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ABSTRACT
The crossover bias theory for bloat [18] is a recent result which pre-
dicts that bloat is caused by the sampling of short, unfit programs.
This theory is clear and simple, but it has some weaknesses: (1)
it implicitly assumes that the population is large enough to allow
sampling of all relevant program sizes (although it does explain
what to expect in the many practical cases where this is not true,
e.g., because the population is small); (2) it does not explain what
is meant by its assumption that short programs are unfit.

In this paper we discuss these weaknesses and propose a refined
version of the crossover bias theory that clarifies the relationship
between bloat and finite populations, and explains what features of
the fitness landscape cause bloat to occur. The theory, in particu-
lar, predicts that smaller populations will bloat more slowly than
larger ones. Additionally, the theory predicts that bloat will only
be observed in problems where short programs are less fit than
longer ones when looking at samples created by fitness-based im-
portance sampling, i.e. samplings of the search space in which fit-
ter programs have a higher probability of being sampled (e.g., the
Metropolis-Hastings method). Experiments with two classical GP
benchmarks fully corroborate the theory.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming

General Terms
Algorithms, Performance

Keywords
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1. INTRODUCTION
A rapid increase in program size is often observed after the ini-

tial phases of Genetic Programming (GP) runs. This phenomenon,
which is generally referred to as bloat, has been widely studied (see
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for instance [1, 13, 14, 22] [19, Section 11.3]). Properly speaking,
bloat corresponds to increases in program sizes that are not con-
nected to improved fitness. In many problems there may be phases
of growth where fitness also improves, so not all forms of growth
can be termed bloat. For this reason, we will often also use terms
such as program size growth or code growth when this language
is more precise. In addition, we will often use the term “length”
instead of “program size” to refer to the number of nodes in a pro-
gram, since this makes it less likely to confuse it with the popula-
tion size, which is a term used throughout the paper frequently. Due
to space limitations we cannot provide a complete literature review
on bloat and related issues. We will focus, instead, on a subset of
results which are particularly relevant to the work presented here.

1.1 Limiting Distribution of Fitness
in the GP Search Space

The characterization of the space of computer programs explored
by GP has been an important topic of theoretical research [11]. A
key contribution was a series of theoretical results showing that
the distribution of functionality of non Turing-complete programs
approaches a limit as program length increases. That is, although
the number of programs of a particular length grows exponentially
with length, beyond a certain threshold the fraction of programs
implementing any particular functionality is effectively constant.
This implies that, as we look at bigger and bigger programs, the
distribution of fitnesses approaches a limit.

There is a very substantial body of empirical evidence indicating
that this happens in a variety of systems. There are also mathemat-
ical proofs of these convergence results for two important forms
of programs: Lisp (tree-like) S-expressions (without side effects)
and machine code programs without loops [6, 7, 8, 9, 10, 11].
Also, similar results were derived for: a) cyclic CPU (increment,
decrement and NOP instructions), b) bit flip computer, (flip bit and
NOP), c) any non-reversible computer, d) any reversible computer,
e) CCNOT (Toffoli gate) computer, f) quantum computers, g) the
‘average’ computer and h) AND, NAND, OR, NOR expressions.
In addition, recently, these results have been extended to Turing
complete machine code programs [12, 17].

1.2 Crossover Bias Theory for Bloat
One of the most recent explanations for bloat is the so called

crossover bias theory [18, 3]. On average, each application of sub-
tree crossover removes as much genetic material as it inserts. So,
crossover in itself does not produce growth or shrinkage. How-
ever, while the mean program size is unaffected, higher moments
of the distribution are affected. In particular [18, 3] showed that
crossover pushes the population towards the following distribution
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of program sizes, called a Lagrange distribution of the second kind:

Pr{n} = (1−apa)

(

an+1
n

)

(1− pa)
(a−1)n+1 pn

a (1)

Here n is the number of internal nodes in a tree, Pr{n} is the pro-
portion of the population having length n, pa is a constant and a
is the average arity of the primitives in the function set. The pa-
rameter pa is a function of a and the mean program size µ, and has
a role similar to the success rate in a binomial distribution. When
a > 1, this distribution vaguely resembles the exponential distribu-
tion but with a much fatter tail. Because of the distribution’s par-
ticular profile, short programs have a much higher frequency than
longer ones. For example, crossover generates a very high propor-
tion of single-node individuals. However, in virtually all problems
of practical interest, very short programs have no chance of solv-
ing the problem. As a result, programs of above average length
have a selective advantage over programs of below average length.
Consequently, the mean program size increases. Note that the dis-
tribution in Equation (1) tends to become flatter as µ grows. So, the
sampling of short programs becomes less and less frequent as the
mean program size increases.

1.3 Size Evolution Equation
Poli and McPhee [16, 20] developed an exact formalisation of

the dynamics of average program size for genetic programming:

E[µ(t +1)] = å
l

S(Gl)p(Gl ,t), (2)

where µ(t + 1) is the mean size of the programs in the population
at the next generation, E[ ] is the expectation operator, Gl is the
set of all programs of a particular shape (shapes are indexed by l),
S(Gl) is the size of programs of shape l and p(Gl ,t) is the proba-
bility of selecting programs of shape l from the population in the
current generation (indexed by t). We will call this equation the
size evolution equation. With simple manipulations Equation (2)
can be rewritten in terms of length-classes, rather than tree shapes,
obtaining

E[µ(t +1)] = å
ℓ

ℓp(ℓ,t) (3)

where the index ℓ ranges over all program sizes and

p(ℓ,t) = å
l:S(Gl)=ℓ

p(Gl ,t). (4)

Note that Equation (2) does not directly explain bloat. It only
constrains what can happen size-wise in GP populations. The equa-
tion predicts that under the effects of crossover the mean program
size evolves as if selection only was acting on the population.

1.4 Contributions of this paper
This paper is structured as follows. In Section 2 we combine and

refine the theoretical results reviewed above, developing a more
precise version of the crossover bias theory of bloat (Section 2.1);
we then illustrate the ideas with a simple qualitative example (Sec-
tion 2.2). In Section 3 we then introduce the two benchmark prob-
lems we use to gather the empirical evidence used to test the new
theory (Section 3.1), paying particular attention to certain aspects
of their fitness landscape which are important in relation to the the-
ory and bloat (Section 3.2). We report experimental results in Sec-
tion 4, where we look at how the growth in the mean, median and
extreme values of the program size distribution are affected by the
population size generation after generation. We draw our conclu-
sions in Section 5.

2. BLOAT AND POPULATION SIZE
With the previous background material in place, we are now in a

position to suggest why (and when) large populations should bloat
faster than small ones. We do this by first combining (in Sec-
tion 2.1) the theoretical evidence from Sections 1.1 and 1.3. We
then provide an informal thought experiment in Section 2.2 to fur-
ther illustrate the ideas.

2.1 Combining and Refining the Evidence
Based on the size evolution equation (Section 1.3) and Lang-

don’s theory on limiting distribution of fitness (Section 1.1), if all
programs in the population are sufficiently large, there should be
no bloat on average. However, in practice this situation is not eas-
ily reached nor easily maintained because subtree crossover tends
to always produce a mix of program lengths as indicated by the
crossover bias theory (Section 1.2). Thus while selection will at-
tempt to modify the distribution based on fitness, crossover will
work to distribute program lengths according to a Lagrange distri-
bution of the second kind [18] which heavily over-samples the short
programs. Because of its bias, crossover tends to always produce
a significant proportion of short programs.1 Consequently, the ten-
dency to bloat should continue even as the programs grow into the
region where the distribution of fitnesses is approximately constant.

Earlier we saw that the crossover bias theory assumes that, when-
ever short programs cannot solve problems and crossover samples
such programs often, there is a persistent selective pressure against
short programs in the population. This, in turn, produces a selective
advantage for the longer programs, ultimately causing bloat.

The theory does not fully clarify in what sense short programs
would have below average fitness. One could mean, for example,
that when doing an unbiased random sampling of the search space
one finds that short programs are on average less fit than large ones.
Alternatively, one could mean the short programs are less fit among
those programs explored by selection and recombination. There is
a distinction between the two because, although GP does random or
near-random sampling in the first few generations of a run, as soon
as selection can get something to act upon, it will rapidly focus the
search on the higher-fitness elements of each length class. In this
case, the shape and thickness of the upper tail of the fitness dis-
tribution associated with each length class is more important than
its mean. We postulate that while the differences in the means
of the fitness distribution associated with different length classes
may influence the transient behaviour of the dynamics of the mean
program length, it is the differences in the tails of the distribution
which influence the late stages of runs.

To sum up, it is only when the fitness of the best short programs
observed during “genetic sampling” (as opposed to, e.g., random
sampling) is inferior to the fitness of the best long programs that
the crossover bias theory for bloat is applicable.

A second important clarification is necessary. The crossover bias
theory (Section 1.2) assumes that the population is “sufficiently
large”, i.e., large enough that all length classes are sampled (or at
least that the short, sub-quality programs are sampled consistently).
Is the theory still applicable if the population is not “sufficiently
large”? We think it is, at least in a refined form. In particular, it is
clear that the smaller the population and/or the larger the average

1One possible exception is the case where only arity 1 functions
are used and the mean program length is very large. With only
arity one (linear structures) the Lagrange distribution collapses to a
discrete gamma distribution. When the mean size is very large, this
distribution has less and less mass concentrated on the very short
programs. The mean size must be quite large, however, so our
assumptions should hold in most cases even for linear structures.
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program length, the less likely it is that one will sample the short
programs. It is even possible that with very small, highly bloated
populations no sample is allocated to the short and sub-average-
quality programs in one generation, in which case we should not
expect bloat in that generation. So, it stands to reason that, be-
cause large populations sample the short programs more consis-
tently, bloat should be faster in larger populations than in smaller
ones.

In the following we will call the extension of the crossover bias
theory with the previous two ideas the revised crossover bias theory
for bloat to avoid any confusion with the original. The key aim of
the remainder of this paper is to corroborate this theory.

2.2 A Thought Experiment
Let us consider a situation where the population clearly is not

“sufficiently large” to ensure that all length classes are sampled
(or to at least ensure that the short, sub-quality programs are sam-
pled consistently), which is one of the main assumptions of the
crossover bias theory (Section 1.2). Assume, for instance, that we
have a population of 1,000 individuals. Further assume that, for
some reason, this includes very large programs, say 15,000 nodes
on average. Finally, assume that 15,000 is way beyond the thresh-
old where the functionality of programs reaches a limit according
to Langdon’s theory [11]. In this population there is no real advan-
tage or disadvantage (in expectation) in being moderately above or
below the mean size of 15,000 nodes.

If we now apply crossover, we know that in principle it can pro-
duce programs of sizes from 1 to almost twice the size of the largest
individual in the population. If, for example, the largest individual
has 200,000 nodes, then we could get anything from 1 to 399,999
nodes. Clearly, however, not all length classes will be equally prob-
able. Exactly what (theoretical) distribution one would get depends
in complicated ways on the distribution you had before crossover.
Further, in practice we will only draw 1,000 samples from this dis-
tribution, so we should expect a size histogram that only vaguely
resembles the theoretical distribution. However, we know that there
must be many more programs that are shorter than the 15,000 av-
erage, than there are programs that are longer (otherwise we would
see a change in the average program size). So, for the sake of argu-
ment, assume that 750 programs are below average length and 250
are above average length. So, we have 750 samples to allocate to
15,000 length classes. So, there is no hope of sampling all classes.
If samples were allocated uniformly between 1 to 15,000 (but we
know this is not true) we would have 1 chance in 20 to sample a
particular length class. So, there would be a significant probabil-
ity of not having very short programs (those that cannot solve the
problem) in that particular generation. This would then eliminate
one of the key forces driving up the average tree size, at least in that
generation.

Naturally, it may eventually happen that one generation would
get unlucky and again sample a short program, thereby giving a
selective advantage to the longer programs and producing an in-
crease in average size at that generation. It is clear, however, that
every time the mean program size goes up, we create more length
classes below the mean, and, so, in future generations it becomes a
little harder to sample the short length classes. For this reason, it is
reasonable to think that sooner or later the growth rate should slow
down.

Now, imagine a population of 100,000 individuals, again with
average size 15,000. Assume that 75,000 of these are below aver-
age length (same proportion as for previous example). We see that
now, if we apply crossover, we have 5 samples per length class. So,
we are practically certain to sample programs in all the very short

length classes, many of which will be unfit. Therefore we should
expect to see size growth at each generation.

According to the limiting distribution theory in Section 1.1,
sooner or later, the process must limit itself even with the larger
population. For example, if the mean program length eventually
reached 1,500,000 nodes, we would again only be able to sample
each length class (below the mean length) with a probability 1/20.

As a consequence, while we would expect bloat to eventually
slow down for all finite populations, we would expect it to con-
tinue for longer in larger populations than in the smaller ones. The
main objective of this paper is to corroborate this hypothesis with
empirical evidence.

3. TEST PROBLEMS, FITNESS LAND-
SCAPES AND RANDOM SAMPLING

In this section we present the test problems used in the experi-
ments presented here (Section 3.1) and we provide a characterisa-
tion of their fitness landscape (Section 3.2).

3.1 Test Problems
Because the test problems given below are well known and es-

tablished GP benchmarks, their descriptions are very brief. See [4],
for example, for a more detailed description of both problems.

3.1.1 Artificial Ant
In this problem, an artificial ant is placed on a 32× 32 toroidal

grid. Some of the grid cells contain food pellets. The pattern of
food follows the so called “Santa Fe Trail” [4]. The goal is to find
a navigation strategy for the ant that maximizes its food intake. We
use the same set of functions and terminals as in [4], i.e., F =
{IfFoodAhead,Progn2,Progn3} and T = {Right,Left,Move},
respectively. We use the total number of food pellets lying on the
trail (89) minus the amount of food eaten by the ant during its ex-
ploration for the raw fitness. This turns the problem into a mini-
mization problem.

3.1.2 Symbolic Regression
This problem aims to find a program that matches a given equa-

tion at several test points. Following [15], we use f (x) = sin(x)
as the target function, and our set of test points is 100 equidis-
tant points in the range [0,1] (giving us 100 fitness cases). For
this problem, the set of functions used for GP individuals is:
F = {∗,%,+,−}, where % is a protected division which returns
1 when the divisor is 0. We define the fitness as the root mean
squared error between outputs and targets. Consequently, the lower
the fitness the better the solution, implying that this problem is also
a minimization problem.

3.2 Fitness Landscape Features of the Test
Problems

We had two motivations for choosing these particular test prob-
lems. The first motivation for choosing these two problems is that
they are well known GP benchmarks, and much is known about
these problems (see, for instance, [4, 11, 23, 19]).

The second and, maybe, more important motivation is that the
two problems show different characteristics in their fitness land-
scapes, or, more specifically, in their length-class fitness distribu-
tions. These differences provide a more extensive test of our first
conjectured refinement for the crossover bias theory, namely that
the differences in tails of the length-class fitness distribution is what
matters in relation to bloat in the long run.

To see these differences, we will sample the search space for the
two problems using two different techniques: the random creation
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of trees using the Ramped Half and Half algorithm [5], and sam-
pling using the Metropolis-Hastings algorithm [2]. In the following
subsections we explain these sampling algorithms and their results
on the two test problems.

3.2.1 Random Sampling with Ramped Half and Half
The Ramped Half and Half algorithm constructs random indi-

viduals using the Full method (which creates full trees of a given
size) half of the times and the Grow method (which creates trees of
more varied shapes) the other half of the times. This is done using a
range of depth limits (hence the term ‘ramped’) to help ensure that
we generate trees having a variety of sizes and shapes.

Figure 1 reports the average fitness of a sample of 4000 individ-
uals randomly generated with the Ramped Half and Half algorithm
for a set of possible values of the maximum tree depth parame-
ter.2 As this figure clearly shows, for the artificial ant (Figure 1(a))
small sampled individuals have poor average (static) fitness values,
and fitness improves as larger and larger values of the maximum
tree depth are used. This result is consistent with a similar result
reported in [11] and corroborates the applicability of the (refined)
crossover bias theory.

Interestingly, however, for the symbolic regression problem (Fig-
ure 1(b)) we see the opposite behavior: the average (static) fitness
of short programs is higher than the average fitness for large pro-
grams sampled by the Ramped Half and Half algorithm. From this
result, we might expect that the crossover bias theory of bloat is
inapplicable to this benchmark, or even that instead of bloat we
should observe shrinking (as one could easily argue using an ex-
act “mirror” argument to the crossover bias theory). As discussed
below, however, GP doesn’t randomly sample the population, and
when we correct for this, we find that the distributions for the two
problems look much more similar.

3.2.2 Fitness-based Random Sampling with
Metropolis-Hastings

The limitations of using random samples such as those gener-
ated by the Ramped Half-and-Half algorithm in investigations of
the features of fitness landscapes are discussed at length in [23, 24],
where it was suggested that important sampling techniques such as
the Metropolis-Hastings method [2] are much more effective tools.
The main reason for this is that GP doesn’t sample randomly –
mechanisms like selection deliberately and heavily bias the sam-
pling of the search space. As a result, methods like Metropolis-
Hastings tend to sample sets of programs with characteristics more
like those in GP populations.

The Metropolis-Hastings algorithm generates a sample of indi-
viduals {i1, i2, ..., iN}. Individual i1 is randomly chosen. In our
case, we used the grow method to generate it. In our study, sub-
sequent individuals i j, for 2 ≤ j ≤ N, are created by generating
1000 random individuals (all of them with the grow method), let-
ting i j be the first whose fitness is better than i j−1. If none of these
1000 random individuals is better than i j−1, we set i j = i j−1. The
pseudo-code of the general Metropolis-Hastings algorithm can be
found in [23] at page 131. The version used in the present study
uses a particularly strong acceptance criterion for the next solution
i j to be inserted in the sample. In general, a new solution can be
accepted also if its fitness is worse than the previously accepted
one, with a given probability. In this work, however, that proba-
bility has been set to zero and only better individuals have been
accepted, thus simulating a strong selection pressure. Of course,
we know that this selection is not the same as performed by GP,
2By varying the maximum tree depth, we indirectly vary the pro-
gram length-classes being sampled.

but we believe that this is a reasonable approximation. As with the
Ramped Half and Half sampling from Section 3.2.1, we generate a
final sample set of size N = 4000.

Figure 2 shows the results of the Metropolis-Hastings sampling
on the two benchmark problems; compare this with the plots in
Figure 1. Looking at the ant problem, for example, we see that
short programs are still less fit than longer ones, and that in fact the
difference in fitness has increased enormously (note the different y-
axis scales in Figure 1(a) and 2(a)). Furthermore, we can see how,
above a certain depth, all depths provide the same average fitness
among the accepted samples of that depth. This further corrobo-
rates the applicability of our refined crossover bias theory. Turn-
ing to the symbolic regression problem, we see under the fitness-
based sampling of the Metropolis-Hastings method, the tails of the
length-class fitness distributions behave entirely differently from
the samples generated using Ramped Half-and-Half. Here average
fitness decreases with depth as for the ant problem. This indicates
that our refined crossover bias theory for bloat is applicable to the
symbolic regression problem too, at least when selection has had
enough time to focus the search of the population. Thus while
the initial, randomly generated population might have a distribu-
tion like that in Figure 1(b), mechanisms like selection will quickly
move (typically in just a few generations) the population to a distri-
bution more like Figure 2(b), at which point our refined crossover
bias theory for bloat should apply.

4. EXPERIMENTAL RESULTS
In the following three sections we will report a variety of exper-

imental results where we studied the bloat and sampling behaviour
of GP runs. In all the experiments we use the following set of pa-
rameters: generational GP, a crossover rate of 100%, no mutation,
fitness proportionate selection, Ramped Half and Half initializa-
tion, a maximum depth of 6 for the individuals created in the ini-
tialisation phase, a maximum depth 200 for the individuals created
by crossover, and no elitism. We’ve deliberately kept our model
simple (e.g., by not including mutation) to allow us to more clearly
focus on the interaction of population size and crossover. All our
experimental results were obtained using 100 independent GP runs
on each of four population sizes: 50, 100, 200, 400 and 800.

4.1 Population Size and Program Length
In Figure 3 we plot the average length of the individuals in the

population at each generation for five different population sizes for
the two studied benchmarks. Each curve is the average over 100
independent GP runs. For both problems the average program size
grows more rapidly for bigger populations than for smaller ones,
which fully confirms the prediction of the refined crossover bias
theory that bloat depends on population size. In addition, we see
that the phenomenon reaches a limit for population sizes between
800 and 1600 (not reported). This is presumably because those
sizes are large enough to ensure consistent sampling of the short
programs at each generation, for the 100 generations in our runs.
Presumably we would eventually be able to distinguish among
those population sizes if we ran for more generations, allowing the
average size to reach the point that, for example, a population of
size 800 no longer consistently samples the short, unfit programs.

We want to stress that if we had only considered the evidence
provided by the Ramped Half and Half random sampling shown in
Figure 1 in conjunction with the original crossover bias theory for
bloat, we could have reasonably predicted that no bloat (or even
some shrinking) would take place in the symbolic regression prob-
lem. The refined theory, however, made the right prediction be-
cause it considers the effect of selection on sampling.
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Figure 1: Average fitness vs. maximum depth over a sample of 4000 individuals generated with the Ramped Half and Half algorithm.
All problems use minimization (the smaller the fitness, the better). (a): Artificial Ant on the Santa Fe trail. (b): Symbolic regression.
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Figure 2: Average fitness vs. maximum depth over a sample of 4000 individuals generated with the Metropolis-Hastings algorithm
(see the text for a definition of the acceptance criterion used). All problems use minimization (the smaller the fitness, the better). (a):
Artificial Ant on the Santa Fe trail. (b): Symbolic regression.

4.2 Minimum, Median and Maximum Length
To gain further information on how the size distribution changes

over time with different population sizes, we plot the minimum,
median and maximum length of the individuals in the population
in Figure 4. Curves are averages over 100 independent GP runs.
We have used a logarithmic scale for the ordinates to better reveal
the dynamics of the extreme values.

As we can clearly see, in both problems, the medians have ap-
proximately the same behaviour as the means (shown in Figure 3).
That is, bloat occurs in all configurations but at a rate that depends
on the population size. For the symbolic regression problem, how-
ever, we see an interesting pattern emerge (as also reported in [21])
for all population sizes in the first few generations where the me-
dian decreases instead of increasing. (The mean also decreased in
the early generations, but this was not visible in Figure 3 due to its
linear scale.) We should not be surprised to see this, because, as we
discussed earlier, in the first few generations GP populations are

random or nearly-random and so the fitness landscape perceived
by GP is more similar to the one obtained by sampling with the
Ramped Half and Half method (where short programs are relatively
fit compared to the long ones) than with Metropolis-Hasting (where
short programs are typically unfit).

If we now focus on the curves of the mean largest and mean
smallest programs in the population shown in Figure 4, we see that,
broadly speaking, these follow the same profile as the median (re-
member that the ordinates are in log scale). It is particularly in-
teresting, for example, to note that as populations bloat more and
more, the mean of the smallest program in each generation grows,
indicating that the small unfit programs become less and less likely
to be sampled. It is also interesting to see how the population size
influences the relative position of the curves representing the ex-
treme sizes in each generation. We see, for example, that for very
small populations the longest programs tend to be closer to the me-
dian than for larger populations.

If we focus on the shortest programs in each generation, for the
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Figure 3: Average length of the individuals in the population against generations. Results are averages over 100 independent GP
runs. (a): Artificial Ant on the Santa Fe trail. (b): Symbolic regression.
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Figure 4: Maximum, minimum and median length of the individuals in the population against generations. Logarithmic scale has
been used on the ordinates. Legends have not been included to avoid cluttering the pictures. They are as in Figure 3. Results are
averages over 100 independent GP runs. (a): Artificial Ant on the Santa Fe trail. (b): Symbolic regression.

ant problem we see that on average the shortest programs in small
populations are longer than for large populations. This happens
despite the fact that the size distribution for larger populations is
increasing faster than for smaller ones (as indicated both by their
means and medians). These differences in growth rates partially
mask the fact that there is a similar population-size effect also for
the symbolic regression problem, as shown in Figure 5 where we
compare the ratios between minimum and median lengths of the
individuals in populations of different sizes over time for the sym-
bolic regression problem. As the figure illustrates, the smaller pop-
ulations tend to produce larger shortest programs than the large
populations. So, we expect small populations to sample less often
and for a shorter time the very short unfit programs, as predicted by
the our theory.

As a final note, we can conjecture that as the population size
grows further (beyond the maximum size 800 considered here),
eventually we should see a saturation effect, by which no further
population-size dependency will be observed. We have seen this

effect start emerge at population sizes of 1,600 (experiments not
reported), but, more importantly, we expect it to happen by the ap-
plication of extreme value theory.3

4.3 Length Improvement
Figure 6 shows the length increases at each generation for both

problems studied. The length increase at generation g is defined as
DLg = Lg −Lg−1, where Lg is the average length of the individuals
in the population at generation g. Curves are averages over 100
independent GP runs.

For the artificial ant problem (see Figure 6(a)) length increases
are clearly bigger in larger populations than in smaller ones. The
3Extreme value theory predicts that the distribution of the maxi-
mum and minimum of a sample of stochastic variables approaches
a limit that does not depend on the distribution of the variables as
the number of samples grows. So, as the population size grows,
eventually the sampling distribution and its lower tail should reach
a limit. Thus, the rate of bloat should also reach a limit as predicted
by our refined crossover bias theory.
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Figure 6: Average length increase of the individuals in the population against generations. Results are averages over 100 independent
GP runs. (a): Artificial Ant on the Santa Fe trail. (b): Symbolic regression.
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Figure 5: Ratio between minimum and median lengths of the
individuals in the population against generations for the sym-
bolic regression problem. Logarithmic scale has been used on
the ordinates. Note that smaller populations have higher ratios.

same pattern can be observed for the symbolic regression problem
(Figure 6(b)). These results are again consistent with the prediction
that larger populations experience more rapid code growth. Addi-
tionally, for both problems, there is more noise in the data for small
populations, and these oscillations can even lead DLg to become
negative by a significant amount at certain generations.

All of this is consistent with the refined crossover bias theory
and helps further explain the relationship between code growth and
population size.

5. CONCLUSIONS AND FUTURE WORK
The crossover bias theory [18] (Section 1.2) is the most recent

theory for bloat. Its attraction is its simplicity: bloat is simply
caused by the sampling of short, unfit programs. The theory, how-
ever, has some elements that have not been fully clarified.

In particular, it assumes that the population is “sufficiently large”
that all length classes are sampled (or at least that the short, sub-
quality programs are sampled sufficiently often). In some practical
cases this may not be true, for example if the population is relatively
small and/or the mean program size is large.

In addition, the crossover bias theory does not explain what is
meant by its assumption that short programs are unfit or less fit
than longer ones. There can, for example, be significant differences
between the static fitness of programs and the dynamic average fit-
ness resulting from the interaction of the many processes (such as
selection) going on inside a GP run.

In this paper we have discussed these issues and proposed a re-
fined version of the crossover bias theory that helps clarify what
effects population size has on bloat. The theory, in particular, pre-
dicts that smaller populations will bloat more slowly than larger
ones. In addition, the theory predicts that bloat will be observed
only in problems where small programs are less fit than longer ones
when looking at samples created by fitness-based importance sam-
pling, such as that performed by the Metropolis-Hastings method.

Experiments with two classical GP benchmarks, the artificial ant
on the Santa Fe trail and a symbolic regression problem, have fully
corroborated the theory.

The analysis presented in this paper has been largely qualitative.
So, although the empirical evidence has fully supported it, in the
future, we plan to look at the issues touched upon in this paper
from a more formal, theoretical point of view. This should lead to
a more complete model of individuals’ size growth and its relation-
ship with population size, and might lead to a formalisation of the
refined crossover bias theory.
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