By transforming the indicator variable r
(t)
k in a “soft” re-

sponsibility, that is, in a probability of bit string xt being a
member of mixture3 k one obtains:

r
(t)
k =

P (xt|k, Θ, α)P (k)

P (xt)
= P (k|xt,Θ, α). (15)

Equivalent to the update step in K-means one obtains:

αk =

PN

t=1 r
(t)
k

N
=

1

N

NX

t=1

P (k|xt,Θ, α) (16)

Θk =

PN

t=1 r
(t)
k xt

PN

t=1 r
(t)
k

=

PN

t=1 P (k|xt,Θ, α)xt

N

PN

t=1 r
(t)
k

N

(17)

=

PN

t=1 P (k|xt,Θ, α)xt

Nαk

(18)

which, in summary, result in the E and M-step within the
EM-algorithm. It is important to notice that K-means is a
local search algorithm. As a consequence, it converges to lo-
cal minima and is sensitive to starting points, that is, the fi-
nal solution highly depends on the initialized starting values.
This fact consequently is also valid for the EM-algorithm.
It is also important to notice that the EM-algorithm oper-
ates in batch mode. That is, all bit strings in X have to
be stored and presented for performing the E and M-step.
When processing large data sets, this consequently results
in high computational complexity and becomes impractical.
To overcome this problem Cappé and Moulines [3] proposed
a generic version of the EM-algorithm which allows to per-
form the E and M-step without storing the complete data.
Such an online version can also be applied here to determine

the reestimated parameters α(s+1) and Θ
(s+1)

.

4.3 Non-identifiability Property
Multivariate Bernoulli distributions belong to the class of

non-identifiable distributions. That means there exist dis-
tinct parameter vectors (α, Θ) and (β,Λ) (except the trivial
permutations) that represent the same distribution.

Example 1. Let α =
`

1
3
, 2

3

´
, Θ1 =

`
1
2
, 1

3

´
, Θ2 =

`
1
4
, 1

5

´
.

Writing down all probabilities results in:

P (00|Θ, α) = 23
45

, P (01|Θ, α) = 7
45

,
P (10|Θ, α) = 11

45
, P (11|Θ, α) = 4

45
.

Finding different parameter vectors that represent the same
distribution can be formulated in terms of determining the

3Note that in view of K-means this can be interpreted as
the responsibility of pt belonging to cluster center ck.

unknown β and Λ in the following equation system:

β1(1 − Λ11)(1 − Λ12) + (1 − β1)(1 − Λ21)(1 − Λ22) = 23
45

β1(1 − Λ11)(Λ12) + (1 − β1)(1 − Λ21)(Λ22) = 7
45

β1(Λ11)(1 − Λ12) + (1 − β1)(Λ21)(1 − Λ22) = 11
45

β1(Λ11)(Λ12) + (1 − β1)(Λ21)(Λ22) = 4
45

.

Solving this system gives free choice of Λ21, Λ22 and deter-
mined the rest:

Λ12 =
11Λ21 − 4

15(3Λ21 − 1)
, Λ11 =

15Λ22 − 4

45Λ22 − 11
and

β1 =
11 − 45 Λ22 + 135 Λ21Λ22 − 33 Λ21

3 (45Λ21Λ22 + 4 − 15Λ22 − 11 Λ21)
.

By choosing for instance Λ2 =
`

1
6
, 1

7

´
, one obtains Λ1 =`

13
32

, 13
45

´
, β =

`
16
23

, 7
23

´
and therefore preserves the same dis-

tribution, that is

P (x|Θ, α) = P (x|Λ, β) for all x ∈ {0, 1}2.

The general fact that no finite mixtures of multivariate Ber-
noulli distributions are identifiable is due to Gyllenberg et
al. [12]. With respect to the problem of self/non-self discrim-
ination (or pattern classification in general) however this fact
seems to play a negligible role. Recall: the problem is to
maximize term (7) and mutually to find a trade-off between
the model complexity (i.e. the number of mixtures) and a
small prediction error for unseen bit strings (i.e. to mini-
mize the AIC value). If distinct parameter vectors satisfy
this property, there exists no argument to prefer certain pa-
rameter vectors and discriminate the equivalent remaining
ones.

5. PROBABILISTIC SELF/NON-SELF DIS-

CRIMINATION
Given self set S ⊂ U and parameter vectors α and Θ that

minimizes term (8) with regard to S . A bit string u ∈ U is
classified as self, if

P (u|Θ, α) ≥ τ (19)

and otherwise as non-self. Note that, expression (19) corre-
sponds to matching function Mτ presented in section 2.

To minimize term (8) one can use different methods. Here
we use the EM-algorithm to maximize the posterior prob-
ability (see section 4.1). Once the parameter vectors are
determined, an appropriate value for τ can be determined
by using techniques such as the leave-one-out method.

In this experiment however we focus on the problem whether
it is feasible to estimate the distribution which approximates
the true distribution closely when given self data only. In
other words, is it feasible to determine decision boundaries
that enclose most of the self data (see Fig. 2(c)). To demon-
strate the applicability of this probabilistic self/non-self dis-
crimination method, an artificially generated data set is cre-
ated. The discrimination results are visualized and com-
pared to results obtained with negative selection.

6. EXPERIMENTS
Self data is generated by a mixture of 2-dim. Gaussian dis-

tributions with different mean vectors and covariance matri-
ces and consists of 5000 data points. The generated self data
is visualized in Figure 2(a), the corresponding density image
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(a) Self data is generated by a mix-
ture of two multivariate Gaussian
distributions with different mean
vectors and covariance matrices.

(b) Density image of the underlying
distributions. Self data is concen-
trated in regions of high probability
(green regions).

Non−Self

Self

Self

(c) Enclosed decision regions
parametrized by finite mixtures of
multivariate Bernoulli distributions.
Data enclosed within the decision
region is classified as self, and
outside of the decision region as
non-self. The decision boundary is
parametrized as P (u|Θ, α) = τ .

Figure 2: Self data is sampled from a mixture of multivariate Gaussian distributions.

is depicted in Figure 2(b). One can see in Figure 2(a) that
self data is concentrated in regions of high density. This
is a common assumption in the field of novelty detection
and leads to the problem of finding regions where most of
the normal data (in our terminology self data) is concen-
trated [13].

Note that the domain of (1),(2) and (19) is U . We there-
fore use the mapping from R

2 → U proposed in [11]. That is,
the data is min-max normalization to [0, 1]2 and discretized
to bit strings of length l = 16

b1, b2, . . . , b8| {z }
bx

, b9, b10, . . . , b16| {z }
by

,

where the first 8 bits encode the integer x-value

ix := ⌈255 · x + 0.5⌉

and the last 8 bits the integer y-value

iy := ⌈255 · y + 0.5⌉,

that is,

[0, 1]2 → (ix, iy) ∈ (1, . . . , 256) × (1, . . . , 256)

→ (bx, by) ∈ {0, 1}8 × {0, 1}8.

For the sake of clarity the binary self data (i.e. the sample)
is denoted as S .

6.1 Experimental Setup
The starting parameters for the EM-algorithm are ran-

domly initialized as follows:

Θmi ∈R [1/4, 3/4] for i = 1 . . . l and m = 1 . . . M

and the mixture proportions are deterministically initialized
with:

αm =
1

M
for m = 1 . . . M.

In our experiment, we setup the EM-algorithm to terminate
if between two succeeding iterations the log-likelihood of
sample S is smaller than 10−2 or 1000 iterations are reached.

The negative selection experiments are setup as follows:
for both affinity functions all detectors for each threshold
r = 1, . . . , 16 are generated.

6.2 Probabilistic Discrimination Results
The visualized results presented in Figure 6 are obtained

as follows: the number of mixtures M is chosen and the pa-
rameter vectors (Θ, α) are determined by means of the EM-
algorithm. For all u ∈ U the probability value of P (u|Θ, α)
is calculated. This corresponds to the evaluation of all pixels
in a 256 × 256 grid, where the color of each pixel is deter-
mined by the corresponding probability value. One can see
(last page Figure 6(a)) that it is not feasible to reconstruct
the higher order correlations of the true distribution by us-
ing only one mixture (M = 1). This is not a big surprise
due to the fact that the EM-algorithm gives the same result
as the maximum likelihood term (5) when using only one
mixture. By increasing stepwise the number of the mixtures
one also increases the model complexity. For some M the
best trade-off between model complexity and generalization
error is given, that is, the estimated distribution approxi-
mates the true distribution closely. In our experiment, val-
ues M = 12, 13, . . . , 20 give satisfiable results. This can be
observed in Figure 3 and Table 1. Informally this can also
be seen by comparing results in Figures 6(a)-6(t) with result
in Figure 2(b).

6.3 Negative Selection Discrimination Results
The negative selection discrimination results are depicted

in Figure 4 and 5. One can see that for r = 13 no detectors
can be generated, whereas for r = 16 each bit string (except
the self bit strings) is covered by detectors. For r = 14 one
can observe that holes (bit strings not covered by detectors)
are not distributed within the region where most self data
is concentrated. As a consequence, this implies a poor gen-
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Figure 3: Coherence between number of mixtures
and corresponding mean AIC values.

M AIC loglik iter
1 110884.46 (± 0) -55426.23 (± 0) 1 (± 0)

2 103963.92 (± 77.28) -51948.96 (± 38.64) 22.40 (± 10.73)

3 101697.27 (± 195.27) -50798.64 (± 97.63) 28.85 (± 12.24)

4 100740.92 (± 462.52) -50303.46 (± 231.26) 40.70 (± 14.77)

5 100252.64 (± 264.54) -50042.32 (± 132.27) 58.30 (± 28.11)

6 99914.02 (± 72.94) -49856.01 (± 36.47) 95.45 (± 41.19)

7 99700.13 (± 158.75) -49732.06 (± 79.37) 99.50 (± 41.20)

8 99494.73 (± 115.51) -49612.36 (± 57.75) 105.00 (± 22.06)

9 99350.07 (± 135.60) -49523.04 (± 67.80) 139.50 (± 37.38)

10 99230.21 (± 138.44) -49446.11 (± 69.22) 146.55 (± 51.25)

11 99067.84 (± 83.42) -49347.92 (± 41.71) 168.65 (± 42.41)

12 98989.64 (± 107.73) -49291.82 (± 53.86) 183.20 (± 74.94)

13 98910.76 (± 71.90) -49235.38 (± 35.95) 215.20 (± 74.61)

14 98936.35 (± 79.44) -49231.18 (± 39.72) 185.35 (± 51.02)

15 98867.20 (± 50.26) -49179.60 (± 25.13) 221.40 (± 74.88)

16 98829.95 (± 64.51) -49143.98 (± 32.25) 265.90 (± 93.70)

17 98831.32 (± 97.91) -49127.66 (± 48.95) 227.25 (± 55.32)

18 98805.13 (± 68.29) -49097.57 (± 34.14) 269.20 (± 86.00)

19 98804.85 (± 47.29) -49080.43 (± 23.64) 259.95 (± 70.02)

20 98766.77 (± 27.05) -49044.38 (± 13.52) 302.45 (± 91.47)

Table 1: Mean AIC and log-likelihood results for
stepwise increased number of mixtures. Values de-
picted in the brackets denote the standard devia-
tion. The last column denotes the average number
of iterations until convergence. The experiment was
repeated 20 times.

(a) r = 13 (b) r = 14 (c) r = 15 (d) r = 16

Figure 4: Detector coverage (Hamming distance) for
threshold values r = 13, . . . , 16. The gray shaded area
is covered by the generated detectors, the white area
represents holes. The black points represent self ex-
amples (|S| = 5000) which are generated by the un-
derlying distribution (see Fig. 2(a)). Note that for
r = 1, 2, . . . , 13 no detectors can be generated.

(a) r = 8 (b) r = 9 (c) r = 10 (d) r = 11

(e) r = 12 (f) r = 13 (g) r = 14 (h) r = 15

(i) r = 16

Figure 5: Detector coverage (r-contiguous distance)
for threshold values r = 8, . . . , 16. Note that for r =
1, . . . , 8 no detectors can be generated.

eralization performance in terms of correctly discriminating
unseen bit strings. Note that for r = 1, 2, . . . , 13 no detectors
can be generated. The r-contiguous distance suffers under
the same generalization problems as the Hamming distance,
that is, unseen self bit strings (holes) are not concentrated
in regions of high probability (see Fig. 5).

7. CONCLUSION
Discriminating self from non-self with negative selection is

a popular method in the field of artificial immune systems.
Latest research results, however, revealed several problems
regarding the complexity of finding detectors and the gen-
eralization capabilities of the used affinity functions. To
overcome these problems, we proposed to model self as a
discrete probability distribution specified by finite mixtures
of multivariate Bernoulli distributions. The EM-algorithm
was used to find the parameters that maximize the likeli-
hood, minimize the AIC value, respectively, of a given sam-
ple. As by-product we showed that the E and M-step within
the EM-algorithm are linked to the iterated optimization
steps performed in K-means clustering. Furthermore, the
non-identifiability property of finite mixtures of multivari-
ate Bernoulli distributions was discussed. A comparative

132



study on the self/non-self discrimination capabilities of neg-
ative selection and the proposed probabilistic discrimination
approach was performed. Results revealed that finite mix-
tures of multivariate Bernoulli distributions are a promising
approach to tackle the self/non-self discrimination problem.
To underpin this statement however, experiments on real-
world data sets and with regard to classification rates are
required in future work.
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(a) M = 1 (b) M = 2 (c) M = 3 (d) M = 4

(e) M = 5 (f) M = 6 (g) M = 7 (h) M = 8

(i) M = 9 (j) M = 10 (k) M = 11 (l) M = 12

(m) M = 13 (n) M = 14 (o) M = 15 (p) M = 16

(q) M = 17 (r) M = 18 (s) M = 19 (t) M = 20

Figure 6: Results of estimated probability distribution specified by finite mixtures of multivariate Bernoulli
distributions for stepwise increased number of mixtures. Each pixel in the 256 × 256 grid represents a bit
string u of length 16 bits. The color corresponds to the probability P (u|Θ, α). One can see that the true

underlying distribution can be closely approximated with a certain number of mixtures.
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